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Abstract: A preliminary analysis on crack evolution in viscoelastic materials was 

presented. Based on the equivalent inclusion concept of micro-mechanics theory, the 

explicit expressions of  crack opening displacement ~ and energy release rate G were derived, 

indicating that both ~ and G are increasing with time. The equivalent modulus of the 

viscoelastic solid comprising cracks was evaluated. It is proved that the decrease of the 

modulus comes from two mechanisms : one is the viscoelasticity of the material ; the other is 

the crack opening which is getting larger with time. 
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Introduct ion  

As shown by ZHANG and XIONG (1997)  ElI, under constant loading the crack in 

viscoelastic materials has an incubation time, within it the crack opening displacement (COD) is 

changing larger with time, while the crack length keeps constant. Investigation on the gradual 

opening of the crack is meaningful to understand fracture behavior of viscoelastic materials. A 

preliminary research on crack opening displacement c~ and energy release rate G of an embedded 

crack in viscoelastic material is presented. 

In addition, although many studies on the effective modulus of cracked elastic solid have 

been carried out (Zhao,  Tandon and Weng ( 1 9 8 9 ) ) ,  rate investigation has been found for 

viscoelastic bodies comprising cracks. In the present article, an attempt is made to evaluate the 

changing tendency of the effective modulus of viscoelastic materials having embedded cracks. 

1 V i s c o e l a s t i c  C o n s t i t u t i v e  R e l a t i o n s h i p  

For ttu'ee-dimensional problems, the viscoelastic constitutive relationships are usually 

decomposed into two equations for the hydrostatic and deviatoric parts respectively (Li and Weng 
(1994) )C2]: 

R ( D ) a k k ( t )  = S ( D ) e k k ( t ) ,  (1) 
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P ( D ) a i i ( t )  = Q ( D ) e i i ( t ) ,  

where P ( D ) ,  Q ( D ) ,  R ( D ) ,  S ( D )  are operators, D stands for d / d t .  

By introducing Laplace transformation / TM 

]C(s) = f ( t ) e - " d t .  
. 0  

Equations ( 1 ) and (2)  change to those in Transformation Domain ( TD 

R ( s ) ~ ( s )  = s (s )~(s ) ,  
P ( s ) # , j ( s )  = Q ( s ) ~ i j ( s ) .  

The bulk and shear moduli are 

1 S ( s  I rO(s ) = 1 Q ( s )  
k r ~  - 3 R ( s  ' 2 P ( s ) '  

and the Y o u n g ' s  modulus and Poisson ' s  ratio are 

ETO 9kTD, u TD 3k To _ 2F TD 

- 3kTO + [zro, u 2(3krO + 

The Lame parameters are 

.)t TD = 2/ . . tTD 
TD 

I) 

1 - 2u to" 

(2) 

(3) 

(4) 

The superscript TD expresses Transformed Domain.  For one-dimensional case, the four-parameter 

model (Burgers model) gives the following Y o u n g ' s  modulus:  

E r~ = Elr]  1(E2 + 712S)S 
E1E 2 + [ r ] lE2 + El ( r ] l  + r]2)]s + sZr]2rll ' 

where E l ,  E 2 ,  r ] l ,  r]2 are two elastic moduli and two N e w t o n ' s  constants. For ED-6 resin, they 

are: E a = 3 .27GPa ,  E z = 1 . 8 G P a , ,  r h = 8 000 G P a . h r ,  r/2 = 300 GPa .h r .  Ttu'ough the 

inverse transformation E ( t ) can be obtained (Li  and Weng (1994)  )E2]. 

2 Equivalent  Inclusion Simulation 

In the following, the analysis is performed in the transformed domain. 

concision, the superscript " TD " will be omitted. 
It is assumed that a penny shaped inclusion is 

embedded in an infinitely extended body.  The 

space region of  the inclusion, ~ can be expressed 

as (Fig .  1 ) : 

+ x2 d c 
r 2 + ~c" ~< 1, - - < < l , r  

x 3 is perpendicular to t h e  crack surface. The 

constants of  matrix and inclusion are A, /~ and 

2 ~ , /~ respectively. A uniform traction, a is 

applied in the remote boundary. 

For the sake of  

2c I ~7 

2r 

I 

Fig. 1 Schematic drawing of 

penny-shaped crack 

Based upon Eshelby '  s. equivalent inclusion theory, if the inclusion undergoes a plastic 

strain, E33P = El,, the elastic stress field can be simulated by the following equations: 
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where 511 , 5 i i  

we have 

O'l t  -= 0"22 = 2 ( , ~  * + ~Z ~ ) E l l  "4- /'t "x" ( 5 3 3  --  E p )  = 

2( / l  + / l ) ( 5 n  - 51=]) + 2(533 - 533 - e p ) ,  ( 5 )  

0-33 = 2 2  ~511 + ( / l  ~" + / J ~ ) ( 5 3 3  - 5 / , )  = 

2 2 ( 5 1 1  - S ( i )  + ( a  + / . t ) ( 5 3 3  - 533 - 5 p ) ,  (6 )  

= 522, 533 are eigenstrain tensors .  5~i is compat ib le  strain tensor .  For this case ,  

5 ij = S ijkg ij ,~ ( 7 )  

where S~ikz is E s h e l b y ' s  tensor .  For the thin penny  shaped inc lus ion ,  the expressions of S~jkz are 

g iven by Mura  (1987)  !33 : 

4v + 1 ~ c )  2v - 1 ~ c  $3311 _ _v 1 - 
5',,33 - 8(1  - v )  r ' 1 v -8v r ' 

1 3 -  8v roe 8v - 1 7tc 
_ -  S l 1 2 2  = $ 2 2 1 1  - S~,H 32(1  - v )  r ' 32 (1  - v )  r 

(1 - 2 v )  rtc 
$3333 = 1 -- 4 ( 1  - v )  r 

By putt ing (7 )  into (5 )  and (6 )  and omit t ing  the terms invo lv ing  ( c / r )  2 , w e  obta ined  

511 ~e E _c [ ; t~.A/~ _ 2 ~. (2A2 + @ z ) ] ( 2 v  - 1 ) ,  
= D 4 (1  v)  1" 

~ ~e. rr - c [ ) , ~ A / l ( 8 v  + 5 )  + 2 / ~ { 2 A a X  1 - 2 v )  + 3 A / z } ]  
533 ---- D 4 (1  v)  7" 

w h e r e A 2  = 2 - ;~, ,5/_, = /1 - / , ,  

D = 22 /~ - 2 A / ~  1 _ - -  ~ + 4 / J  A2 1 _ - - ~ +  /z + v . 

Subst i tut ing (8 )  and (9 )  into (5 )  and (6 )  yields 

1 + 4 v  ~ c  1 + v 5 / , ~ c 
_ c p  - 2 / 1  x 

0-11 4(1  - v)  r 1 - v D 4 (1  - v )  r 

{AI.~A ~ - 2 /z"  (2A;t  + A / ~ ) } ( 2 v  - i ) ,  

/.t 7re 
= - 5p .  cr33 2(1  - v )  r 

It can be seen that 0-33 is independent  on  the elastic modulus  of  the inc lus ion  

conc lus ion  can be found  in the paper of  Mori  and Mura  (1994)  [4] . It implies  that 

for any kind of  inclus ions  or for c r a c k .  

The strain energy produced by 5 v is g iven by 

E - ~ 2 r c 2  [ l  2 

3 1 - v  5p" 

The potent ia l  of  the applied load is 

(8) 

(9) 

( 1 0 )  

( 1 1 )  

The similar  

11)  is valid 

( 1 2 )  

4 ~  r 2 
V = - ~ - 0 - |  ( 1 3 )  

The total potential  energy is the sum o f  E and V: 

F = E + V. (14 )  

OF 
Lett ing 0 %  = 0 ,  we obta in  5; = 0-~ ( = c / 2 r )  ( / ~ / ( 1  - v ) )  ] .  Compar ing  it with equat ion 

( 1 1 ) ,  it is obvious  that 0- ~ = - 0-33. This indicates that the bounda ry  condi t ion  of  stress free on  
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the crack surface is satisfied 

(0-00 + 0"33 ) I,(2 = 0 .  

The strain energy release rate can be derived through the formula,  G = - - -  

(15) 
OF 

and it is a ( r r a  2 ) 

G - 2 (1 - ~ ) r ( 0 - ~ ) 2 .  ( 1 6 )  
rr r 

Following the relation between stress intensity factor K and energy release rate G namely ,  K 2 -- 

2 /~ / (1  - v ) G ,  the stress intensity factor was obtained 

K = 2 c r ~  r .  (17)  

It is known that the crack opening displacement (COD)  is calculated by equation 8 = 2 c % ,  thus, 

4(1 - v)  r0- = 
8 - (18)  

From the explicit expressions of ( 1 6 )  and ( 1 8 ) ,  it is concluded that since /~ is decreasing 

function of time ( in the time domain ) ,  under constant applied load, both G and 8 are gradually 

getting larger with t ime. 

As is mentioned before,  in equation ( 1 8 ) ,  /1 is the modulus in Laplace domain,  by using 

the inverse transformation, 8 ( t )  in t ime domain can be obtained. For ( 1 8 )  the inverse 

transformation can be conducted easily. For example ,  for the viscoelastic material of Maxwell  

type,  

/ l ( t )  = ,,lexp - , 
7]o 

where r]0, r are the viscosity parameter and shear modulus of  the Maxwel l  body .  Thus 

8 ( t )  - 4(1 - v) r0-= . (18 ) '  

, u e x p ( -  r]0) 

It is obvious that ~ ( t ) is increasing function of t ime. 

3 E f f e c t i v e  M o d u l u s  

According to Zhao,  Tandon and Weng (1989)Es?, for the elastic solids with unidirectionally 

aligned penny shaped cracks, the effective modulus in the perpendicular direction to the crack 

surface is given as 

E33 1 
- ( 1 9 )  

E Jl  4(1  - v ) r '  
1 + ./o 7rc 

f ] ,  J0 are the volume fractions of inclusion and matrix respectively.  Introducing the symbol of  

crack density proposed by Budiansky and O 'Conne l l  ( 1 9 7 6 )  [a], r] = Nr3/12 ( N is crack 

number,  ~ is the total volume)  and considering 

4 2 4c  
f~ = ~ -~cr  N / ~  = ~ V ,  

equation (19)  becomes 

E 
E33 = (20)  

16 
1 + ~ 0 ( 1  - IJ 2) V 
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Sincefo  = 1 - j ~  and c = c i + c~( t ) ,  thus (20)  is changed to 

3 J 0 E ( t  ) 3(1  - 4[ci +3/8( t) jrcr]) E ( t )  
: = ( 2 1 )  

E 3 ' ( t )  3 j o +  16(I-v2)rl 3( I~ 4[c i  + a( t ) . ]Trr] /+/  
16(1 2)/] 

3r 

Where cl is the initial COD of the crack. It is obvious that E33 is decreasing with time. Two 

mechanisms give the explanation: first, modulus of matrix E is decreasing function of time; 

secondly, COD is increased with time. 

The brief analysis gives explicit expressions of G and c~. Since they are linear functions of f , ,  

it is easy to obtain their inverse Laplace transformation. The equation ( 2 1 )  indicates that 

gradually opening of the cracks adds to the decreasing of  effective modulus of  viscoelastic 

materials comprising cracks. 
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