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Abstract: By using characteristic analysis of  the linear and nonlinear parabolic stability 

equations ( P S E ) ,  PSE of  primitive disturbance variables are proved to be parabolic intotal. 

By using sub-characteristic analysis of  PSE, the linear PSE are proved to be elliptical and 

hyperbolic-parabolic for  velocity U, in subsonic and supersonic, respectively ; the nonlinear 

PSE are proved to be elliptical and hyperbolic-parabolic for  relocity U + u in subsonic and 

supersonic, respectively. The methods are gained that the remained ellipticity is removed 

from the PSE by characteristic and sub-characteristic theories, the results for  the linear PSE 

are cor~istent with the known results, and the influence of  the Mach number is also given 

out. At the same time, the methods of  removing the remained ellipticity are further obtained 

from the nonlinear PSE. 
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Introduction 

In 1987, the parabolic stability equations (PSE) of fluid mechanics are presented by Herbert 

and co-workers fl] , and they have become main methods to investigate the computation and theory 

of fluid flow. The analysis of computation of fluid flow shows: The diffusion parabolic stability 

equations have not been completely parabolized, there exists remained ellipticity [2- 5]. Thanks to 

the remained ellipticity of the PSE, it not only has the high cost of computation to deal with the 

PSE directly, but also makes the streamwise marching of the solution ineffective. Haj-Hariri 

particularly investigated some mathematical details of the PSE [4] , and analyzed the ellipticity of 

the PSE, and also gave some methods of removing the ellipticity of the PSE. Haj-Hariri and 

others suggest that each physical quantity @ in the PSE is represented as a shape function ~ and a 

wavelike component f2- 5] . By using the unknown coefficient method, the sources of (unwanted) 

eUipticity in these equations are identified. Then, they removed the ellipticity from the PSE in 

acoustic and viscous. Therefore, PSE can be solved by using a marching procedure, which is 
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economical and available. The goal of the present contribution is to analyze the remained ellipticity 

of the PSE by using characteristic and sub-characteristic which are useff to study flae grade structure 

equations of fluid mechanics in Ref. [2] .  Mathematical characteristic and sub-characteristic imply 

that the PSE are not really parabolic, and only the name of the diffuse parabolic stability equations 

(DPSE) can reflect their mathematical and physical qualities. The advantages of the DPSE are that 

the description of the problem of stability of fluid mechanics is reasonable, and CPU hours and 

EMS memories are greatly economized for streamwise marching of the DPSE compared with the 

cost of the computations of the stability equations of fluid mechanics. The computations of the 

DPSE don' t neen to regulate the outward flow boundary conditions of disturbance quantity, which 

is material simplification. Therefore, we further analyze mathematical characteristic of the PSE and 

remove the remained ellipticity of the PSE, our results for the linear PSE are consistent with that of 

Ref. [4 ],  and we also give the influence of the Mach number out. At the same time, we further 

analyze the remained ellipticity from the nonlinear PSE, and also give out the methods of removing 

the remained ellipticity from the nonlinear PSE. 

1 T h e  Linear and Nonlinear Parabolic Stability Equations ( P S E )  

Let the fluid flow satisfy the following two-dimensional compressible basic equations of fluid 

mechanics (BEFM) [21 

3(pu)  3 ( ~ )  
S, ~22 + _ + = 0, ( la )  

at 3x ay 

S' -g-i + u ~ + V a y - p a x  + -p-R-g Us 'u 3 a x  3 + 

~y ,U~x x +ff-yy /zff~-y , ( lb)  

av 3v 8v 1 8p ~__Re{ 3 ( 3 v )  
s ,  + u + " a y - - a--; + + 

( lc )  oy~'U 3 ay 3 ffxx J+ ~ ,u ff~y , 

a t  a t  + p e p  u T x  + v - uS--s + v = 

G f a (  a "- 

"3x 3y 3 ~ + ~yy} + ff~x + ' ( ld)  

p = pT. ( le )  

For the sake of argument, a parallel boundary layer over a flat plate is studied. Let the basic 

state be 

( U ( x , y , t ) , O ,  T ( x , y , t ) , ~ ( x  , y ,  t ) ) ,  

which also satisfy the basic equations of fluid mechanics ( l a )  ~ ( l e ) .  The idea of small 

disturbance is that a little disturbance satisfying the basic equations of fluid mechanics is added 

into the fluid flow. Therefore, the parameter of fluid flOW can be expressed by summation of the 

parameters of the basic flow and the disturbance flow. Assuming the linear compressible 

disturbances are ( u ,  v, O, p ) ,  and the velocity, temperature and density of the shear flow 
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respectively are 

~] = U+ u ,  V = v ,  T = T +  O, p = to + p ,  (2) 
Let the formula (2) be replaced into Eqs. ( l a )  ~ ( l d ) .  The pressure p of Eqs. ( l a )  ~ ( l d )  

is eliminated by using the equation of state ( l e ) .  Then, we obtain the following two-dimensional 

compressible parabolic stability equations: 

3x + v Oy + (p + p)  Tx + (# + p)  -~y = F1,  (3a) 

T + 0 3p 3u 3u  30 41z Oau 
to + p 3x + ( U + u) 3xx + V -~y + 3x 3(to + p )Re  3x 2 + 

2/z 3 ~- v /A 02 V # 3 z u F~ (3b) 
3(to + p ) R e  3xOy 3(to + p)Re  3 y 3 x  (to + p ) R e  3y  2 - " '  

T + 0 3p 3v 3"p O0 [A 02"0 
to + a y + ( u + u )  + "0 + - (to + p ) R ,  a ';-  + 

2,u 82U [A 32U 4lZ 32"0 F 3 (3c) 
3(to + p ) R e  8yOx (to + p )Re  3sOy - 3(p  + to)Re 3 y  z - ' 

30 , aO ( T +  O ) (u  U) 3 p -  (p  + to) (u  + U)(Cp - 1 ) ~ x  + (to + p)'0(Cp 1 ) ~ y  - + Ox 

( r + o)v  a : o  a 
3y  PrRe 3x z PrRe 3y ~" - F4,  (3d) 

where, U, u ,  v are united by Ue ; x ,  y are united by L ; T,  0 and C v are united by gas constant 

R ; p and/z are united by p~ and/z e , respectively. Re = p, Ur L/,% is the Reynolds number. F I , 

F2,  F3 and F 4 denote all of the other terms except for all of the terms ofO/Ox andO/Oy in the 

equations. In the remained parts of our paper, F1,  Fz ,  F3 and F 4 always denote the same 

mashing terms, and will not be explained any more (see Refs. [ 6 ~ 9 ] ) 

By neglecting viscous partial derivative terms with respect to x in Eqs. (3a)  ~ ( 3 d ) ) ,  one 

obtains the following nonlinear diffusion parabolic stability equations: 

( u  + u)  s  + "0 + (to + p)  au a'0 3x 3y  ~xx + (to + p)  ~yy = F1,  (4a) 

32 T + 0 3p 3u 3u  30 tz u F , ,  (4b) 
p +to 3x + ( U +  u)-ff-xx + v-5-yy +~- -x -  ( p + t o ) R e O y Z  - _ 

T + 0 3p 3v 3v 30 4p  3Zv F 3 (4c) 
p + to 3y  + ( U + u) -~x + v -~y + 3y  3 (p  + to)Re O y  2 - ' 

�9 a O  _ 
( p  + to) (u  + U ) ( C  v - 1) ~ + (p + to)v(Cp - 1) 30 

Oy 

( T  + O) (u  + U) 3P - ( T  + O)v 3-~- Cplt 320 F 4 (4d) 
3 x 3 y PrRe 3 y z - " 

Furthermore, let the disturbances be very small, that is to say, u << U, "0 << V, p << P and 0 << 

T, then one obtains the following linear diffusion parabolic stability equations: 

3p 3u  3v 
U Yx  + to ~xx + to ~yy = F1,  ( 5 a )  

_ _  32 
T - ~  + U 3 u 30 /z u F~ (5b) 

( p + to) 3x -~x + -~x - ( p + to)Re Oy 2 - " '  

3v T Op 4,u 3Zv O0 
+ = F3,  , (5c) 

U ~x + (p  + to) 3y  3(p  + to)Re 3y  z ~y 
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3p 30 C~tz 320 F 4 (5d) 
- OUff~  x + (Cp - 1)/SU ~ - PrRe 8 y  z - " 

By the following analysis of characteristic and sub-characteristic, we know that Eqs. (4a) - (4d) 

and (5a) ~ (5d) are parabolic, and there exists remained ellipticity in the subsonic. Therefore, 

we always call Eqs. (4a )  - (4d)  and (5a )  ~ (5d)  the diffusion parabolic stability equations 

( DPSE).  

2 C h a r a c t e r i s t i c  a n d  S u b - C h a r a c t e r i s t i c  o f  t h e  L i n e a r  P S E  

By application of theories analysis of Ref. [ 1 ] ,  there exist two sorts of the transmission 

fashion of information, one is the convection-diffusion transmission of information, the other is 

the convection-disturbances transmission of information. The first one is determined by the 

characteristic of the basic equations of fluid mechanics ( B E F M ) ,  and the second one is 

determined by the characteristic of the sub-characteristic equations which are obtained by 

neglecting all viscous partial derivative terms of BEFM. In the following, in terms of 

characteristic and sub-characteristic theory for grade structure equations of fluid mechanics in 

Ref. [ 2 ] ,  we will investigate characteristic and sub-characteristic of the PSE and study how to 

remove the remained ellipticity from the PSE. In order to obtain the characteristic of the linear 

PSE, let 

8u U(y), 8v V(y ) , 80 O(y). (6) 
3 y  - 8 y  - 3 y  - 

Then, the linear diffusion parabolic stability equations (5a)  ~ (5d)  can be denoted by the 

following fin'st-order simulative linear partial differential equation on Z = ( p ,  u ,  U (y) , v ,  V (y) , 

0,0(~)) 
3 Z  3 Z  

A ~ x  + B~y-y = F ,  (7) 

where Z and F are seventh-order vectors, A and B are 7 x 7 matrixes. The determinant equation is 

UG 1 

T 
p +--Z-F ' 

T 
-0.2 P + P  

de t ( a  1 air + a2bit) = 0,  

where 

de t (a l  air + a,  bij) = 

#0.1 0 
- / z  

Ual (p  + ~ ) R e a 2  

0 0 

- TU0"1 0 0 

0 a~ 0 

0 0 0 

0 0 0 

t5a2 0 0 0 

0 0 0" 1 0 

- 4 / ~  
Ual 3(p  + f i ) R e  0.2 0.2 0 

- C p / ~  
0 0 pU0.1(Cp - 1) -pr~--e-0.o 

0 0 0 0 

0.1 0 0 0 

0 0 0"1 0 

(8) 

4 Cptz 3 4 
- 3 P r ( p  + ? ) 2 R e g a l a 3 "  

Then the charac~teristic values are 
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04 = 0,  a~ = 0 .  (9)  

All the characteristic values are zero.  Therefore,  the diffusion parabolic stability equations 

(5a)  ~ (5d)  are parabolic.  In a similar way,  one can gain all characteristic values of  two- 

dimensional compressible stability equations (3a)  ~ (3d)  which are 

'/1 ~5 6 = + i ~ 7  8 = • i ,  2 9 , 1 0  = • i ,  (10) a~ = 0 ,  24 - U + u "  " - ' ' 

where 2 = - a l / a ~ .  Third-order 0-characteristic roots are related to the three equations with the 

main portions 0 u / O x ,  3 v / O x  and 3 T / O x ,  respectively.  They are independent of  the other seven 

equations of  Eq.  ( 7 ) ,  the other seven characteristic roots are complex except  for one real root.  

Therefore,  two-dimensional  compressible stability equations (3a )  ~ (3d)  are elliptical. 

Let us now turn to consider the relation of  sub-characteristic and the Mach number .  In fact ,  

parts of  eUipticity for the linear PSEs (5a )  ~ (5d)  are remained in subsonic regions.  Removing 

all of  the viscous terms of  the linear parabolic stability equations (5a )  ~ ( 5 d ) ,  then the governing 

equations become the following sub-characteristic stability equations: 

3 u  3 v  
u O P  + /5 + /5 = F 1, ( l l a )  

T 3p_ + U 3 u  3 0  
( p  + /5) + = F2,  ( l l b )  

a,, .T a a  
U~xx + + = F3 ,  ( l l c )  

p +tS a y  ~yy 

O U 3 P  aO 
- (Cp 1)/5U ~ x  3 x  + - = F4 .  ( 1 1 d )  

Ley Z = ( p ,  u , v ,  V Cr) , 0 ) .  Then,  sub-characteristic stability equations ( l l a )  ~ ( l l d )  dan be 

denoted by the following first-order simulative linear partial differential equation: 

3 Z  3 Z  
A-5-~x + B-~-~y = F .  (12) 

Then the sub-characteristic equation is 

det(  a 1 aij + tr 2 bii ) = 

-" U 2 U 2 " ~ to- ( e l ,  - 1 ) a } [ (  - a~-)ai  - a - a ~ ]  = 0 ,  (13)  

where T C v / (  Cp - 1) = a 2 , a is the velocity of  sound. From the sub-characteristic equation 

( 1 3 ) ,  we have 

1 
0" 5 = 0 ,  •3,4 = • (14)  

~/--M--~V __ 1 ' 

where ), -- - a 1 /~a ,  M y  = U / a  is the Mach number of  the non-disturbed flow-. It is evident that 

the sub-characteristic of  linear PSE is related to M v . I f  M y  > 1, the sub-characteristic values are 

real which implies that linear PSEs (5a )  ~ (5d)  are hyperbolic-parabolic.  I f  M y  < 1, the sub- 

characteristic values are complex which implies t h a t  linear PSEs ( 5 a )  ~ ( 5 d )  exist remained 

ellipticity. It is obvious that the remained ellipticity is not caused by the viscous diffusion terms. 

We will talk about how to remove the ellipticity from the linear PSE in Section 4 .  
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3 Characteristic and Sub-Characteristic of the Nonlinear PSE 

Next we consider the characteristic and sub-charactersfic of nonlinear PSE, then consider the 

difference of characteristic and sub-characteristic of linear and nonlinear PSE, and the relation of 

the sub-characteristic of nonlinear PSE and the Mach number. Let 

Z = ( p , u , U  ( y ) , v , V  ( y ) , O , O ( y ) ) .  (15) 

Then, nonlinear PSEs (4a) ~ (4d) can be denoted by the following first-order simulative linear 

partial differential equation on Z = ( p , u ,  U ( r ) , v ,  U ( y ) , O, 0(Y~) : 

9 Z  OZ 
A - ~ x  + B - ~ y  = F .  (16) 

The determinant equation is 

det( al ai~ + a 2 bij ) = 

4 Cplz 3 
[ ( U  + U)al  + va2]a3a  3 = O. ( 1 7 )  

- 3 P r ( p  + {~)~-Re 3 

Then the characteristic values are 

V , a~ = O, a~ = O. (18) A1 -- U + lg 

All the characteristic values are r ea l ,  therefore nonlinear PSEs ( 4 a )  ~ ( 4 d )  are hyperbolic- 

parabolic. Let us now turn to consider the relation of sub-characteristic and the disturbance Mach 

number M~+v, a part of ellipticity of the nonlinear PSEs ( 4 a )  ~ ( 4 d )  virtually remained in 

subsonic regions. 

Removing all of the viscous terms of nonlinear PSEs (4a )  ~ ( 4 d ) ,  one obtains the sub- 

characteristic stability equations 

(~+ u)~+(~+p)~u 9~ ~ + (P + 

T + 0 9p 8u  8 u  
- -  + + + + 

# + p g x  

0 Ov 9v T +  0 ~_  + = F3,  ( u  + U ) ~ x  + V g y - - + p + #  3 y  

- ( T  + O)~u + U) aP ( r  + O)v ap 
8x  - 8 y  + 

3v  ~ F1 ,  (19a) p )  j - y +  V g y  = 

90 
= F2,  (19b) 

(19c) 

90 90 
( C  v - 1 ) ( g  + # ) ( u  + U) ~ + (Cp 1 ) ( p  + /0)'/) ~yy ---- F 4 . (19d) 

The nonlinear equations (19a)  ~ (19d)  can be translated into the following united first-order 

simulative linear partial differential equations on Z = ( p ,  u ; v ,  0) : 

9 z  B 9Z 
A~-X- x + ~ = F .  (20) 

And the sub-characteristic values are solved out to be 

de t ( a l a i /  + a2bij)  = ( p  + / 5 ) [ -  ( t t  + U)o" 1 + va2]2(Cp - 1) x 

{ [ ( u  + U) 2 - a2]A 2 + 2 v ( u  + U)A - a 2 } = 0,  (21) 

where A = - a~/a2,  a 2 -~ a "2 = ( T  + O ) s  - 1) ,  a '  is sound velocity. By using sub- 

characteristic equation (21 ) ,  four sub-characteristic values are solved to be 
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/" ~ .~ M 2 v M,,M:+u + M;M' :+v  + u+y - 1 
A 1 , 2  -- A3,4 = , (22) 

u + V '  ~ / M ~ + v _  1 

where M,, = v~ a is the Mach number which is related to the normal direction, M~+ v = ( u + 

U ) / a  the Mach number which is related to the flow direction. By using characteristic values 

,1:~,4, the sub-characteristic of nonlinear PSE is related to the Mach numer Mu+ t; - If  M,,+ v > 1, 

the sub-characteristic values are real which implies that nonlinear PSEs ( 4 a )  ~ ( 4 d )  are 

hyperbolic-parabolic. If  M~+ v < 1, the sub-characteristic values are complex which implies that 

nonlinear PSEs (4a)  ~ (4d) exist remained eUipticity. It is obvious that the remained ellipticity is 

not caused by the viscous diffusion terms. In the following, we will talk about how to remove the 

remained ellipticity from the nonlinear PSE. 

4 Applicat ion of Characteristic a n d  S u b - C h a r a c t e r i s t i c  l~heories in  R e m o v i n g  

the  El l ip t ic i ty  f rom the  PSE 

From the analysis of Section 2 and Section 3, we gain the methods of removing the remained 

ellipticity from the PSE. From the linear PSE, the method of removing its eUipticity is: The 

characteristic values are real of the linear PSE. Therefore,  the linear PSE are completely 

hyperbolic-parabolic. Then, sub-characteristic of the linear PSE is related to the non-disturbance 

flow Math number My �9 If M v > 1, sub-characteristic values are real, and the sub-characteristic 

equations are hyperbolic-parabolic. If My < 1, sub-characteristic values are complex, and there 

exists remained ellipticity for the linear PSE. It is obvious that the remained eUipticity is not 

caused by the viscous diffusion terms. By using the characteristic and sub-characteristic theories, 

if the partial term tb 3 u / S x  is neglected on disturbance velocity u of base flow for Eq. (5a) (or the 

term ( T / ( p  + ~ ) ) ( O p / g x )  , for Eq. ( 5 b ) ,  or the term ( T/ (  p + ~ ) ) ( 3 p / 3 y )  , for Eq. ( 5 c ) ) ,  

we can remove the remained ellipticity for the linear PSE. By using the above "neglected" 

operation, the characteristic values of the linear PSE are 

a i  = 0, a~ = 0, (23) 
That the characteristic values are real implies that the linear PSE are parabolic. Therefore, the 

linear PSE have heen completely parabolized, and our results are consistent with that of  Ref. [ 4 ] .  

By using characteristic and sub-characteristic theories, we can further talk about how to 

remove the remained ellipticity for the nonlinear PSE. Firstly, sub-characteristic of the nonlinear 

PSE is related with the disturbance flow Math number M~+ v �9 If  M~+ v > 1, sub-characteristic 

Values are real, and the sub-characteristic equations are hyperbolic-parabolic. I f  M~+ v < 1, sub- 

characteristic values are complex, and there exists remained ellipdcity for the nonlinear PSE. If 

the partial term ( ~  + p ) a  u / a x  is neglected on disturbance velocity u of base flow for equation 

( 4 a ) ,  we can remove the remained eUipticity for the nonlinear PSE. By using the above 

"neglected" operation, the characteristic values of the nonlinear PSE are 

",1 1 ,2  -- V 
u + U '  

,13 = ( Cp - 1 ) m y  - ( T + 0) 1/2 __pC 1/2 
(Cp - 1)112v ' (24) 

,1~ = (Cp - 1 ) m , ,  + ( T  + O)m-~C1~" 
(Cp - 1)i/'-v 
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That the characteristic values are real implies that the sub-characteristic equations are hyperbolic- 

parabolic, and they are not related to the disturbance Mach number  M~+v. Therefore,  the 

nonlinear PSE have been completely parabolized.  

5 C o n c l u s i o n  

In this paper ,  characteristic and sub-characteristic theories [~'] are used to analyze the 

mathematical  characteristic and remove the remained ellipticity of  the parabolized stability 

equations (PSE)  F3,4]. By using our "neglected" operation, the linear or nonlinear PSE have been 

completely parabolized.  By using characteristic and sub-characteristic theories,  we can remove 

the remained ellipticity f rom the PSE,  and our results for the linear PSE are consistent with that of  

Ref.  [ 4 ] ,  and we also give the influence of  the Math  number  out.  
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