
Theoretical and Applied Fracture Mechanics 40 (2003) 187–195

www.elsevier.com/locate/tafmec
Electrothermal stress in conductive body
with collinear cracks

P. Wang a,b,*, Z.G. Tian a,b, X.Z. Bai a,b

a National Laboratory of Non-linear Mechanics, Institute of Mechanics of The Chinese Academy of Sciences, China
b Yanshan University, College of Civil Engineering and Mechanics, Qinhuangdao 066004, China
Abstract

The temperature and stress field in a thin plate with collinear cracks interrupting an electric current field are de-

termined. This is accomplished by using a complex function method that allows a direct means of finding the distri-

bution of the electric current, the temperature and stress field. Temperature dependency for the heat-transfer coefficient,

coefficient of linear expansion and the elastic modulus are considered. As an example, temperature distribution is

calculated for an alloy (No. GH2132) plate with two collinear cracks under high temperature. Relationships between

the stress, temperature, electric density and crack length are obtained. Crack trajectories emanating from existing crack

are predicted by application of the strain energy density criterion which can also be used for finding the load carrying

capacity of the cracked plate.
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1. Introduction

Electromagnetic effects have numerous useful

engineering applications because they can alter the

strain, stress, and temperature field in the material.

Magneto–thermo-elastic theory can be applied for

a quantitative assessment of these effects. One such

application is to arrest crack motion by changing
the material properties in the immediate vicinity of

the crack tips. This involves heating the local
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material electromagnetically in a very short period

of time such that sufficiently high energy can be

localized to cause a change in the material micro-

structure. Such a change is sufficient to prevent a

crack from initiating or to arrest a moving crack.

For those structural components that conduct

electric current, the method can be easily applied

using a voltage source once cracks are detected by
non-destructive testing techniques such as ultra-

sonic and acoustic emissions.

Addressed in this work are cracks or line defects

in metals that are aligned collinearly. More spe-

cifically, consider a thin plate conducting an elec-

tric current field that is interrupted by N collinear

cracks. The temperature and stress field are de-

termined for the situation when crack propagation
ed.
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is stopped by changing the material properties

ahead of the crack. This is done by sending an

electric current down the plate. The timing and

strength of the current depend on the size of the

specimen and the mechanical and thermal prop-

erties of the material. To this end, it is pertinent to
have knowledge of the prevailing stress, strain and

thermal field around the cracks. To demonstrate

the feasibility of the proposed scheme, a high tem-

perature resistance alloy GH2132 with two col-

linear cracks has been selected for this study.
2. Temperature field with N collinear cracks

2.1. Electric current density distribution

Fig. 1 shows N collinear cracks in a complex

plane. The length of each crack is Lk. Now, let

L ¼
Pn

k¼1 Lk. When the electric current is switched

on normal to the crack, the relationship between

the current intensity I and the current density J is
given by [1]

�Jx ¼
oI
ox

; Jy ¼
oI
oy

ð1Þ

With reference to the complex plane z ¼ xþ iy, an
analytic function uTðzÞ ¼ I þ iV can be defined

such that I and V satisfy the Cauchy–Riemann

condition [2]. This implies that

�Jx þ iJy ¼ UTðzÞ; I ¼ Re½uTðzÞ� ð2Þ
Here,

uTðzÞ ¼
Z

UTðzÞdz; UTðzÞ ¼ oI
ox

� i
oI
oy

ð3Þ
Fig. 1. A thin current carrying plate with multiple cracks.
The symbol Re[ ] stands for the real part of the

function. It follows that

jJ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2
x þ J 2

y

q��� ��� ¼ jUTðzÞj ð4Þ

The boundary conditions of L are given by

UTðsÞ
h

� U
TðsÞ

iþ
þ UTðsÞ
h

� U
TðsÞ

i�
¼ 2f ðsÞ

UTðsÞ
h

þ U
TðsÞ

iþ
� UTðsÞ
h

þ U
TðsÞ

i�
¼ 2gðsÞ

ð5Þ
where

f ðsÞ ¼ 1

i

oI
oy

� �þ�
þ oI

oy

� ���

gðsÞ ¼ 1

i

oI
oy

� �þ�
� oI

oy

� ��� ð6Þ

The solution to the Hilbert problem as given by

Eq. (5) is well known:

UTðzÞ ¼ UT
0 ðzÞ þ

PT
n ðzÞ
vðzÞ

UT
0 ðzÞ ¼

1

2pivðzÞ

Z
L

vþðsÞf ðsÞ
s� z

dsþ 1

2pi

Z
L

gðsÞ
s� z

ds

ð7Þ
Note that the branch cuts for the cracks are given

by

vðzÞ ¼
Yn
j¼1

ðz� ajÞ1=2ðz� bjÞ1=2

PT
n ðzÞ ¼ c0zn þ c1zn�1 þ � � � þ cn

ð8Þ

The current density is given by

c0 ¼
1

i

oI
oy

� �1

¼ �iJ0 ð9Þ

Similarly, the coefficients c1; c2; . . . ; cn can be de-

termined by using the current intensity condition:

Re

I
UTðzÞdz

� �
¼ 0 ð10Þ

while using Eqs. (6) and (5). It follows that

f ðsÞ ¼ 0; gðsÞ ¼ 0 ð11Þ
This gives a system of N linear equations solving
for the N unknowns c1; c2; . . . ; cn. The current in-

tensity modulus can then be found by using Eq.

(4).
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2.2. Heat source

From the principle of electromagnetic heating, it

is known that heat can be produced. when current

flows in a conductor. The greater the current inten-
sity, the higher is the temperature. The current in-

tensity increases rapidly near the crack tips with the

crack length being a factor. Hence, the temperature

near the tip is intensified locally. The temperature

field caused by the current is therefore assumed to be

controlled by the point-heating source at the crack

tip. The thin plate should have a high electrical

conductivity while the remaining electromagnetic
heating effects can be ignored. The power of each

heating source at a crack tip is given by [5]

QðakÞ ¼
1

r

Z h

�h
jJðakÞj2 dz ¼

1

r

Z h

�h
UTðakÞ
�� ��2 dz

QðbkÞ ¼
1

r

Z h

�h
JðbkÞj j2 dz ¼ 1

r

Z h

�h
UTðbkÞ
�� ��2 dz

ð12Þ
where h is half of the thickness of the plate and r is

the electrical conductivity.

2.3. The temperature field

When the current flows in the thin plate with N
collinear cracks, the resulting influence on the

temperature field is the same as that of a heat

source with a particular power setting. So the

problem is to calculate the temperature field re-

sulting from 2n heat sources. It has two parts:

T ðzÞ ¼ T0ðzÞ þ T�ðzÞ ð13Þ
Here, T0ðzÞ is the temperature in the absence of the

cracks and T�ðzÞ is the correction for the presence

of the cracks.

Solution of T0ðzÞ. The temperature T0ðzÞ can be

easily found and it is given by the complex func-
tions [6]:

T0ðzÞ ¼ 2Re½F0ðzÞ�;

F0ðzÞ ¼
Xn

k¼1

mak lnðz½ � akÞ þ mbk lnðz� bkÞ� ð14Þ

where

mak ¼ �QðakÞ
4pk

; mbk ¼ �QðbkÞ
4pk

ð15Þ
Note that k is the thermal heat conduction coeffi-

cient. QðakÞ and QðbkÞ are the power of the heat

source at the right or left tip of a crack. They can

be calculated from Eq. (12) as

T0ðx; yÞ ¼
Xn

k¼1

mak ln½ðx
n

� akÞ2 þ y2�

þ mbk ln½ðx� bkÞ2 þ y2�
o

ð16Þ

oT0ðzÞ
on

¼oT0ðzÞ
oy

¼
Xn

k¼1

2y
mak

ðz�akÞ2�y2

"
þ mbk

ðz�bkÞ2�y2

#

ð17Þ
Solution of T�ðzÞ. Assume the cracks are insu-

lated such that heat cannot flow across the crack

surfaces. The heat boundary conditions are

k
oT ðsÞ
on

� �
¼ 0; s 2 L ð18Þ

From Eqs. (13) and (18), the following equation

can be obtained:

k
oT�ðsÞ
on

� �
¼ �k

oT0ðsÞ
on

� �
; s 2 L ð19Þ

Hence T�ðzÞ is obtained [5]:

T�ðzÞ ¼ 2Re½F�ðzÞ�

F�ðzÞ ¼
c
2
þ 1

2pi

Z
L

uðsÞ
s� z

ds; s 2 L
ð20Þ

where c is a real content. It is twice the tempera-

ture of the plate without cracks and without heat

sources. uðsÞ is a real function defined on the

boundary L. On L, it is found that

�uðs0Þ ¼ �2jyj
Xn

k¼1

mak

ðz� akÞ2 � y2

"
þ Abk

ðz� bkÞ2 � y2

#

¼�2b
Xn

k¼1

Aak

ðz� akÞ2 � y2

"
þ Abk

ðz� bkÞ2 � y2

#

ð21Þ

with b being the width of the cracks.

Consider the initial temperature of the plate as 0

�C, so that c ¼ 0. It is also known that b ¼ 0. Ac-

cording to Eq. (19), it is known that T�ðzÞ ¼ 0. This
means: when a point-heating source is collinear

with a crack, the crack has no influence on the

temperature field. From Eq. (12) the temperature
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field of the plate with N cracks and 2n point heating
sources is given by

F ðzÞ ¼
Xn

k¼1

mak lnðz½ � akÞ þ mbk lnðz� bkÞ� ð22Þ

T ðx; yÞ ¼
Xn

k¼1

mak ln ðx
hn

� akÞ2 þ y2
i

þ mbk ln ðx
h

� bkÞ2 þ y2
io

ð23Þ
3. Temperature dependent thermal conductivity

The thermal conductivity of metal may be re-

garded as the sum of lattice coefficient and electro

conductivity. The power transmission of the lattice

and free electrons is influenced by the temperature.

This influences the thermal conductivity [7]. Sup-

pose that the variation of thermal conductivity

coefficient with the temperature is linear:

k ¼ k0ð1þ bkT Þ ð24Þ

The governing equation for the temperature then

becomes [8]

o

ox
k
oT
ox

� �
þ o

oy
k
oT
oy

� �
¼ 0 ð25Þ

Now define a new variable

H ¼
Z T

0

kdT with
oH
oT

¼ k ð26Þ

Therefore, Eq. (25) can be transformed into the
classical Laplace equation:

o2H
ox2

þ o2H
oy2

¼ 0 ð27Þ

The procedure for of solving H is well known.

Hence, mak and mbk in Eq. (14) follows from the

relation oH=oT ¼ k. The temperature can then be

obtained from Eq. (23).
4. Stress field with collinear cracks

Because the problem is symmetrical about the

axis ox, it suffices to solve the semi-plane problem
with mixed boundary conditions [9]. Now, also let

L ¼
Pn

k¼1 Lk such that L0 stands for the uncracked

portion of the axis ox. Analysis will be on the lower

semi-plane. The basic equations of this field are

given by [4,5,10]

ry þ rx ¼ 2bUðzÞ þ UðzÞc ð28Þ

ry � isxy ¼ UðzÞ � Uð�zzÞ þ ðz� �zzÞU0ðzÞ ð29Þ

2l
o

ox
ðuþ ivÞ ¼ jUðzÞ þUð�zzÞ � ðz��zzÞU0ðzÞ þ bF ðzÞ

ð30Þ

X þ iY ¼ �i uðzÞ
h

� uð�zzÞ þ ðz� �zzÞUðzÞ
ib0
a0

ð31Þ

where UðzÞ is the harmonic function of the field;

ðu; vÞ are the displacement components. Note that

ðX ; Y Þ are components of the force vector acting on

a curve a0b0. l is the material�s shear modulus with
j ¼ 3� 4m. Moreover, b ¼ 2Eat, m is the Poisson�s
ratio, E is the elastic modulus and at is the coeffi-

cient of thermal expansion.

Because of the point heat sources at ak, bk
ðk ¼ 1; 2; . . . ; nÞ, the harmonic function UðzÞ near

the crack tip ak and bk can be written as

UðzÞ ¼
Xn

k¼1

½AakðzÞ þ AbkðzÞ� þ U�ðzÞ;

when z ! ak or z ! bk

UðzÞ ¼
Xn

k¼1

½BakðzÞ þ BbkðzÞ� þ U�ðzÞ;

when z ! ak or z ! bk

ð32Þ

where

Aak ðzÞ ¼
b

1þ j
mak lnðz� akÞ;

Abk ðzÞ ¼
b

1þ j
mbk lnðz� bkÞ ðk ¼ 1; 2; . . . ; nÞ

Bak ðzÞ ¼ � b
1þ j

mak lnðz� �aakÞ;

Bbk ðzÞ ¼
b

1þ j
mbk lnðz� �bbkÞ ðk ¼ 1; 2; . . . ; nÞ

ð33Þ
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Now, let

AðzÞ ¼
Xn

k¼1

Aak ðzÞ½ þ Abk ðzÞ�

BðzÞ ¼
Xn

k¼1

Bak ðzÞ½ þ Bbk ðzÞ�
ð34Þ

If the displacement boundary conditions are
known on L, stress boundary conditions can be

written as

uþ iv ¼ 0 ðon L0Þ; ry � isxy ¼ 0 ðon LÞ ð35Þ
From Eqs. (31) and (32), the boundary condition

of UðzÞ becomes

jU�ðtÞ þ UþðzÞ ¼ g0ðtÞ ðon L0Þ
U�ðtÞ � UþðzÞ ¼ 0 ðon LÞ

ð36Þ

where

g0ðtÞ ¼ �bF ðtÞ ð37Þ
The values of UðzÞ at ak and bk are determined by

Eq. (29). In this case, the solution of the boundary

problem stated by Eq. (35) is given by

UðzÞ ¼ AðzÞ þ BðzÞ þ vðzÞ
2pi

Z
L

f0ðsÞds
vþðsÞ þ vðzÞPnðzÞ

ð38Þ
Note that

PnðzÞ ¼ c0zn þ c1zn�1 þ � � � þ cn

vðzÞ ¼
Yn
k¼1

ðz� akÞ�ð1=2Þðz� bkÞ�ð1=2Þ ð39Þ

From Eqs. (28)–(30), the following can be ob-

tained

ry þ rx ¼ 4Re½UðzÞ� ¼ �4b
Xn

k¼1

mak ln jz½ � akj

þ mbk ln jz� bkj� ð40Þ

ry � isxy ¼ �b
Xn

k¼1

mak ln
z� ak
�zz� ak

�
þ mbk ln

z� bk
�zz� bk

�

þ 2byi
Xn

k¼1

mak

�zz� ak

�
þ mbk

�zz� bk

�
ð41Þ

The stresses ry , rx and sxy can be obtained by

separating the real and imaginary parts in the
above equations. The modulus of elasticity E and

the coefficient of expansion for different tempera-

tures can be found in handbooks.
5. Strain energy density function

While many fracture criteria are available, the

strain energy density criterion will be used because

of its generality for determining the crack path and

the critical load to initiate crack growth. In this

criterion, a strain energy density factor S is defined

from the strain energy density function dW =dV
using the relation dW =dV ¼ S=r.

The distance r is measured from the crack tip.

Using the asymptotic crack tip stress field, S be-

comes independent of r. It depends only on the

angular distribution of the stress field. In general,

S can depend on r for the relation dW =dV ¼ S=r
hold in general as S takes on the interpretation of

the area under the dW =dV versus distance r curve.
A finite distance r is always kept between the crack

tip and the element under consideration. The S or

dW =dV criterion applies to all materials and ex-

ternal disturbances including thermal and mois-

ture variations. The loading can in general be

applied in an arbitrary direction such that the di-

rection of crack initiation is not known but must

be determined without additional assumptions.
Application of the criterion can be found in [3].

It requires a knowledge of the strain energy density

function

dW
dV

¼ 1

2E
ð1
�

þ mÞrijrij � mrkk

�
ð42Þ

For linear and isotropic elasticity, dW =dV can be

separated into two parts. One refers to the dis-

tortional strain energy density given by

dW
dV

� �
d

¼ 1þ m
6E

ðr1

h
� r2Þ2 þ ðr2 � r3Þ2

þ ðr3 � r1Þ2
i

ð43Þ

and the other to the dilatational the strain energy
density expressed by

dW
dV

� �
V

¼ 1� 2m
6E

ðr1 þ r2 þ r3Þ2 ð44Þ
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where rj ðj ¼ 1; 2; 3Þ are the principal stresses.

According to Eqs. (40) and (41), the strain energy

density near crack tip when discharging can be

obtained so that the path of crack propagation can

be predicted by the strain energy density.
6. Temperature and the stress field for two collinear

cracks

Consider two collinear cracks in a plate, Fig. 2.

An electric current with intensity J0 is activated at

remote distance from the cracks. Here,

A1ð�3a; 0Þ; B1ð�a; 0Þ; A2ða; 0Þ; B2ð3a; 0Þ
and L ¼ L1 [ L2

Note that L0 is the uncracked ligaments (except

L) along the axis ox. From Eqs. (7) and (11), the

following is obtained

UTðzÞ ¼ J0
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz2 � a2Þðz2 � 9a2Þ

p z2
�

� 9a2
EðkÞ
KðkÞ

�

ð45Þ
where EðkÞ;KðkÞ are respectively the first and

second elliptic integrals with argument k where

k2 ¼ 1� ð1=3Þ2.
From Eqs. (23) or (25), T ðx; yÞ may be written

as

T ðx; yÞ ¼
X2

k¼1

mak ln½ðx
n

� akÞ2 þ y2�

þ mbk ln½ðx� bkÞ2 þ y2�
o

ð46Þ
Fig. 2. A thin current carrying plate with two collinear cracks.
It should be noted that

a1 ¼ �3a; b1 ¼ �a; a2 ¼ a; b2 ¼ 3a

and Aak ;Abk may be found by Eq. (17). From Eqs.
(40) and (41), the following is known

ry þ rx ¼ 4Re½UðzÞ�

¼ 4b
X2

k¼1

mak lnðz½ � akÞ þ mbk lnðz� bkÞ�

ð47Þ

ry � isxy ¼ b
X2

k¼1

mak ln
z� ak
�zz� ak

�
þ mbk ln

z� bk
�zz� bk

�

þ 2byi
X2

k¼1

mak

�zz� ak

�
þ mbk

�zz� bk

�
ð48Þ
7. Example

A thin plate with two collinear cracks in Fig. 2
is made of high temperature resistance alloy

GH2132. The plate thickness is 2h ¼ 2 mm and

a ¼ 10 mm. The coefficient of heat conduction is

assumed to have a linear variation with time so

that bT can be found from its values at 100 and 900

�C. This gives bT ¼ 1:048� 103. The electrical

conductivity of the alloy is r ¼ 1:12� 106 (Xm)�1.

The linear expansion coefficient and the elastic
modulus of the material are given in Tables 1 and

2 [11]. In Fig. 3, curves a and c show the tempera-

ture near the crack tip a1 and b1 when the variation

of the heat conduction coefficient is not consid-

ered. Curves b and d show the temperature when

the variation of the heat conduction coefficient is

considered. Temperatures at the crack tip a2 and

b2 are the same as those at a1 and b1.
In Fig. 4, the curves 1 and 2 describe the value

of rx at 1 mm from the crack tip. The current in-

tensity is changed. In Fig. 5, when the crack size

is changed, the curves 1 and 2 describe the value

of rx at 1 mm from the crack tip. The current in-

tensity is J0 ¼ 1:3� 108 A/m2 which shows the

values of rx as a function of distance along the line

collinear with the crack. Displayed in Fig. 6 is the
distribution of strain energy density at crack tip b2.
The crack propagation path is shown when the



Table 1

Coefficients of linear expansion of alloy at different temperature

T (�C) aT

100 15.37

200 16.09

300 16.31

400 16.84

500 17.58

600 18.06

700 18.74

800 19.62

900 20.45

Here the values of at are aT � 10�6 C�1.

Fig. 3. Curve T � J0.

Fig. 4. Curve rx � J0.

Fig. 6. Fracture trajectory.

Table 2

Elastic moduli of alloy at different temperature

T (�C) E (GPa)

20 198

100 193

200 186

300 181

400 173

500 165

600 157

700 150

800 139

Fig. 5. Curve rx � a.
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discharging current density is J0 ¼ 1:3� 108 A/m2.

Fig. 7 shows the distribution of the strain energy

density for different current density at crack tip b2.
In Fig. 8, the variation of the ratio of dilatational
and distortional energy density factor with angel h
is shown. Here, r is the distance measured from the

crack tip b2 while h is the angle between r and the

x-axis.



Fig. 7. The relations of strain energy density with J0.

Fig. 8. The variation of ratio of dilatational and distortional

energy with angel h.

194 P. Wang et al. / Theoretical and Applied Fracture Mechanics 40 (2003) 187–195
8. Conclusions

From the results obtained in this work, the

following conclusions can be made:

• Fig. 3 shows that the influence of temperature

on the variation of the coefficient of heat con-

duction cannot be ignored when the tempera-

ture is high. The influence of the current

intensity on the temperature is very pro-

nounced. Crack arrest behavior depends sensi-

tively on these factors.

• As shown in Fig. 4, the stress near the crack tip
is compressive. The greater the current inten-

sity, the larger is the stress magnitude.

• From Fig. 5, it can be observed that when the

variation of the size of a is small, the stress vari-

ation is very large. When the size of a is more
than, say 13 mm, changes in the size of a have

a smaller influence on the stress.

• Fig. 7 shows that the strain energy density will

increase when the discharging current density

increases. It is also shown that the strain energy
density intensity tends to increase as the crack

tip is approached. Fig. 8 shows that the distor-

tional energy is much bigger than the dilata-

tional energy near the crack tip. However,

they do not occur at the same location. The for-

mer is away from the line of prospective crack

growth. What should be kept in mind is the

order of events implicit in the equilibrium the-
ory of mechanics. That is distortion will always

take place over a longer time period prior to di-

latation. The latter takes place over a much

shorter time interval and more abruptly. The

equilibrium nature of mechanics only presents

the space and time average results. This pre-

vents a detail account of the actual physical na-

ture of the phenomenon of yield and fracture.
Refer to [3] for a detail description of the situa-

tion near the crack tip.
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