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Singular perturbation theory of two-time-scale expansions was developed in inviscid 
uids to investigate pattern-

forming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject

to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term,

an external excitation and the in
uence of surface tension, was derived from the potential 
ow equation. Surface tension

was introduced by the boundary condition of the free surface in an ideal and incompressible 
uid. The results show

that when forced frequency is low, the e�ect of surface tension on the mode selection of surface waves is not important.

However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function

of surface tension is to cause the free surface to return to its equilibrium con�guration. In addition, the e�ect of surface

tension seems to make the theoretical results much closer to experimental results.
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1. Introduction

The classical hydrodynamics problem of vertically

driven surface waves was �rst studied experimentally

by Faraday.[1] He noticed that the resulting surface

waves had a fundamental frequency of half the excita-

tion frequency, i.e. the response was subharmonic. On

the theoretical side, Ref.[2] studied the linear problem

for ideal liquids enclosed in a container, vibrating si-

nusoidally in the vertical plane, and showed that the


uid dynamical equations can be reduced to a sys-

tem of Mathieu equations, which allow harmonics as

well as subharmonics. Faraday instability provides an

excellent context containing the exploration of a va-

riety of issues related to nonlinear pattern formation.

A review of this subject was given in Ref.[3]. Many

problems have been solved in inviscid 
uids. How-

ever, until now, no reasonable nonlinear theory has

been established for strongly damped surface waves.

DiÆculties arise due to the interplay of intricate non-

linear boundary conditions at the free surface and the

external excitation, which makes the problem non-

autonomous.

Many 
ow patterns were observed in experi-

ments[4�7] with one or two- frequency drive. These

patterns included hexagons, triangles, twelvefold

quasi-periodic pattern, two-dimensional quasi-crystal

and supperlattice patterns, etc. Over the last two

decades, Faraday instability has been extensively in-

vestigated for weakly viscous 
uids in the con�ned

and extended systems,[8�10] their secondary instabili-

ties and transition to spatio-temporal chaos,[11;12] and

turbulence.[13;14]

E et al
[15�17] carried out the 
ow visualization

and experimental studies on surface wave patterns in

a circular cylindrical vessel using vertical external vi-

brations. They obtained very beautiful photographs

of free surface patterns in a wide range of driving fre-
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quency, and most of them had not been reported be-

fore.

Recently, Jian and E[18�20] proposed a mathemat-

ical formulation for both ideal and viscous 
uids re-

lated to the 
owing visualization in Refs.[15{17], from

which the second-order free surface displacements and

their contours were obtained by two-time-scale singu-

lar perturbation expansion. Although the numerical

results of the contours of free surface waves agreed well

with the experimental visualization, the forced fre-

quency showed large di�erences. In addition, charac-

teristics of the amplitude equation and stability anal-

ysis of the modi�ed equation were studied respectively

in Refs.[21] and [22].

In this paper, we study the Faraday resonance in

an inviscid 
uid in a circular cylindrical container by

employing the two-time-scale perturbation expansion

method and taking into account the e�ect of surface

tension. A nonlinear slowly varying amplitude equa-

tion, similar to that derived by Jian and E,[18;19] is ob-

tained from the Euler equation. The di�erence of the

two amplitude equations is that the former includes

the e�ect of surface tension. The coeÆcients of the

amplitude equations with and without surface tension

are compared with each other. It is shown that the

theoretical forced frequency is much closer to the ex-

perimental results than that without surface tension

e�ect.

2.Governing equation and

boundary conditions for the

vertically forced waves

We consider the surface waves excited by the ver-

tical motion of a circular cylindrical basin �lled with


uid. The physical model, all the parameters used

and the choice of the coordinate system are the same

as in Ref.[21].

It is assumed that the 
uid is inviscid and incom-

pressible, and the motion is irrotational. There must

exist a velocity potential function � (r, �, z, t) satis-

fying the following governing equation:
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and the kinematic condition being
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at the free surface. Here � (r,�, t) is the displacement

of the surface from z =0, R is the internal radius of

the container, constants � and � denote the surface

tension coeÆcient and the density of the 
uid respec-

tively. The e�ect of surface tension is introduced by

the boundary condition of the free surface. In addi-

tion, since the in
uence of viscosity is ignored, the

boundary conditions on the side-wall and at the bot-

tom of the vessel become zero normal velocity for rigid

container, namely

@�

@r
= 0; r = R; (4)

@�

@z
= 0; z = �h: (5)

Equations (1){(5) establish the mathematical model

that describes the nonlinear surface waves in an invis-

cid 
uid under the e�ect of surface tension.

Firstly, taking the radius R of the vessel to be

the length scale, and nondimensionalizing all the re-

lated independent and unknown variables, the follow-

ing scalings are adopted:

z� = z=R; r� = r=R; �� = �=R;

t� = t=
p
R=g; �� = �=

�
R
p
gR

�
;

!�0 = !0=
p
g=R; "�2 = 4A!2

0=g;

A� = A=R; �
�=�� =

�
gR2

�
�=�: (6)

Note that the asterisks denote dimensionless

quantities and are subsequently dropped. The param-

eter "� quanti�es the acceleration due to the vertical

oscillation relative to gravity and is assumed to be

much less than unity.

Substituting Eq.(6) into Eqs.(1){(5), then ex-

panding Eqs.(2) and (3) into Taylor series at z=0 and

neglecting the term O("4), we obtain the following

nondimensional governing equation:
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0 < r < 1; �h=R < z < 0; (7)

with nonlinear free surface boundary conditions
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and the boundary conditions on side-wall and at the

bottom are

@�

@r
= 0; r = 1; (10)

@�

@z
= 0; z = �h=R: (11)

In order to solve Eqs.(7){(11) by the two-time-

scale perturbation expansion, a slowly varying time

scale � is introduced. Letting � = "2t, we have

@=@t = @=@t+ "2@=@� + � � �; (12)

where @=@t denotes the derivative with respect to time

t. The slowly varying time scale is necessary since we

are going to perform our perturbation expansion up

to O("3), in which the in
uence of external excitation

can be incorporated and the amplitude equation of the

surface wave can be determined. To seek the solutions

to �(r,�, z, t) and � (r, �, t), we expand them into

power series of "

� (r; �; z; t; � ) = "�1 + "2�2 + "3�3 + � � �

� (r; �; t; � ) = "�1 + "2�2 + "3�3 + � � � (13)

Substituting Eqs.(12) and (13) into nondimen-

sional Eqs.(7){(11), we can give the approximate

equations by comparing the coeÆcients of the small

parameter "i on the two sides of the equations.

3.The approximate solution in

each order
The method used here is similar to that in

Refs.[18{20], and the only di�erence between them is

that here the in
uence of surface tension is taken into

account under the free surface boundary condition.

Due to the complexity of mathematical formulation,

the detailed derivation will be presented in another

paper, and only the important results are given as fol-

lows.

The �rst-order velocity potential �1 (r, �, z, t, �)

and free surface displacement �1 (r, �, t, �) can be

expressed as
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�
�
p (�) ei
t + �p (�) e�i
t

�
cosm�; (14)

�1 =
�

i

Jm (�r) sinh (�h=R)

�
�
p (�) ei
t � �p (�) e�i
t

�
cosm�: (15)

The dispersion relation is



2 = �mn tanh (�mnh=R)

�
1 +

�

�
�2mn

�
= 


2
mn;

(16)

where � = �mn are the positive real roots of

dJm(�mnr)/dr j r=1=0, Jm(r) is the �rst kind mth-

order Bessel function, p(�) is called the slowly vary-

ing complex amplitude and �p (�) denotes the complex

conjugate of p(�), 
 is the natural frequency of the

surface wave.

The second-order velocity potential �2 (r,�, z, t,

�) and free surface displacement �2 (r,�, t, �) can be

expressed as

�2 (r; �; z; t; � ) = [X1 (r; z) +X2 (r; z) cos (2m�)]

�
�
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�
; (17)
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�
�
p2 (�) e2i
t + �p2 (�) e�2i
t

�
; (18)

where Y1(r) and Y2(r) are functions of variable r, and

X1(r, z) and X2(r, z) are functions of variables r and

z. The detailed expressions of them are ignored in this

paper.

Since the third-order problem is inhomogeneous

and the �rst-order homogeneous problem has a non-

trivial solution, it is necessary to apply a solvability

condition to ensure the solution to the third-order

problem. Finally, the solvability condition is obtained

as

i
dp (�)

d�
= M1p

2 (�) �p (�) +M2e
2i�� �p (�) ; (19)

where i is the unit of imaginary number, M1 and M2

are constants. Although the form of Eq.(19) is equiv-

alent to Eq.(65) in Refs.[18, 19], the former includes
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the e�ect of surface tension. In addition, we assume

that the frequency 
 of the free surface wave is close

to one half of the forced oscillation frequency !0, and

let !0-
 ="2�.

Similarly, de�ning p1 (�) and p2 (�) as the real

and imaginary parts of p(�), and dividing Eq.(19) into

real and imaginary parts, we have the following non-

linear ordinary di�erential equation group:
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d�
=M1p2 (�)

�
p21 (�) + p22 (�)

�
+M2 [p1 (�) sin (2�� )� p2 (�) cos (2�� )] ;

(20)
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The displacement of the free surface can be expressed

as follows:

� (r; �; t; � ) = "�1 + "2�2; (22)

where the �rst-order and second-order free surface dis-

placements �1 (r,�, t, �) and �2 (r,�, t, �) are given

by Eqs.(15) and (18) respectively.

4.The computational results

4.1. The in
uence of the surface tension on

mode selection

In order to demonstrate the in
uence of sur-

face tension on the natural frequency and mode se-

lection, the variation of the dimensional natural fre-

quency with the wave number is illustrated in Fig.1,

which is obtained by using the dispersive relation

(16). The selection of parameters is similar to that

in experiments.[15�17]

Fig.1. Variation of dimensional natural frequency

with wave number (depth of 
uid h=1.0cm, radius

of the vessel R=7.5cm, surface tension coeÆcient

�=0.0727N/m, density of 
uid �=103kg/m3).

It can be seen from Fig.1 that the frequency of

the surface waves increases with the wave number no

matter whether the surface tension is included or not.

When the forced frequency is low, the e�ect of surface

tension on mode selection can be ignored. However,

when the forced frequency is high, the e�ect of surface

tension is signi�cant.

Figure 2 shows how the relative increment, de-

�ned as the ratio of the frequency di�erence between

frequencies with and without surface tension to the

frequency without surface tension, varies with the

forced frequency without surface tension.

It is clearly seen from Fig.2 that the in
uence of

the surface tension cannot be ignored when the forced

frequency is larger than 13Hz, and it needs addition-

ally more than 10% forced frequency to attain the

same surface mode when the surface tension is in-

cluded.

Fig.2. Variation of the relative increment with forced

frequency without taking surface tension into account

(depth of 
uid h=1.0cm, radius of the vessel R=7.5cm,

surface tension coeÆcient �=0.0727N/m, density of


uid �=103kg/m3).

4.2. The comparison of the coeÆcients of the

amplitude equation

We have pointed out that the coeÆcients of

Eq.(19) include the e�ect of the surface tension. In

this section, we give the computational results to de-

scribe the variation of the coeÆcients �,M1 andM2 of

Eq.(19) with the forced frequency in Figs.3(a), 3(b),

and 3(c) respectively under the conditions with and

without surface tension taken into account.

It can be seen from Fig.3(a) that the coeÆcient

of the frequency di�erence � changes considerably no

matter whether the surface tension is incorporated or

not when the wave number is low. This re
ects that
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the discrepancy between the natural frequency and the

one half of the forced frequency is large. With the in-

crease of the forced frequency, the number of optional

patterns corresponding to the same wave number in-

creases at a �xed forced frequency. Thus the discrep-

ancy between the natural frequency and the forced

frequency decreases. In this case, the frequency dif-

ference coeÆcient � decreases gradually.

In Fig.3(b), the nonlinear coeÆcient M1 changes

more sharply under the condition with the surface ten-

sion than that without surface tension. From the point

of view of equilibrium, the value of solution p(�) to

Eq.(19) with the surface tension is smaller than that

without surface tension, and the cubic of p(�) is much

smaller. In order to keep equilibrium in Eq.(19), the

nonlinear coeÆcient M1 must be large enough when

the surface tension is taken into account. This means

that surface tension has the property of keeping the

system stable.

Figure 3(c) shows that the external forced coeÆ-

cient M2 increases with the forced frequency, with or

without surface tension (we only consider the absolute

value of M2 which is multiplied by "2). We can see

that M2 changes slowly when the surface tension is

taken into account. This also indicates that surface

tension has the function of keeping the system stable.

Fig.3. Variation of the coeÆcients in amplitude equation (19) with the forced frequency (forced amplitude A=11.4�m, other

parameters are same as in Fig.2). (a) Variation of the frequency di�erence coeÆcient � with forced frequency; (b) Variation of the

nonlinear coeÆcient M1 with forced frequency; (c) Variation of the external excited coeÆcient M2 with forced frequency.

4.3. The relation between the surface wave

mode and the depth of 
uid

The surface wave modes are di�erent for di�er-

ent depths of 
uids at the same forced frequency

and forced amplitude. When the forced amplitude

is 11.4�m and forced frequency is 15.5Hz, the con-

tours (4(a1), 4(b1), 4(c1)) and corresponding three-

dimensional surface �gures (4(a2), 4(b2), 4(c2)) of the

free surface displacements, which are determined by

the solutions to Eqs.(20){(22), are plotted in Fig.4

with the depths being 0.3, 0.5 and 0.8cm respectively.

In Fig.4, the meaning of the solid or dashed lines

of the contours and the parametrical couple of (m, n)

are the same as those in Refs.[18{20]. We can see from

Fig.4 that the modes of surface wave become simpler
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with the increase of the depth of 
uid. The reason is

that the wave number decreases with the increase of

the depth of 
uid when the natural frequency is �xed,

which can be seen from the dispersive relation (16).

Fig.4. Variation of the mode of surface wave with the depth of 
uid (forced frequency f=15.5Hz,

forced amplitude A=11.4�m, the radius of vessel is R=7.5cm).

5.Comparisons with experiment

The theoretical contours were compared with

those obtained from Refs.[15{17] in Fig.5 at di�erent

forcing frequencies. When the e�ect of surface tension

is taken into account, the theoretical results are much

closer to experimental results. In Fig.5, left �gures

are the computational results, and right ones are the

experimental contours of 
ow patterns.

In order to explain the in
uence of surface ten-

sion clearly, we compared the results of having surface

tension with those of no surface tension in Table 1. It

can be seen from Table 1 and Fig.5 that the in
uence

of surface tension becomes more and more important

with the increase of wave number. However, the dis-

crepancy of forced frequency is still very large. The

reason is possibly due to the in
uence of contact line,

the mode competition and the viscosity of the 
uid,
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etc. The in
uence of the weak viscosity on the mode selection has been discussed in Ref.[20].

Table 1. Comparison of the forced frequency with surface tension and without surface

tension for di�erent patterns appeared both in theory and experiment.

Pattern Wave number Forced frequency without Forced frequency with increment/Hz

(m, n) surface tension/Hz surface tension/Hz

(3, 3) 11.346 11.68 12.63 0.95

(8, 4) 21.229 16.71 21.10 4.39

(7, 6) 26.545 18.74 26.02 7.28

Fig.5. Comparison of theoretical contours of surface wave mode with those of experiment (depth of


uid h=1.0cm, radius of the vessel R=7.5cm, the forcing amplitude A=11.4�m).
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6.Conclusions

From the above analysis, the following results can

be obtained:

A. The nonlinear amplitude equations (20){(21)

and free surface displacement (22) can be used to cor-

rectly describe the surface wave motion in a vertically

excited vessel.

B. When the wave number is small, the in
uence

of the surface tension on pattern selection is insignif-

icant. However, when the wave number is large, the

e�ect of the surface tension is important.

C. For prescribed forced frequency and amplitude,

the patterns of surface waves become simple with in-

crease of the depth of the 
uid.

D. The surface tension has the function to cause

the agitated free surface to return to equilibrium con-

�guration. That is to say, when the surface tension is

taken into account, it needs an higher forced frequency

to produce the same 
ow pattern.
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