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Abstract: Semi-weight function method is developed to solve the plane problem of two 

bonded dissimilar materials containing a crack along the bond. From equilibrium equation, 

stress and strain relationship, conditions of continuity across interface and free crack 

surface, the stress and displacement fields were obtained. The eigenvalue of these fields is 

lambda. Semi-weight functions were obtained as virtual displacement and stress fields with 

eigenvalue-lambda. Integral expression of fracture parameters, K I and K H , were 

obtained from reciprocal work theorem with semi-weight functions and approximate 

displacement and stress values on any integral path around crack tip. The calculation results 

of applications show that the semi-weight function method is a simple, convenient and high 

precision calculation method. 
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Introduct ion 

On the study of interface crack problems, Williams [1] was the firstly to analyze stress field 

nea r  crack tip through the method of eigenfunction expansion and discovered the existence of 

oscillatory character. Rice and Sih [2] formulated stress field of interface crack with the conception 

of stress intensity factor. From then on, to solve the stress intensity factor of specific structure 

and loads became the key of interface crack problems. Among those methods to calculate stress 

intensity factors of interface crack, boundary element method, contour integral method, weight- 

function method and boundary collocation method were commonly used. 

�9 Bueckner presented weight function method in 1970 [3] . Weight function method gave 

approach to decouping the influences between geometry and loads of crack. When weight function 
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of typical crack body was obtained, the stress intensity factors can be obtained by simply 

calculating an integral along any path around the crack tip. To interface crack problems, Gao E4] 

used weight function method to solve anisotropic interface crack problem, Banks-Sills [5] solved 
some specific problem with weight function method, Shen Lian-xi, Yu Shou-wen E6] got explicit 

expression of weight function near interface crack tip of infinite body with semi-infinite interface 
crack problem. However, because weight function is relevant to geometric size of crack body, in 
the application process of weight function method, weight function must be solved according to 
specific geometric shape, its degree of difficulty is almost equivalent to solving a specific crack 

problem. If the geometric shape is very complex, it is difficult to get the weight function. 
Similarly, because of the difficulty of satisfying boundary condition of finite body, it is hard to 
get a perfect weight function. 

Liu Chen-tu and Zhang Duan-zhong [7] put forward the semi-weight function in 1991. The 

form of semi-weight function is similar to weight function. The stress intensity factor can be 
deduced from an integration formula. The semi-weight function is independent of geometric size 
of crack body and boundary condition. This method had a perfect application in planar problem of 
mode I . This method is extended in this paper to treat the problem of two bonded dissimilar 
materials containing a crack along the bond. Stress and displacement fields near crack tip are 
firstly deduced through Williams expansion. The singularity eigenvalue is A. The virtual stress 
and displacement fields which singularity eigenvalue is - A are also deduced through Williams 
expansion. These virtual fields are called semi-weight functions. From the principle of reciprocal 

work theorem, the stress intensity factors K I and K I of interface crack have integration formula 

along any path around crack tip from bottom crack surface to upper crack surface. Approximate 
values on the path are needed. Because the singularity of crack tip is avoided when far field 
values are adopted in integration, even these approximate values are solved through rough model 
or method the stress intensity factors can get high precision. Compared with the deduction of 
weight function, the same semi-weight functions can be used in any situation of interface crack. 
The solution range can be extended and the calculation difficulty can be reduced. 

1 D i s p l a c e m e n t  a n d  S t r e s s  F i e l d s  o n  Crack  Tip  a n d  S e m i - W e i g h t  F u n c t i o n s  

1.1 Displacement  and stress fields on crack t ip  

To the problem of two bonded dissimilar materials containing a crack along the bond, the 
stress function has the form 

Ui : r a + l F i ( O , A ) +  c .c .  ( i  = 1 ,2 ) ,  (1) 

where F/ i s  

F i = Aisin(A + 1)0 + Bicos(,~ + 1)0 + Cisin(A - 1)0 + D/cos(), - 1)0 ,  (2) 

Ai ,B i ,  Ci, Di are undetermined complex 'coefficients, 2 can be determined by characteristic 

equation, c . c .  is conjugate item of last one, accordingly stress and displacement fields can be 
determined by 

1 O U i  1 02Ui 0 2 U i  O (  1 O U i  I 
tY ir r -- d" tY iO 0 -- tT it 0 = -- - -  - ~  ] (3) r Or r 2 3 0 2 '  Or 2 '  ~ r ' 

Uir -- 8GI A ( -  4A(A + 1)Fi + (ki + 1)(F/" + (A + 1)2Fi))  + e . e . ,  

�9 rX (4) 
[u~0 8G, A(A ~ i )  - ( -  4A(2 - 1 )F ;  - ( k ,  + 1)(F/"  + (A + 1)2F, '))  + c . c . ,  
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they are 

0"irr = - -  2 r a - l ( A i ( ) t  + 1)sin(X + 1 )0  + Bi(2t + 1)cos() ,  + 1 )0  + 

Ci (2  - 3)sin(,~ - 1 )0  + D i ( 2  - 3)eos(,~ - 1 ) 0 )  + c . e . ,  

a~o = X(2t + 1 ) r X - l ( A i s i n ( ) ,  + 1 )0  + Bieos(,~ + 1 )0  + 

Cisin(,~ - 1 )0  + Oieos(2  - 1 ) 0 )  + e . e . ,  

ai~ o = - ~ra- l (  - B i ( ~  + 1) s in (2  + 1 )0  + Ai()~ + 1)eos (~  + 1 )0  - 
(5) 

Di(,~ - 1)sin(,~ - 1 )0  + Ci(~  - 1)eos(A - 1 ) 0 )  + e . c . ,  

ui~ = - ra(Ai (3 .  + 1 ) s i n (2  + 1 )0  + B i ( 2  + 1)cos(,~ + 1 )0  + 

Ci()~ - kl)sin(,~ - 1 )0  + Di(3, - ki)cos(,~ - 1 ) O ) / ( 2 G  i) + c . c . ,  

U~o = - ra( - Bi(3.  + 1 ) s i n (2  + 1 )0  + Ai(3. + 1 )cos (2  + 1 )0  - 

Di(,~ + ki )s in(R - 1 )0  + Ci()~ + k i ) c o s ( 2  - 1 ) O ) / ( 2 G  i) + c . c . ,  

[3  - 4v i (plane s t ra in) ,  

where ki = [ ( 3 -  v i ) / ( 1  + vi)  (plane s t ress) ,  

G i is shear modulus.  

Crack surface conditions are 

alOOlo=_,~ = al~O]o=_,~ = O, a2OOlo=,~ = a2~O]o=,~ = 0. (6 )  

Continuity conditions on bond of  two materials are 

{.lrl0=o = u2rl0=o, u,olo~ --  2olo=o, 
0"10010=0 0"20010=0, 0"1,010=0 = 0"2,0[0=0" (7)  

Putting Eq. (5)  into conditions (6)  ~ (7)  and define complex stress intensity factor by 

= K I  - iKll = lim(0"o0 - i0",o) Io=o r l - a .  (8 )  
r ~ 0  

Then the undetermined complex coefficients are 

- i a ( R  + ;t) A ( R -  A) C1 - iA A 
a l  = 2(1 + 2 )  , B1 - 2(1 + ,~) ' 2 ' D1 = -2-; 

- iA(1 + RA) a ( 1  - R2)  iaR AR 
A2 = 2 ( 1 + , ~ )  , Bz - 2 ( 1 +  2 )  ' Cz - 2 ' D2 - 2 ' 

where R = ( GI + G 2 k l ) / (  Gz + G1 k2)  is material constant of  two bonded dissimilar materials; 

1 lnR 
,~ = -~- + i ~ is eigenvalue; 

R 
A -  

(1 + R);~" 
On the interface in front of  the crack tip we can get the stress field 

0"00 + i0",o Io=o = Kr -~.  ( 9 )  

Relative displacement between crack surface 

~ + i6o = (u ,  + iuo) I~_~ - r a. ( 1 0 )  

Because A is complex number,  as r --~ 0 and we approach the crack tip the stress field (9 )  

exhibit an oscillatory singularity and crack surfaces (10)  are embed each other. When G1 = G2, 

vl = vz ,  the stress and displacement fields can be back to expressions of  single material. 

Consider the continuity on interface, according to interface crack on infinite plate Ref.  [ 2 ] 

took continuity condition of  stress component e~. However,  in Ref.  [ 2 ] this condition is not 

naturally satisfied, stress component on x-direct ion of  each material is added to make e~ 
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continue. Refs. [ 8 ] ,  [ 10 ] and [ 11 ] followed this additional condition on calculation of finite 

plate. This limited the scope and precision of solution. In this paper, ex near crack tip on 

interface is naturally satisfied, no additional condition is needed. The continuity far from crack tip 

can be considered in approximate calculations. The scope and precision of solution can be 

improved. When bi-materials constant R equals 1, a x near crack tip on interface is continuous. 

1 . 2  S e mi -we igh t  func t ions  wi th  f o r m  o f  virt~_~_al d i s p l a c e m e n t  a n d  s t ress  f ie lds  

Changing i into - 2 in Eq. ( 5 )  and putting it into crack surface conditions ( 6 )  and 

continuity conditions ( 7 ) ,  we get expressions of semi-weight functions 

_(s) Ar-a- l (Al . )  (1 1)sin(A 1)0  R(~)(1 1)cos(A 1)0 + 
0 i r r  - ~  - -  - -  - -  - -  t - -  - -  

CI~)(1 + 3)s in (1  + 1)0 - D~')(1 + 3)cos(1  + 1 )0 )  + c . c . ,  

a(') 1 ( 1  1 ) r - a - ' ( -  A~S)sin(l 1)0 + B~*)cos(X 1)0  

Cl')sin(X + 1)0 + D~')cos(X + 1)0)  + e . c . ,  

-( ')  Ir-"-l(-  B~')(1 1)sin(a 1)0 (') - - A~ ( i  1)cos(2 1)0  t , ,  i v O  ---- . . . .  

( l l )  
DI" ) ( t  + 1)s in(1  + 1)0  - C~*)(1 + 1)cos(1 + 1 )0)  + c . c . ,  

ul: ) = - r - a (A~ ' ) (1  - 1)sin(A - 1)0  - B~')(A - 1)cos(A - 1)0 + 

C~')(1 + ki )s in(1  + 1)0 - D I ' ) ( I  + ki)cos(X + 1 ) O ) / ( 2 G  i) + c . c . ,  

, (~) r-a ( (~) (s) = - B i (1 1)sin(A - 1)0 1 1 ~*iO - - - A i ( - 1)cos( - 1)0  - 

DI")(2 - k i )s in(2  + 1)0 - CI")(I  - ki)cos(X + 1 ) O ) / ( 2 G  i) + c . c .  

The parameters of semi-weight functions are not unique, with proper parameters we can get 

integration form of stress intensity factors directly. In the expressions of parameters, superscript 

(s)  means they are parameters of semi-weight functions, first number of subscript means material 

number, the second one means group number of semi-weight functions. 

Parameters of first group are 

[A~; ) -iq(a - R) n(,) q(1 + R) C~;) i__Q D~) Q 
= 2 ( 2 -  1) ' t~n = 2 ( 1 -  1) ' = 2 '  = -  2 '  

iQ(RA - 1) ,( .)  Q(RA + 1) C~) i QR  D~7) OR 
L A];> 2 (a  - -  1 )  , /521 2(1  -- 1) ' = 2 ' = -  2 " 

Parameters of second group are 

IAI] Q(,~ - R) B~) i Q ( 1  + R) p(.) Q n(.)  i 0  
= 2(1  - 1) ' = 2 ( I  - 1) ' " a 1 2  = - 2 ' - , 2  = - 2 ' 

[A~) Q(R2 - 1) B~) iQ(R2 + 1) r ( , )  QR D(S) _ i q R  
2 ( I  - 1) ' 2 (1  - 1) ' ~,z2 = -  2 ' 22 - -  2 

where 

GI G2 

Q = ~(GI + G2kl)" 

(12) 

(13) 

S t r e s s  I n t e n s i t y  F a c t o r s  K I a n d  K I E x p r e s s e d  b y  Semi-Weight F u n c t i o n s  

Consider a plane structure with interface crack to arbitrary loads. We consider an arbitrary 

region/2 (Fig. 1 ) ,  including crack surface. The boundary of this region is 3 V = Cs + / - ' ,  where 

C, is the crack surface and P is another boundary. If we cut out a circle with radius R,  and the 

boundary of the circle is C R . The region after cutting out is ~ ,  the crack surface is Cs and outer 
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boundary is P .  Then we get 

{ l im~ = a ,  
(14) 

limCs Cs. 
R~0 

From the principle of virtual work (reciprocal work 

theorem), we get 

I ~ ) u i d O  + f _ p l ' )u ids  = 
J . P +  Cs+ C a 

_J~ul')d/2 + piu i ,., , (15) 
O -P+ Cs + C a 

where ( u i , P i , f i )  and ( u ~ ' ) , p ~ ' ) , ~  ' ))  are two sets of 

displacements, tractions and volume forces, 

Y 

/ x  / x  /x  

Fig. 1 Crack and integration contour 
in dissimilar media 

respectively. Expanding and transforming the above expression along integral path and ignoring 

volume force, we get 

- = I - 
- P , u ? ) ) a s  + -p (16) 

Assume that ( u i , pi) are the real approximate displacements and tractions, there must be Pi = 0 

on crack surface. We set ( ul ') ,p~')) as semi-weight functions, on crack surface pl s) = 0 too. 

The above expression (16) by absence of integration on Cs can be changed to 

C a -P 

In polar coordinates, there is 

, (.) a~)uo (") arou('))ds k G r r  U r  + - -  G r r  u �9 ~ = 

C s 

I '  (~) cr~)uo (') arou(~) )ds (18) k ~T rr Ur  + - -  Grr  IX r - -  �9 
-P 

Putting Eqs. (5)  and ( 11 ) into Eq. ( 1 8 ) ,  noticing the piecewise integration in different 

materials. When R approaches 0, we get the integration form of stress intensity factors with 

respect to semi-weight functions group 1 or group 2. 

KI  ( ' (" )  a~l (') - Gou(~))ds = f U r r  1 l . f  r "1" 12 8 - -  G r r U r l  
J -P (19) 

) d s .  = u rr2 Id'r + 1XO - -  G r r  t *  r2 KI I  1-, 

Notice that the second subscript is the group number of semi-weight function. 

Compared with the weight function method, this method provides applicable analytical 

expressions of semi-weight functions and in less restrict conditions. The same semi-weight 

functions can be used in crack bodies with different geometric shape. Two groups of semi-weight 

functions presented in this paper can be used to solve out stress intensity factors of interface crack 

in general situations. With the existence of semi-weight functions, the singularity on crack tip can 

be avoided from the weight integration form of stress intensity factors. Even the low precision 

reference solutions on far field integral path are used; the high precision stress intensity factors 

can be get from weight integration. It needs pointing out that the singularity on crack tip and 

special characteristic on interface are only local phenomenon, the influence of these phenomenon 
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will be reduced with the increase of r and departure from interface, so the stress intensity factors 

from integration around crack tip can be reached to demanded calculate precision. 

3 A p p l i c a t i o n s  

In our applications, we use FEA analysis software ANSYS to calculate the approximate values on 

integral path. The finite element is PLANE82--2-D 8-Node Structural Solid Element. No singular 

elements are used in modeling. Integral path is a section of arch from lower surface of crack to upper 

surface of crack. The radius of the arch is larger than maximum element size on crack tip. We 

select this kind of integral path only because of its convenience, different kind of integral path can 

be used according to different situations. K I and Ku can be solved out with the coordinate 

transformed approximate values of displacements and stresses on the path being put into Eq. (19) .  

In a general way, the finer mesh size we choose, the more precisen result we can get. 

However, if we choose a proper integral path, the improvement of precision with fine mesh size 

is not apparent. We can choose coarse mesh size and proper integral path to reduce the amount of 

FEA calculation. According to the characteristics of stress and displacement and experience of 

calculations, if the calculation precision of another part of structure can be satisfied, we can 

choose the radius of integral path (here is an arch) larger than maximum size of element on this 

place and integral path not close to boundary of structure, the calculation result of stress intensity 

factors can be acceptable. To simplify the construct and calculation of model in our applications, 

we adopted the auto mesh facility of  ANSYS, and chose integral path as arch with radius larger 

than element size near crack tip. 

3 .1  C e n t r a l  in ter face  crack on  in f in i t e  p l a t e  

To approximate the infinite plate of  plane stress, we set the size of plate he 20 times of crack 

length on FEA modeling ( F i g . 2 ) ,  where a = 1 m , a  = "1 kN/m2 , E t  = 1 kN/m2,v l  = v2 = 

0 .3 .  We simplified this problem with symmetry. The results were listed in Table 1 compared with 

Refs. [2] and [91 to different elastic modulus ratio. Data outside bracket is K I ~c2~/a ~/-~-a, 

inside is K H ~/2-~/a ~/-~-~a. The modeling and calculation were simple and convenient; the results 

were close to references. 

Table 1 Stress intensity of center-crack tension infinite bimaterial plate 

E 2 / E  l This paper Ref. [9] Analytic solution E2] 

1 
3 

10 

100 

100 0 

1.000 

0.995( - 0.074 6) 

0.973( -0.117 8) 

0.949( - 0.136 2) 

0.945( - 0.138 0) 

1.009 

0.999( - 0.082 2) 

0.981( - 0.128 9) 

0.968( -0.140 1) 

0.957( - 0.153 5) 

1.000 

0.988( - 0.072 4) 

0.968( - 0.117 1) 

0.953( -0.139 1) 

0.952( -0.141 5) 

3 . 2  S ing le  s ide  s k e w  in ter face  crack on  r e c t a n g u l a r  p l a t e  

We calculated the stress intensity factors of  single side skew interface crack ( for  plane 

strain) on rectangular plate, which did not appear in references. The loads of the plate were 

uniform tension on both edges parallel to the crack (Fig.  3 ) .  Different material constants R and 

angle of crack fl were considered. Where b = 2 m , a  = 1 N/m 2, E1 = 2 .0  x 1011 N/rn2,vl = 

v2 = 0 . 3 .  
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T t ~  
E2, ~2 

'T 

E l ,  ~'1 

It 
X y x 

E2,v2 l ,Vl  
b 

o 

'~ b - ' -  1.5b 

Fig.2 Center-crack tension infinite Fig. 3 Skew-single-side-crack tension rectangle 

bimaterial plate bimaterial plate 

Change R to the form R = (1 + k l G z / G 1 ) / ( G 2 / G  I + k2) ,  when p o i s s o n ' s  ratio is 

constant, the value of  R is up to elastic modulus ratio. The limited range of  R is (min(  k l ,  

1 /k2 )  , m a x ( k 1 ,  l / k 2 ) ) .  To this application, we selected elastic modulus ratio from 1 to 100, 

then the numeric area of  R was ( 1 , 1 .  778 ) .  We plotted the results (Fig .  4)  according to angles 

450,60 ~ and 75 ~ respectively,  where F = I K I v ' T ~ / a  v/--~-a. From the curves we can see that 

the modulus of  complex stress intensity factors decrease with R increasing to a given angle,  while 

absolute values of  K H / K  I increase. To different angles,  these changes with R are different, as a 

whole,  when the angle is small the modulus of  complex stress intensity factors changes rapidly,  

and K H / K  I changes slowly. When R = 1, they are the same to behaviors in single material.  To 

the case of  single side skew crack on rectangular plate subjected to uniform tension on edges,  

there are owned composite stress intensity factors of  modes I and IT . The existence of interface 

2.4 

2.2 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

-.-75 ~ 
.4-60 ~ 
..A--45 ~ 

-0. 

-0.2 

-0.i 

--0.' 

--0. 

L f - 0 . ' 6  i 
1 .tO 1.2 1.4 1 .6  1,8 

R 

..~.75 ~ 
--*-69~ 

I.'0 112 114 116 118 
R 

Fig.4 Stress intensity of skew-single-side-crack tension rectangle bimaterial plate 
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strengthens the shear effect K II. It is apparent with this effect when the crack angle is large, or 

approaches level crack. In this situation the shear effect from skew angle is not the main. When 

the angle is small, the shear effect from skew angle itself is the main, while that from interface 

decreases. This indicates that although there is an oscillatory singularity of stress on crack tip. 

K I and K s can also appear the performance of tension and shear, the existence of interface 

strengthens the effect of K , .  

4 Conclusions 

1) Analysis of general plane problem of interface crack is given in this paper. The 

expressions of stress and displacement fields on crack tip are presented. The continuity of strain 

component expressions ex on interface is naturally satisfied. 

2) Two groups of semi-weight functions according to different materials are deduced. The 

independent expressions of K I and K ,  with the form of weight integration are solved. 

3) Because the oscillatory singularity of stress on crack tip is avoided in this method, it can 

be focused on the modeling of whole structure when numerical methods such as FEA are used to 

calculate far field values. A rather rough model can get precision results. 

4) The results of applications indicate the variety of K I and K u with different material 

constant. Although there is oscillatory singularity of stress on crack tip, K I and K ,  can also 

appear the performance of tension and shear. 

5) The semi-weight function method used in this paper is simple and reliable. It has high 

precision and perfect practicability. 
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