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Abstract
A generalized model for the effective thermal conductivity of porous media
is derived based on the fact that statistical self-similarity exists in porous
media. The proposed model assumes that porous media consist of two
portions: randomly distributed non-touching particles and self-similarly
distributed particles contacting each other with resistance. The latter are
simulated by Sierpinski carpets with side length L = 13 and cutout size
C = 3, 5, 7 and 9, respectively, depending upon the porosity concerned.
Recursive formulae are presented and expressed as a function of porosity,
ratio of areas, ratio of component thermal conductivities and contact
resistance, and there is no empirical constant and every parameter has a clear
physical meaning. The model predictions are compared with the existing
experimental data, and good agreement is found in a wide range of porosity
of 0.14–0.80, and this verifies the validity of the proposed model.

1. Introduction

The effective thermal conductivities of various kinds of
porous media, such as granular materials, dispersed spheres,
fibrous composites and packed beds, have received continuous
attention [1–13] due to their various applications in science
and engineering. In the past, many models for the thermal
conductivity of porous media were proposed.

Krupiczka [2] approximated a packed bed as a bundle
of long cylinders and numerically solved a set of two heat
conduction equations in two dimensions with perfect contact
at the solid–fluid interface. He then extended the results
to a spherical lattice and proposed a correlation for the
dimensionless effective thermal conductivity, k+

e :

k+
e = ke

kf
= (β)0.280−0.757 log ϕ−0.057 log β, (1)

3 Author to whom any correspondence should be addressed.

where ke and kf are the effective thermal conductivity and
the thermal conductivity of the fluid (matrix), respectively,
β = ks/kf is the ratio of the solid thermal conductivity to
the fluid thermal conductivity and ϕ is the porosity.

Zehnder and Schlunder [3] proposed a correlation for
the stagnant thermal conductivity based on a one-dimensional
heat flow model for heat conduction through a packed bed
of spherical particles, the correlation for the dimensionless
effective thermal conductivity, k+

e , being expressed as

k+
e = 1 − (1 − ϕ)1/2 +

2(1 − ϕ)1/2

1 − B/β

×
[
(1 − 1/β)B

(1 − B/β)2
ln

β

B
− B + 1

2
− B − 1

1 − B/β

]
, (2a)

where the shape factor, B, is approximated by

B = 1.25

(
1 − ϕ

ϕ

)10/9

. (2b)
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Compared with the experimental results of Nozad et al [6] for a
packed-sphere bed, it is found that equations (1) and (2) under-
predict the stagnant thermal conductivity when the ratio of the
solid to fluid conductivity is high (see the comparison by Ma
et al [13]). Furthermore, equations (1) and (2) contain several
empirical constants with no physical meaning, and the roles
of microstructural parameters in thermal conductivity are thus
ignored. A comprehensive review of empirical correlations for
thermal conductivity of porous media is given by Kaviany [11].

Hsu et al [10] developed a lumped-parameter model
for the effective stagnant thermal conductivity of some
two-dimensional and three-dimensional spatially periodic
media. The geometries under investigation include arrays
of touching and non-touching in-line squares and cylinders
(two-dimensional), as well as touching and non-touching
in-line cubes (three-dimensional). The dimensionless effective
stagnant thermal conductivity, k+

e , for three-dimensional cubes
with thermal resistance is expressed as

k+
e = 1 − γ 2

a − 2γaγc + 2γ 2
a γc +

γ 2
c γ 2

a

1/β

+
γ 2

a − γ 2
a γ 2

c

1 − γa + γa/β
+

2(γaγc − γ 2
a γc)

1 − γaγc + γaγc/β
(3a)

and the porosity, ϕ, is related to the geometrical parameters
(γa and γc) by

1 − ϕ = (1 − 3γ 2
c )γ 3

a + 3γ 2
c γ 2

a . (3b)

Equation (3b) is obtained by geometrical consideration.
A comparison of the results based on equation (3) with existing
experimental data shows that they are in excellent agreement
with the experimental data if the contact resistance parameter
γc = 0.13 is chosen at a porosity of 0.36. However, no
comparison with experimental data at different porosities was
given. In fact, the two parameters, γa and γc, are related to
the porosity through equation (3b), a nonlinear equation. It
appears that the two parameters, γa and γc, are a function of
porosity, but no functional dependence was reported.

Yu and Cheng [12] developed a fractal thermal
conductivity model for both mono- and bi-dispersed porous
media by assuming that porous media consist of two portions:
some particles contact each other to form tortuous chains,
whereas others do not touch each other (non-touching). Their
fractal thermal conductivity model for mono-dispersed porous
media (corresponding to packed beds) is

k+
e = Ant

A

[
(1 −

√
1 − ϕ) +

√
1 − ϕ

1 + (1/β − 1)
√

1 − ϕ

]

+

(
1 − Ant

A

)
λ2

p,max

A

(
λp,max

L0

)DT−1
Df

1 + DT − Df

×
[
γa1

β
+

1 − γa1

γ 2
c1(β − 1)/γ 2

a1 + 1

]−1

, (4)

where Ant (0 � Ant/A � 1, A is the total area of a unit
cell) is an equivalent area of a cross section having the same
porosity as the non-touching particles, γa1 is the ratio of the
geometrical length scales, γc1 is the ratio of the contact length
scales, λp,max/L0 represents the ratio of the maximum particle
diameter (λp,max) to the representative length (L0), and Df

and DT are the fractal dimensions for particles or pores and
for tortuous particle/cluster chains, respectively. The term

Ant/A[(1 − √
1 − ϕ) + (

√
1 − ϕ)/(1 + (1/β − 1)

√
1 − ϕ)] in

equation (4) represents the contribution from non-touching
particles [10]. However, this fractal model contains as many
as seven parameters, Ant/A, γa1, γc1, λp,max/L0, λ2

p,max/A, Df

and DT, that have to be determined, although each parameter
has a clear physical meaning.

Recently, Ma et al [13] have developed a self-similarity
model for the effective thermal conductivity of porous media
based on the thermal–electrical analogy technique and on
the statistical self-similarity existing in porous media. The
dimensionless effective thermal conductivity, k+

e is expressed
as a function of the porosity, ϕ (related to stage n of
the Sierpinski carpet), ratio of areas (Ant/A), ratio (β) of
component thermal conductivities, and dimensionless contact
resistance/width, t+. The dimensionless effective thermal
conductivity, k+

e , is

k+
e = ke

km
= Ant

A
k+

e,nt +

(
1 − An

A

)
k+

e,sc = Ant

A

[
(1 −

√
1 − ϕ)

+

√
1 − ϕ

1 + (1/β − 1)
√

1 − ϕ

]
+

(
1 − Ant

A

)
k+(n)

e,sc (5a)

and

k+(n)
e,sc = 3k

+(n−1)
e,sc

2/[t+β(n) + (1 − t+)] + 1/(2/3 + β(n)/3)
, (5b)

where β(n) = β(0)/k
+(n−1)
e,sc , Ant/A = 0.55 and the

dimensionless contact resistance/width t+ = 0.00033. In
equation (5b), the superscript n = 1, 2, 3, . . . represents
the stage of the Sierpinski carpet, and n = 0 refers to the
zero-stage Sierpinski carpet (i.e. generator) and the subscript
‘sc’ represents the Sierpinski carpet. The effective thermal
conductivity for the zero-stage Sierpinski carpet is

k+(0)
e,sc =

[
2

3(t+β(0) + 1 − t+)
+

1

2 + β(0)

]−1

. (5c)

In equation (5), β(0) = ks/kf is the ratio of the solid
conductivity to the fluid (matrix) conductivity. The porosity,
ϕ, is related to the stage, n, of the Sierpinski carpet by

ϕ =
(

8

9

)n+1

(5d)

Although every parameter in this model has a clear physical
meaning and this model has the least parameters (Ant/A and t+)

compared with the other models, this model may be only
applicable to the porosity range of about 0.3–0.5 and fractal
dimension Df = 1.89. This means that if the porosity is
in this range, the Sierpinski carpet with fractal dimension
Df = 1.89 can be approximately used to describe the porous
medium. If, however, the porosity deviates much from this
range, Sierpinski carpets with different fractal dimensions and
different porosities may need to be constructed to simulate such
media.

This work attempts to extend Ma et al’s work [13]
to a generalized model to cover a wide range of porosity
of 0.14–0.80. For this purpose, Sierpinski carpets with
different microstructures and different fractal dimensions are
constructed to simulate the real porous media. Then, a genera-
lized model for the effective thermal conductivity of porous
media is derived. To be verified, the model predictions are
finally compared with the existing experimental data.
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2. Fractal description of porous media

Euclidean geometry describes ordered objects such as points,
curves, surfaces and cubes using integer dimensions 0, 1, 2 and
3, respectively. Their measures are invariant with respect to the
unit of measurement used. However, numerous objects found
in nature [14], such as rough surfaces, coast lines, mountains,
rivers, lakes and islands, are disordered and irregular, and
they do not follow the Euclidean description due to the scale-
dependent measures of length, area and volume. These objects
are called fractals, and the dimensions of such objects are non-
integral and called Hausdorff dimensions, or simply fractal
dimensions. Geometry structures such as the Sierpinski gasket,
Sierpinski carpet and Koch curve are examples of exactly self-
similar fractals or regular fractals, which exhibit self-similarity
over an infinite range of length scales. Their dimensions are
also called similarity dimensions [15]. However, exactly self-
similar fractals in a global sense are rarely found in nature.
Many objects found in nature are not exactly self-similar, such
as coastlines, islands on earth, they are statistically self-similar
and they are called statistical fractals. These objects exhibit
self-similarity in some average sense and over a certain local
range of length scales, L. The fractal dimensions used in this
paper are applicable to both exactly self-similar fractals (such
as the Sierpinski gasket, Sierpinski carpet and Koch curve) and
statistical fractals (such as fractal/random porous media).

The measure of a fractal object, M(L), is related to the
length scale, L, through a scaling law in the form [14, 15]

M(L) ∼ LDf , (6)

where M can be the length of a line or the area of a surface
or the volume of a cube or the mass of an object and Df is
the fractal dimension of an object. Equation (6) implies the
property of self-similarity, which means that the value of Df

from equation (6) is a constant over a range of length scales, L.
Porous media such as soil, sandstones in an oil reservoir,

packed beds in chemical engineering, fabrics used in liquid
composite moulding and wicks in heat pipes consist of
numerous irregular pores of different sizes spanning several
orders of magnitude in length scales. The pore microstructures,
both the pore size and the pore-interfaces, of such porous
media exhibit fractal characteristics [16–25], and these media
all follow the fractal power law equation (6) and these media
are thus called fractal porous media.

Katz and Thompson [16] used scanning electron
microscopy and optical data to show that the pore spaces of
several sandstone samples are fractals and are self-similar over
three to four orders of magnitude in length extending from
10 Å to over 100 µm. They used fractal statistics to predict the
correct porosity and obtained the following correlation

ϕ = c

(
l1

l2

)3−Df

, (7)

where Df(= 2–3) is the fractal dimension of pores in three
dimensions, c is a constant of the order of 1 and l1 and l2 are
the lower and upper limits of self-similar regions, respectively.
Their experimental results show that the pore fractal dimension
increases with porosity. This implies that the pore fractal
dimension is scale dependent for real porous media, which is

(b)

(a)

Figure 1. Sierpinski carpets with L = 13 and C = 5 and division of
regions: (a) zero-stage Sierpinski carpet and (b) one-stage Sierpinski
carpet.

different from exact self-similar fractals such as the Sierpinski
carpet and the Sierpinski gasket, whose fractal dimension is
constant at different porosities for a given structure, C/L,
where L and C are the side length and cutout size, respectively.
For example, the fractal dimension Df = 1.938 and porosity
ϕ = 144/169 = 0.85 for a zero-stage Sierpinski carpet with
L = 13 and C = 5 as shown in figure 1(a). For a one-stage
Sierpinski carpet as shown in figure 1(b), the fractal dimension
remains Df = 1.938 (same as that of figure 1(a)), but the
porosity ϕ = (144/169)2 = 0.73. Both the zero- and one-
stage carpets have the same structure, C/L = 5/13, and the
same fractal dimension Df = 1.938. Therefore, in order to
simulate real porous media, Sierpinski carpets with different
microstructures and with different fractal dimensions should
be constructed.

For both exactly self-similar fractal geometries (such as
the Sierpinski carpet and Sierpinski gasket) and real porous
media, Yu and Li [22] analytically derived a relation among
the fractal dimension, porosity and scale for self-similarity in
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Figure 2. A summary for the pore area dimension, Df , versus
porosity, ϕ, from the existing experimental data and for the results
from equation (8) with different ratios r = λmin/λmax.

porous media, and the relation is given by

Df = d − ln ϕ

ln (λmin/λmax)
, (8)

where d is the Euclidean dimension, and d = 2 and 3 in
the two- and three-dimensional spaces, respectively. λmax

and λmin are the maximum and minimum pore sizes in a unit
cell for fractal porous media and are also the upper cutout
and lower cutout scales in a self-similar medium. When
d = 3, equation (8) is identical with equation (7) as c = 1
in equation (7). Equation (8) implies that the statistical
self-similarity approximately exists in the range λmin–λmax.
Equation (7) is applicable only to statistically self-similar
fractal porous media because of the empiric constant c.
Whereas equation (8) is applicable not only to exactly self-
similar fractal geometries (such as the Sierpinski carpet and
Sierpinski gasket, assuming λmin = 1 and λmax = side length
of a carpet/gasket) but also to statistical self-similar fractal
media (such as random/disordered porous media).

Figure 2 summarizes the results from the existing
experimental measurements on fractal dimensions and
porosities. The measurements show that fractal dimensions
for real porous media increase with porosity, and the pore area
fractal dimension will approach its possible maximum value of
2 as the porosity reaches the value of 1. This is expected and is
consistent with the physical situation. A rough fitting (see the
solid line in figure 2) to these measurements by equation (8)
gives the ratio r = λmin/λmax

∼= 10−3. Figure 2 or equation (8)
with r ∼= 10−3 can be guidance for one to estimate the fractal
dimension of a pore and to construct a proper Sierpinski carpet
for modelling real porous media.

This section has presented a brief review of the description
of fractal characters of porous media in nature, which form the
theoretical bases of this work. For more evidence that porous
media in nature are fractals, readers may consult the paper by
Yu and Liu [25].

3. Effective thermal conductivity based on statistical
self-similarity

To analyse the thermal conductivity of a porous medium, it is
usually assumed that the medium has a periodic structure, and

a unit cell or representative cell is then applied. Usually there
are three approaches, Fourier’s law models, Ohm’s law models
and empirical models, to predicting the thermal conductivity.
Crane and Vachon [5] compared two approaches, Fourier’s
law models and Ohm’s law models, for prediction of thermal
conductivity. Ma et al [13] discussed briefly the three
approaches and applied the Ohm’s law model to develop a
self-similarity model for the effective thermal conductivity
of saturated porous media in the porosity range 0.30–0.50.
The present work applies the Ohm’s law model approach
and extends Ma et al’s work to a generalized model for the
effective thermal conductivity of porous media in a wide range
of porosity, 0.14–0.80, by constructing Sierpinski carpets
with different fractal dimensions and different porosities,
based on the assumption that the porous media consist of
two portions: randomly distributed non-touching particles and
self-similarly distributed particles contacting each other with
thermal resistance.

To model the self-similarly distributed particles that con-
tact each other with thermal resistance, the Sierpinski carpet,
an exact self-similarity fractal, is used. Then, the equivalent
electrical resistance network is constructed and the thermal
conductivity of the porous media is derived by the thermal–
electrical analogy technique.

Figure 1 displays zero- and one-stage Sierpinski carpets
with L = 13 and C = 5. In figure 1, the white and black
areas represent pores and particles, respectively. The fractal
dimension for the Sierpinski carpet can also be expressed
as [26]

Df = ln(L2 − C2)

ln(L)
. (9)

The porosity of the Sierpinski carpet can be obtained as

ϕ =
(

L2 − C2

L2

)n+1

, (10)

where the superscript n(= 0, 1, 2, . . .) represents the stage of
the Sierpinski carpet, C is the cutout size and L is the side
length of the Sierpinski carpet. It is seen from figure 1 that
if the cutout size, C (or side length L), is changed, fractals
with different fractal dimensions and different porosities can be
obtained. Equation (10) also tells us that the porosity changes
with n even if L and C remain unchanged. Therefore, real
porous media can be simulated by changing C (or L) and n. In
Ma et al’s work [13], L (=3) and C (=1) are kept unchanged
and so is the fractal dimension, Df (=1.89), and in their work
only n is changed (n = 6 and 7 were used). Therefore,
Ma et al’s model is restricted to the porosity range of about
0.30–0.50 (see figure 2). According to figure 2, at higher and
lower porosities, the fractal dimension, Df , deviates much from
1.89. In order to predict accurately the thermal conductivity,
a better model is desirable. After several trials, we found that
the side length of the Sierpinski carpet L = 13 is a proper
choice for modelling real porous media and for covering a
wider range of porosity. Then, we only need to choose the
cutout size, C, and the stage, n, for different fractal dimensions
and different porosities based on figure 2 or equations (9) and
(10), see table 1. Table 1 lists the fractal dimension Df and
porosity ϕ at different length scales (C/L) and stages n based
on equations (9) and (10). It is evident that the present model
is different from that of Ma et al [13].
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Figure 3. The thermal conductivity model and the
thermal–electrical analogy for a zero-stage carpet with L = 13 and
C = 5: (a) the thermal conductivity model for a zero-stage carpet
and (b) the network of the thermal–electrical analogy for the
zero-stage carpet.

Figure 4. The thermal conductivity model and the
thermal–electrical analogy for a one-stage carpet with L = 13 and
C = 5: (a) the thermal conductivity model for a one-stage carpet
and (b) the network of the thermal–electrical analogy for the
one-stage carpet.

Now, let us derive the generalized model for the effective
thermal conductivity of porous media based on the self-
similarity existing in porous media and based on the model
shown in figure 1. In this work, the one-dimensional
heat conduction model is again used to solve the thermal
conductivity of porous media, the same as that adopted by
Zehnder and Schlunder [3], Crane and Vachon [5], Hsu et al
[10], Yu and Cheng [12] and Ma et al [13]. For justification
of the one-dimensional heat conduction model, readers may
consult the work of Ma et al [13].

Figures 3 and 4 show the heat conduction model for
zero-stage and one-stage Sierpinski carpets, respectively.
Figures 3(b) and 4(b) display the networks of the thermal–
electrical analogy for the zero- and one-stage Sierpinski
carpets, respectively. In figures 3 and 4, the bars represent
the contact thermal resistances between particles. The
dimensionless contact thermal resistance is defined as t+ =
t/L. It is expected that the contact thermal resistance between
particles depends on the bar width, t . Since the Sierpinski
carpet is a self-similar fractal geometry, the bar widths are also
assumed to be self-similar. Ma et al [13] demonstrated that the
lateral contact resistance has the negligible effect on the total
thermal conductivity when the dimensionless contact thermal
resistance t+(= t/L) < 0.005 in their Sierpinski carpet model

with C/L = 1/3. To examine this point in the present situation
of L = 13, the thermal conductivity of the horizontal-central
part in figure 3(a) is calculated, see figure 5(a). In figure 5(a),
the lateral contact thermal resistance is represented by the bars
in the horizontal-central part and C is the thickness of the
horizontal-central part, δ2 (see figure 3). Figure 5(b) is the
electrical analogy diagram. In figure 5(b), R21, R22 and R23

represent the thermal resistances, and the subscript 21, 22 and
23 denote the blocks marked 21, 22 and 23, respectively. The
blocks marked 21, 22 and 23 are in parallel, but the blocks 21
and 23 are in series with bars, respectively. The resistance of
block 21 is

R21 = t

ks(L − C)/2
+

C − t

kf(L − C)/2

= 2

kf(1 − C/L)

[
t+

β
+

C

L
− t+

]
= R23, (11)

where (L − C)/2 is the width of block 21, β is the ratio of
thermal conductivities, ks/kf , and t+ = t/L.

The thermal resistance, R2, of the three parallel parts gives

R2 = R21R22R23

R21R22 + R22R23 + R23R21
, (12)

where R22 = 1/ks.
The heat flow is defined by

Q = T1 − T2

R2
= k2,e

T1 − T2

C
A, (13)

where A = L × 1, k2,e is the effective thermal conductivity
of the horizontal-central part and T1 − T2 is the temperature
difference imposed on the unit cell or Sierpinski carpet. Then,
the dimensionless effective thermal conductivity, k+

2,e, can be
obtained as

k+
2,e = k2,e

kf
= 1 − C/L

L(1/β − 1)t+/C + 1
+

C

L
β. (14)

Equation (14) indicates that when t = C, i.e. t+ = t/L = C/L,
k+

2,e = β, which is expected because this situation corresponds
to that of the material completely consisting of solid, and
that when t = 0, i.e. t+ = 0, k+

2,e = 1 + C(β − 1)/L,
which is also expected because this situation corresponds to
that of the material consisting of three parts (with perfect
contact), solid particle (in the centre) and matrices (located
lateral to the solid particle). Equation (14) depicts that
the effective thermal conductivity of the horizontal-central
part depends on the lateral contact thermal resistance, t+, β

and the ratio (= C/L) of geometrical length scales. Tables
2–3 demonstrate the effect of the lateral contact thermal
resistance, t+, on the total effective thermal conductivity of
the structure as shown in figure 5(a) at different ratios β,
based on equation (14). From table 2, it can be found
that for the structure C/L = 3/13, the error caused by the
lateral contact thermal resistance t+ = 0.0030 at β = 0.1 is
about 10% compared with t+ = 0 at β = 0.1. This level
of error of about 10% is chosen to be acceptable. When
β � 0.1, the effect of the lateral contact thermal resistance
on the total thermal conductivity is negligible. This means
that the effect of the lateral contact thermal resistance on a
the total thermal conductivity becomes important only when
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(a)

(b)

(c)

(d)

Figure 5. The effect of the lateral contact resistance on the thermal conductivities: (a) the thermal conductivity model for the
horizontal-central part in figure 1(a); (b) the network of the thermal–electrical analogy for the horizontal-central part; (c) thermal
conductivity results when L = 13, C = 3 at different t+; and (d) thermal conductivity results when L = 13, C = 9 at different t+.

Table 1. Fractal dimension, Df , and porosity ϕ, at different
geometrical length scales (C/L) and stages (n).

C/L 3/13 5/13 7/13 9/13

Df 1.979 1.938 1.866 1.746

ϕ 0.80 0.61 0.36 0.14

n 2 2 2 3

t+ > 0.0030. In other words, if the lateral contact thermal
resistance t+ < 0.0030 at C/L = 3/13, the effect of the lateral
contact thermal resistance on the total thermal conductivity
may be negligible. Similar results can be found from table 3;
i.e. if the lateral contact thermal resistance t+ < 0.0090 at
C/L = 9/13, the effect of the lateral contact thermal resistance
on the total thermal conductivity may be neglected. This
result tells us that if we choose the contact thermal resistance
properly, the effect of the lateral contact thermal resistance on
the total thermal conductivity can be neglected, and then the
computation/analysis of the total thermal resistance and the
total thermal conductivity of the whole structure, the Sierpinski
carpet, can be simplified because the lateral contact thermal
resistance may be not included in the computation/analysis.
From our computations, the minimum lateral contact thermal

resistance, t+
min (defined as that at which the error caused by

the lateral contact thermal resistance is about 10%, compared
with perfect contact, t+ = 0 at β = 0.1) is correlated as

t+
min = 0.013 × C

L
. (15)

The results for the minimum lateral contact thermal resistance
at the different geometrical length scales and the errors are
summarized in table 4. From table 4, it can be found that
t+
min increases with the cutout size, C. This is expected and is

consistent with the physical situations.
Figures 5(c) and (d) show the general trends. It can be

found that as β > 1, the dimensionless thermal conductivities
increase with the lateral contact thermal resistance (bar
width) t+. The opposite phenomenon is observed as β < 1.
This can be interpreted as that when β > 1, the thermal
conductivity of the solid is greater than that of the fluid (matrix),
i.e. ks > kf . As the bar width increases, this corresponds to the
increase of the portion of solid with high thermal conductivity,
leading to the increase of the effective thermal conductivity.
In the limit of t+ = t/L = C/L, the dimensionless thermal
conductivities reach the maximum possible value. This is
expected because when β > 1, the unit cell as shown
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Table 2. Dimensionless thermal conductivity, k+
2,e, versus the dimensionless contact thermal resistance, t+, and ratio β of component thermal

conductivities at C/L = 3/13.

β 0.1 1 10 100 1000 10 000
t+ = 0 0.7923 1.0 3.0769 23.8462 231.5385 2308.4614
t+ = 0.0030 0.7117 1.0 3.0860 23.8562 231.5486 2308.4717

Table 3. Dimensionless thermal conductivity, k+
2,e, versus the dimensionless contact thermal resistance, t+, and ratio β of component thermal

conductivities at C/L = 9/13.

β 0.1 1 10 100 1000 10 000
t+ = 0 0.3769 1.0 7.2308 69.5385 692.6154 6923.3848
t+ = 0.0090 0.3447 1.0 7.2344 69.5425 692.6194 6923.3887

Table 4. The minimum lateral contact thermal resistance, t+
min, with

different geometrical length scales (C/L) (at β = 0.1).

C/L 3/13 5/13 7/13 9/13
t+
min 0.0030 0.0050 0.0070 0.0090

Error % 10.17 9.86 9.38 8.55

in figure 5(a) is completely filled with a solid material of
high thermal conductivity, resulting in the highest thermal
conductivity for the unit cell. When β < 1, this means
ks < kf . In this situation, as the bar width increases,
this corresponds to the increase of the portion of solid with
low thermal conductivity, leading to the decrease of the
effective thermal conductivity. In the limit of t+ = t/L =
C/L, the dimensionless thermal conductivity reaches the
minimum possible value, β (as β < 1). This is also expected
for the same reason, i.e. in this situation the unit cell as shown
in figure 5(a) is filled with material of low thermal conductivity,
leading to the lowest effective thermal conductivity for the unit
cell. From figures 5(c) and (d) it can also be seen that when
t+ = 0 (i.e. perfect contact), the thermal conductivity increases
with the ratio of C/L when β > 1 and decreases with the
increase of the ratio C/L when β < 1. This is expected and is
consistent with the physical situations for the same reason as
above.

Since we have proved that the lateral contact resistance is
not important if we choose t+ � t+

min, the longitudinal contact
thermal resistance (defined as the contact thermal resistance
along the heat flow direction) is only taken into account in the
present model derived here. Under the assumption that the
one-dimensional heat flow model is applicable under a steady
state, the present model is derived as follows.

In figure 3(a), δ
(0)
1 (= (L(0) − C(0))/2), δ

(0)
2 (= C) and

δ
(0)
3 (= δ

(0)
1 ) denote the thicknesses of the different layers

along the heat flow through the zero-stage Sierpinski carpet.
Figure 3(b) shows the electrical analogy diagram for the
zero-stage Sierpinski carpet, and the effect of the lateral
contact thermal resistance is ignored in the calculation and
only the contact thermal resistance, R

(0)

1b , along the heat flow
direction is considered. The thermal resistance, R

(0)
1 , of

layer 1 is

R
(0)
1 = R1R

(0)

1b

R1 + R
(0)

1b

= (L(0) − C(0))/2

kf(1 − t) + kst

= L(0) − C(0)

2kfL(0)[(1 − t+) + β(0)t+]
, (16)

where the superscript ‘0’ refers to the zero-stage Sierpinski
carpet, β(0) = ks/kf and R1 is the thermal resistance of the
fluid phase material of layer 1.

The thermal resistance, R(0)
2 , of layer 2 is considered to be

the parallel equivalent of the materials marked 21, 22 and 23
in figure 3(a), and it is

R
(0)
2 = R

(0)
21 R

(0)
22 R

(0)
23

R
(0)
21 R

(0)
22 + R

(0)
22 R

(0)
23 + R

(0)
23 R

(0)
21

= C(0)

kf [(L(0) − C(0)) + β(0)C(0)]
. (17)

Due to the symmetry, the thermal resistance, R(0)
3 , of layer 3 is

R
(0)
3 = R3R

(0)

3b

R3 + R
(0)

3b

= R
(0)
1 . (18)

The total thermal resistance, R
(0)
sc , of the zero-stage Sierpinski

carpet is considered as the series equivalent of layers 1, 2 and 3,
and is

R(0)
sc = R

(0)
1 + R

(0)
2 + R

(0)
3

= 1

kf

(
1 − C(0)/L(0)

t+(β(0) − 1) + 1
+

C(0)

C(0)(β(0) − 1) + L(0)

)
. (19)

Thus the dimensionless effective thermal conductivity, k
+(0)
e,sc ,

for the zero-stage Sierpinski carpet can be obtained as

k+(0)
e,sc = k

(0)
e,sc

kf
= L(0)

R
(0)
sc A0kf

=
(

1 − C(0)/L(0)

t+(β(0) − 1) + 1
+

C(0)

C(0)(β(0) − 1) + L(0)

)−1

, (20)

where A0 = L(0)×1 and L(0) is the side length of the zero-stage
Sierpinski carpet.

A similar method can be used to derive the effective
thermal conductivity of a one-stage carpet (see figure 4(a)).
In figure 4(a), except for the central shaded region with
conductivity, ks, the other regions are considered as an
equivalent homogeneous material with thermal conductiv-
ity k

(0)
e,sc. Thus, the dimensionless effective thermal conduc-

tivity, k
+(1)
e,sc , of the one-stage carpet is

k+(1)
e,sc = k+(0)

e,sc

×
(

1 − C(1)/L(1)

t+(β(1) − 1) + 1
+

C(1)

C(1)(β(1) − 1) + L(1)

)−1

, (21)

where β(1) = β(0)/k
+(0)
e,sc .
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For an n-stage carpet, the dimensionless effective thermal
conductivity is

k+(n)
e,sc = k+(n−1)

e,sc

×
(

1 − C(n)/L(n)

t+(β(n) − 1) + 1
+

C(n)

C(n)(β(n) − 1) + L(n)

)−1

, (22)

where β(n) = β(0)/k
+(n−1)
e,sc and the superscript n = 1, 2, . . ..

Equation (22) presents a recursive algorithm for the thermal
conductivity of self-similar porous media.

Since this model assumes that the porous media consist
of two parts, randomly distributed non-touching particles
and self-similarly distributed particles contacting each other
with thermal resistance between them, these two portions are
considered to be in parallel. The total thermal resistance, Rt ,
can thus be expressed as

1

Rt
= 1

Rnt
+

1

Rsc
, (23)

where the subscripts t, nt and sc represent the total, non-
touching and Sierpinski carpets, respectively. The effective
thermal conductivity, ke, of the system can be obtained as

ke = 1

Rt

L

A
= 1

Rnt

L

A
+

1

Rsc

L

A
= 1

Rnt

L

Ant

Ant

A
+

1

Rsc

L

Asc

Asc

A

= Ant

A
ke,nt +

(
1 − Ant

A

)
ke,sc, (24)

where A is the total area of a representative cross section and
Ant is an equivalent area of a cross section having the same
porosity as the non-touching particles, with 0 � Ant/A � 1
and Asc/A = 1−Ant/A. For non-touching particles, Hsu et al
[10] obtained the following thermal conductivity expression,

ke,nt = kf(1 −
√

1 − ϕ) +
kf

√
1 − ϕ

1 + (1/β − 1)
√

1 − ϕ
, (25)

which will be used in connection with the first term of the
right-hand side of equation (24).

Substituting equations (22) and (25) into equation (24)
gives the following expression for the dimensionless effective
thermal conductivity, k+

e , of porous media:

k+
e = ke

kf
= Ant

A
k+

e,nt +

(
1 − Ant

A

)
k+

e,sc

= Ant

A

[
(1 −

√
1 − ϕ) +

√
1 − ϕ

1 + (1/β − 1)
√

1 − ϕ

]

+

(
1 − Ant

A

)
k+(n)

e,sc , (26)

where the superscript n = 1, 2, . . . , k+
e,nt = ke,nt/kf , and k

+(n)
e,sc

is given by equation (22).
The recursive algorithm for the effective conductivity is

summarized as follows:

(a) The values of β(0) (= ks/kf = β, in this paper
β = 0.1–104), the side length, L(=13), of the Sierpinski
carpet, the particle size, C, porosity, ϕ, contact parameter,
t+, and area ratio, An/A, are given.

(b) Calculate the fractal dimension, Df , and the stage, n, from
equations (9) and (10), respectively.

(c) Calculate the dimensionless effective thermal conductiv-
ity, k

+(0)
e,sc , of a zero-stage carpet from equation (20).

Figure 6. A comparison of the present model predictions with the
existing experimental data and predictions by other models at a
porosities 0.14–0.155.

(d) Calculate the value of β(n)(= β(0)/k
+(n−1)
e,sc , n =

1, 2, 3, . . .).
(e) Find the dimensionless effective thermal conductivity,

k
+(n)
e,sc , from equation (22) for the self-similar porous

medium.
(f) Find the dimensionless effective thermal conductivity, k+

e ,
from equation (26) for the porous medium.

Procedures (d) and (e) are repeated up to the required Sierpinski
carpet’s stage, n, for the dimensionless effective thermal
conductivity of the self-similar porous medium. Once k

+(n)
e,sc

is obtained, k+
e can be found from procedure (f ). It is seen

that the present algorithm for the thermal conductivity is quite
simple, and it takes less than 1 s in a microcomputer for one
configuration (β = 0.1–104 at a given porosity).

4. Results and discussion

In this work, Sierpinski carpets with constant L = 13 and
different cutout size C = 3, 5, 7 and 9 are selected to simulate
porous media with different porosities. The pore area fractal
dimensions for the four Sierpinski carpets areDf = 1.979,
1.938, 1.866 and 1.746, respectively. The four Sierpinski
carpets are used to model real porous media with porosity
ranges of ϕ > 0.80, ϕ = 0.60–0.80, ϕ = 0.30–0.60 and
ϕ < 0.30, respectively, by choosing a different stage, n.

Figure 6 presents a comparison among the present model
predictions (Ant/A = 0.10 and t+ = 0.0090 are chosen
for matching the experimental data) by the Sierpinski carpet
(L = 13, C = 9, Df = 1.746, at stage n = 2 and porosity
0.14), existing experimental data at porosity 0.155 and other
models (equations (1)–(3) and (5)). In Hsu et al’s model,
equation (3) for a mono-dispersed porous medium, γc = 0.13,
is used. In Ma et al’s model, equation (5), Ant/A = 0.55, and
t+ = 0.000 33 are taken. It is seen that the predicted thermal
conductivities of the present model are in good agreement with
the experimental data of Woodside and Messmer [1]. However,
the other models present under-estimated values when the ratio
of solid to fluid conductivity is higher (than 10 for equations (2)
and (3), and than 200 for equation (1)). On the other hand,
Ma et al’s model, equation (5), gives a lower estimation when
the ratio of solid to fluid conductivity is higher than 100.
It should be noted that in figure 6 the comparisons are made
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Figure 7. A comparison of the present model predictions with the
existing experimental data and predictions by other models at a
porosity of 0.36.

at a porosity of 0.155 for experimental data and at a porosity
of 0.14 for theoretical models. The reason is that the porosity
of the present theoretical model is related to the stage, n, of
the Sierpinski carpet by equation (10), and the stage, n, is an
integer. When we take the Sierpinski carpet with L = 13,
C = 9, Df = 1.746 and n = 2, the porosity is ϕ = 0.14.
Since the experimental data on thermal conductivity exactly at
porosity 0.14 are not available in the literature and the available
experimental data at the porosity closest to 0.14 are those at
0.155, we have to choose the experimental data at porosity
0.155 for comparison.

Figure 7 compares the predictions of the present model
with the existing experimental data and the predictions of
other models at porosity 0.36. In the predictions of the
present model, the Sierpinski carpet with L = 13, C = 7
and Df = 1.866 at stage n = 2 is used. The parameters
Ant/A = 0.10 and t+ = 0.00050 are chosen in the calculation
of the thermal conductivity for matching the experimental
data. Good agreement is found between the model predictions
and the experimental data. It is also found that the model
predictions of the present model almost have the same accuracy
as Hsu et al’s model, equation (3), and Ma et al’s model,
equation (5). This is expected because, as mentioned in
the previous section, Ma et al’s model is valid only in the
porosity range 0.3–0.5, and Hsu et al’s model may also be
valid only at a porosity of around 0.40 if γc = 0.13 is taken.
However, equations (1) and (2) under-predict the stagnant
thermal conductivity when β > 2×103. It should also be noted
that in figure 7 a porosity of 0.39 is applied when equation
(5) is used. The reason is that since equation (5) is for the
Sierpinski carpet with L = 3, C = 1 and n = 6, according
to equation (10), the porosity closest to 0.36 is 0.39 when
n = 6. Therefore, we have to choose a porosity of 0.39 when
comparing Ma et al’s model, equation (5), with the available
experimental data at porosity around 0.36.

Figure 8 is a comparison among the present model
predictions (by the Sierpinski carpet with L = 13, C = 5 and
n = 2), the experimental data and predictions by other models.
In the present model the parameters Ant/A = 0.10 and t+ =
0.00050 are again chosen for matching the experimental data.
From figure 8, it can be seen that the thermal conductivities
predicted by the present model are in good agreement with
the experimental data of Verma et al [8] and Misra et al [9].

Figure 8. A comparison of the present model predictions with the
existing experimental data and predictions by other models at a
porosity of 0.62.

Figure 9. A comparison of the present model predictions with the
existing experimental data and predictions by other models at a
porosity of 0.80.

Whereas equations (1) and (2) again predict lower values of
the thermal conductivities when the ratio of solid to fluid
conductivity is higher than 400, Hsu et al’s model predicts
a lower thermal conductivity when the ratio of solid to
fluid conductivity is higher than 10, but a higher thermal
conductivity when the ratio of solid to fluid conductivity is
higher than 400.

Figure 9 shows the model predictions, which also agree
well with the existing experimental data at a porosity of 0.80.
The Sierpinski carpet with L = 13, C = 3, Df = 1.979
and n = 3 is used in the calculation. The parameters
Ant/A = 0.10 and t+ = 0.00050 are again used in the
calculation for matching the experimental data. The same
reason as that given for figure 7 can be used to explain figure 9,
in which the porosity of 0.79 is calculated from the model
equation (5) for the Sierpinski carpet with L = 3, C = 1,
n = 1. The porosity of 0.79 is the closest to 0.80, at
which the experimental data are taken from [8]. Therefore, in
Ma et al’s model, a porosity of 0.79 is applied for comparison.
Since no other experimental data on the thermal conductivities
of porous media are available, no extensive comparison is
given in figure 9. But similar trends can still be found from
figure 9, i.e. equations (1) and (2) predict lower values of
the thermal conductivities when the ratio of solid to fluid
conductivity is higher than 300, and Ma et al’s model also
predicts a lower thermal conductivity when the ratio of solid
to fluid conductivity is higher than 1, while Hsu et al’s model
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Figure 10. The effect of porosity on the effective thermal
conductivity of porous media.

Figure 11. The effect of the longitudinal contact resistance, t+, on
the effective thermal conductivity at a porosity of 0.62 with L = 13,
C = 5, Df = 1.938 and n = 2.

gives a lower thermal conductivity when the ratio of solid to
fluid conductivity is higher than 5 but gives a higher thermal
conductivity when the ratio of solid to fluid conductivity is
higher than 500.

The effect of porosity on the thermal conductivity of
porous media is shown in figure 10. Figure 10 indicates that
the thermal conductivity decreases with increasing porosity
when β > 1. This can be interpreted as that when the
porosity increases, the solid volume fraction with higher
thermal conductivity decreases, leading to the decrease in the
effective thermal conductivity. But when β < 1, the opposite
result is expected, i.e. the thermal conductivity will increase
with porosity. This figure again shows that the present model
presents reasonable results.

Figure 11 shows the effect of the longitudinal contact
thermal resistance, t+ (defined as the contact thermal resistance
along the heat flow direction), on the dimensionless effective
thermal conductivity. It can be seen from the figure that the
effective thermal conductivity is independent of the contact
parameter, t+, when β < 20. This implies that when
the ratio β of component conductivities is low, the contact
between particles can be considered to be perfect and the
contact resistance is not important. As β > 20, the effective
thermal conductivity increases with the parameter t+. This
situation corresponds to that where the matrix and the contact
thermal resistance, t+, are in parallel, but the contact thermal
resistance, t+, and particle are in series, leading to the increase
in the effective thermal conductivity with the parameter t+.

Figure 12. Effect of the stage, n, of the Sierpinski carpet on the
effective thermal conductivity, with L = 13, C = 5 and Df = 1.938.

Figure 13. Effect of the area ratio on the effective thermal
conductivity at porosity 0.62 with L = 13, C = 5, Df = 1.938 and
n = 2.

This trend that the effective thermal conductivity increases with
the parameter t+ is in qualitative agreement with Hsu et al’s
model [10].

Figure 12 depicts the effect of the stage, n, of the Sierpinski
carpet (with L = 13, C = 5, Df = 1.938) on the effective
thermal conductivity. It is seen that the thermal conductivity
increases as the stage, n, increases when β > 1. This can be
interpreted as that when the stage, n, increases, its porosity
decreases and the solid volume fraction with higher thermal
conductivity increases, leading to the increase in the effective
thermal conductivity. But for β < 1, the opposite result
is observed, i.e. the thermal conductivity increases with a
decrease in the stage, n.

The effect of the area ratio, Ant/A, on the effective thermal
conductivity of the porous medium is shown in figure 13. For
a fixed contact parameter t+ = 0.000 50 and stage n = 2
of the Sierpinski carpet, the effective thermal conductivity
is affected significantly by the area ratio Ant/A. From the
figure, it is clear that when the ratio Ant/A = 1.0, all
particles are in the non-contact status, resulting in the minimum
effective thermal conductivity. When the ratio Ant/A = 0, all
particles are in contact with each other, leading to the maximum
effective thermal conductivity. The lower the ratio Ant/A,
the higher the fraction of particles in contact with each other,
leading to the higher effective thermal conductivity. This is
consistent with the physical situation. Therefore, figure 13
again shows that the present model presents reasonable results
for the effective thermal conductivity.
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5. Concluding remarks

A generalized model for the thermal conductivity of porous
media is derived based on the self-similarity existing in
porous media and on the thermal–electrical analogy technique.
Sierpinski carpets with the same side length L = 13 but
different cutout size C (=3, 5, 7 and 9) and different fractal
dimensions are adopted for modelling real porous media in a
wide range of porosities, 0.14–0.80. The recursive algorithm is
quite simple. The present model for the thermal conductivity of
porous media is found to be a function of the porosity (related
to the stage, n, of the Sierpinski carpet), the ratio Ant/A of
areas, the ratio β of component thermal conductivities, contact
thermal resistance, t+, and microstructures L and C. This
model has the fewest parameters, Ant/A and t+, compared
with the other models, and every parameter in this model has a
clear physical meaning. The model predictions are compared
with the existing experimental data and the predictions of other
models, and the results show that the present model presents a
good agreement with the existing experimental data in a wide
range of porosities, 0.14–0.80, and the present model is thus
applicable for prediction of the thermal conductivity of real
porous media.
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