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Damage evaluation and damage localization of rock
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Abstract

Knowledge of damage accumulation and corresponding failure evolution are prerequisite for effective maintenance
of civil engineering so as to avoid disaster. Based on statistical mesoscopic damage mechanics, it was revealed that there
are three stages in the process of deformation, damage and failure of multiscale heterogeneous elastic–brittle medium.
These are uniformly distributed damage, localized damage and catastrophic failure. In order to identify the transitions
from scattering damage to macroscopically localized one, a condition for damage localization was given. The experi-
ments of rock under uniaxial compression with the aid of observations of acoustic emission and speckle correlation
do support the concept of localization. This provides a potential approach to properly evaluate damage accumulation
in practice. In addition, it is found in the experiments that catastrophic failure displays critical sensitivity. This gives a
helpful clue to the prediction of catastrophic failure.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that rock undergoes damage
evolution and failure under external loading.
Then, properly evaluating damage accumulation
and foreseeing failure are two of the major tasks
of rock mechanics. Efforts have been made to
study the process from damage evolution to even-
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tual failure [1–5]. It was found that there are three
stages in the process of deformation, damage and
failure of rocks. These are uniformly distributed
damage, localized damage and catastrophic fail-
ure. Based on statistical mesoscopic damage
mechanics [5,6], a transition condition from ran-
dom damage to damage localization was derived
and the result shows that damage localization
can serve as an early precursor to failure.
This paper evaluates the damage evolution to

failure of a heterogeneous elastic–brittle model.
ed.
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For comparison, with the aid of white-light digital
speckle correlation method (DSCM) and acoustic
emission (AE) technique, we observed the process
of a gabbro under uniaxial compression. The
observations demonstrate strain localization. In
particular, the predicted damage localization tran-
sition point is very close to that of the experimen-
tal observation. Moreover, the experimental
results also show that the rock might become sen-
sitive to external loading prior to catastrophic fail-
ure, i.e. critical sensitivity [7,8]. This gives an
experimental validation to the concept of critical
sensitivity.
2. Brief review of mean field (MF) approximation

For the study of damage and failure of rock, a
statistical model of heterogeneous elastic–brittle
medium with mean field approximation was used
[7,8]. It is assumed that such a sample consists of
a number of linear elastic but brittle units, namely
all units have the same elastic modulus E0 but dif-
ferent breaking stress threshold r�

c . Under mono-
tonic loading, each unit remains elastic till its
own r�

c ,

r�
s ¼ e�sE0; ð1Þ

where r�
s and e�s are mesoscopic stress and strain of

each unit respectively. However, as soon as strain
e�s exceeds its mesoscopic threshold e�c ¼ r�

c=E0
the unit breaks, namely the stress r�

s will drop from
r�
c to zero. Suppose that the mesoscopic strength
of units follows a probability distribution function
hðr�

cÞ, like Weibull distribution [9–11],

hðr�
cÞ ¼

m
g

r�
c

g

� �m�1

e�
r�c
g

� �m

; ð2Þ

where m is the shape factor (Weibull modulus) and
g is the position factor of Weibull distribution
respectively. The smaller the Weibull modulus m

is, the more diverse the threshold r�
c is, that is to

say, the more heterogeneous the rock is. After tak-
ing dimensionless stress r = r*/g and normalized
strain e = E0e*/g (later, symbols for stress and
strain without * represent normalized stress and
strain), Eq. (1) becomes
rs ¼ es; ð1-aÞ
and Eq. (2) can be rewritten as

hðrcÞ ¼ hðecÞ ¼ mrm�1
c e�rmc : ð2-aÞ

The mean strength will be

�rc ¼
Z 1

0

rchðrcÞdrc ¼ Cð1þ 1=mÞ: ð3Þ

Under uniaxial monotonic loading, mean field
approximation gives damage fraction D as

D ¼
Z rs

0

hðrcÞdrc ¼
Z es

0

hðecÞdec; ð4Þ

where rs and es are the true dimensionless stress
and strain of the sample respectively, in accord
with mean field approximation. According to
damage mechanics, the relation between the mod-
ulus E of the damaged sample and the mesoscopic
units� elastic modulus E0 is

E ¼ E0ð1� DÞ; ð5Þ

and the relations between the nominal and true
variables, i.e. stress, strain and damage, are

r ¼ rsð1� DÞ; ð6Þ

e ¼ es; ð7Þ

where r and e are nominal stress and strain respec-
tively. Then, the constitutive relations, i.e. the rela-
tions between damage, nominal strain and stress,
of the damaged sample with Weibull distribution
(Eq. (2-a)) are

r ¼ ee�em ; ð8Þ

r ¼ ð1� DÞ½� lnð1� DÞ	
1
m; ð9Þ

as well as,

e ¼ ½� lnð1� DÞ	
1
m: ð10Þ
2.1. Macroscopic maximum stress

From the constitutive relation (8) based on
Weibull distribution, there is a maximum nominal
stress point determined by the zero-slope condition
of the constitutive curve. It is easy to obtain the
expressions of the maximum nominal stress and
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the corresponding nominal strain and damage
fraction as follows

rmax ¼ ðemÞ�
1
m; emax ¼ m�1

m and Dmax ¼ 1� e�
1
m:

ð11Þ
Fig. 1. The curves of relative nominal stress r versus damage
fraction D for various Weibull m (solid line —) (Eqs. (9) and
(15)). Hollow circles (
) and the corresponding curve show the
threshold of damage localization (Eqs. (9), (14) and (16)) and
solid circles (�) show the maxium nominal stress (Eqs. (11) and
(17)) for various Weibull moduli m, respectively.
2.2. Criterion for damage localization

It is important to predict the transition from
uniformly distributed damage to damage localiza-
tion. Physically, damage localization implies the
emergence of macroscopic inhomogeneity, i.e. a
prelude to localized rupture. The inhomogeneity
of damage can be defined by

oD
ox

� ��
D; ð12Þ

where x is spatial coordinate. It is assumed that
damage localization occurs once the rate of dam-
age inhomogeneity starts to become positive
[5,6], namely,

o

ot
oD
ox

� �� �
D
�

P 0; ð13Þ

where t is time. Since D is a function of nominal
stress D = D(r), as expressed by Eq. (9), under
the condition of constant gradient of nominal
stress, the critical condition for damage localiza-
tion was derived from Eq. (13) as [6]

m lnð1� DÞ½mð1� DÞ lnð1� DÞ þ 1� 2D	
þ ðm� 1ÞD ¼ 0: ð14Þ

The solution DL to Eq. (14) denotes the critical
damage for damage localization, provided the
sample follows the above Weibull distribution.
Then, the corresponding nominal stress rL and
strain eL can be calculated from Eqs. (9) and (10)
respectively.
For comparison of samples with various m, we

denote relative nominal stress

r ¼ r=�rc: ð15Þ
Then, the relative nominal stresses, characterizing
damage localization and maximum nominal stress,
are

rL ¼ rL=�rc; ð16Þ
and

rmax ¼ rmax=�rc; ð17Þ
respectively.
The critical damage DL and relative nominal

stress rL at damage localization, and the damage
Dmax and relative nominal stress rmax at maximum
nominal stress for various Weibull moduli m were
calculated (see Fig. 1). It can be seen that DL and
Dmax increase with decreasing Weibull modulus,
while rL and rmax have an opposite trend. That
is to say, the more heterogeneous (less Weibull
modulus m) the medium is, the more likely to rup-
ture it is. Moreover, it is very clear that damage
localization always appears ahead of maximum
nominal stress under mean field approximation.
So, damage localization may be one of the key fac-
tors to weaken the load-supporting capacity of a
heterogeneous medium.
3. Experimental observations of localization and

critical sensitivity to failure

3.1. Experimental method

Tests consist of rectangular gabbro samples,
5 · 5 · 13mm3, that were loaded uniaxially with



Fig. 2. Fluctuations of surface strain field d(eij) versus nominal
strain e* (h, m and q) and experimental nominal stress–strain
curve r*–e* (solid line —), where r* and e* are experimental
nominal stress and strain along loading axis. Moreover, points
A, B, C, D and E on the r*–e* curve represent the initial stage
of loading (A), experimental localization point (B), beyond
localization (C), maximum nominal stress (D) and catastrophic
failure (E), respectively.

134 X.H. Xu et al. / Theoretical and Applied Fracture Mechanics 42 (2004) 131–138
a MTS810 testing machine. The loading mode is
boundary-displacement control with velocity of
0.02mm/min. The displacement was measured by
an extensometer with resolution of 3lm and an
offset of load 1kN. A typical nominal stress–strain
curve is shown in Fig. 2 (solid line).
The surface of specimen was illuminated by a

white luminescence and the speckle images were
captured and transferred to computer by a CCD
camera. After experiment, the speckle images were
analyzed with digital speckle correlation method
[12,13], then, both displacement and strain fields
during the loading process were obtained. Fig. 3
shows five stages (indicated in Fig. 2) of the defor-
mation evolution of a gabbro sample.
On the other hand, two AE sensors were fixed

on two sides of a sample with a specially designed
clamp. The resonant frequencies of the sensors are
140kHz and 250kHz respectively. The AE signals
were recorded and processed by an AE21-C system
produced by the Institute of Computer Technol-
ogy of Shenyang. As well known, AE is an effective
method to detect damage process of rock, so the
AE series, such as AE energy, can provide statisti-
cal information on damage evolution.
3.2. Localization in rock experiments

Based on the surface strain field, strain fluctua-
tions can be measured by standard deviation of
strain

dðeijÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
k¼1

ðeijÞk � �eij
� �2

vuut ði; j ¼ 1; 2Þ; ð18Þ

where eij is strain tensor (i or j = 2 indicates load-
ing direction whereas 1 the direction vertical to
loading (Fig. 3)), �eij is the mean value of the strain
field, and N = 52531 is the total sampling of the
strain field. Fig. 2 shows the strain fluctuations
d(eij) versus nominal strain e. Clearly, in the range
between A and B (Fig. 2), d(eij) has very low level
(about 0.001) and the corresponding strain field re-
mains nearly homogeneous (between A and B in
Fig. 3). This indicates that the mean field approx-
imation is valid before B. Beyond B, d(eij) increases
significantly up to 0.01 (Fig. 2). This signifies a het-
erogeneous strain field. Especially, from C, D and
E in Fig. 3, it is seen that high strain gradient ap-
pears. In other words, stain localization appears.
Actually, from the experimental measurement,
the localization point B is with the following nom-
inal stress and strain

r� ¼ 433 MPa and e� ¼ 0:00876: ð19Þ
Also, the experiments show that strain localization
(B in Fig. 2) occurs prior to the maximum nominal
stress (D in Fig. 2), like damage localization pre-
dicted by mean field approximation (Fig. 1).
Therefore, it can be deduced that the observed
strain localization may be closely related to dam-
age localization.
3.3. Comparison of observed localization and theo-

retical prediction

In order to use Eq. (14) to predict damage local-
ization quantitatively, we apply the theoretical
model introduced in Section 2 to the gabbro com-
pressive tests. Firstly, the parameters, such as m, g
and E0 involved in Eqs. (1) and (2), should be
determined according to the experimental nominal
stress–strain (r*–e*) curve. The slope of r*–e*
curve,



Fig. 4. Slope of r*–e* curve, dr*/de* versus nominal strain e*
(bulk solid line ). The curves, r*–e* (solid line —) and
r*P–e*P (dashed line - - -), are the raw experimental and processed
experimental nominal stress–strain curves respectively . Points O,
O 0 and B, B0 are the points corresponding to maximum slope
(dr*/de*)m and experimental localization, respectively.

Fig. 3. Evolution patterns of surface strain field e11. The gabbro sample is compressed along axis 2. The five patterns A, B, C, D and E,
corresponding to the points marked by the same letters in Fig. 2. indicates that the area where DSCM fails since the deformation is
too big or the surface speckles fall off.
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dr�

de�
ð20Þ

can be calculated (see Fig. 4). Clearly, the early in-
crease in dr*/de* has no business with damage
evolution. In addition, theoretically, Eqs. (1), (4)
and (5) imply that dr*/de* decreases with increas-
ing damage. So, we choose point O corresponding
to maximum slope of r*–e* curve, (dr*/de*)m as
the starting point where the theoretical model
can be used. On the other hand, as pointed out
previously, the mean field approximation should
be valid in the range between O and B, and it is
reasonable to assume that (dr*/de*)m is approxi-
mately equal to E0 in Eq. (5). Hence, we can trans-
form the raw experimental nominal stress–strain
curve r*–e* into its corresponding processed one
r*P–e*P by the following steps (Fig. 4): (1) Draw
a straight line with slope E0 from the origin
(r*P = e*P = 0) to O 0 (O 0 and O with the same
nominal stress). (2) Parallely shift the O–B–E-part
of the raw stress–strain curve (r*–e*) to point O 0.
Then, we obtain the whole processed experimental
nominal stress–strain curve (r*P–e*P, i.e. origin–
O 0–B 0–E 0 in Fig. 4).
Now, start with the processed experimental

r*P–e*P to fit the undetermined parameters E0, m
and g in the model. Define a function

f ðE0; g;mÞ ¼
X
i

rðePi Þ � rPi
� �2

; ð21Þ

where ePi ¼ E0e�Pi =g and rPi ¼ r�P
i =g are normalized

processed experimental nominal stress and strain
respectively, and rðePi Þ ¼ ePi e

�ðePi Þ
m
, (see Eq. (8)), is

the theoretical nominal stress corresponding to ePi
with the three undetermined parameters E0, m

and g. Using the data of r*P–e*P in the range



Fig. 5. Normalized nominal stress–strain curve r–e. Processed
experimental nominal stress–strain curve (solid line —) and
fitted nominal stress–strain curve (dashed line - - -). B 0 and B0

theory

are the processed experimental and theoretical localisation
points, respectively. D 0 and D0

theory are the processed experimen-
tal and theoretical maximum stress points, respectively.
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between O 0 and B 0 to optimize function f, i.e. to
minimize f,

min f ðE0; g;mÞ: ð22Þ
Fit the three parameters m, g and E0 as

m ¼ 10:7; E0 ¼ 54:4 GPa and g ¼ 640 MPa:

ð23Þ
With these parameters, a theoretical nominal
stress–strain curve can be calculated by Eq. (8)
(see Fig. 5 (dashed line)). The agreement between
the calculated and experimental nominal stress–
strain curves are good prior to the peak D 0. More-
over, according to Eqs. (9), (10) and (14), the
theoretical damage localization occurs at B0

theory,
and it is ahead of the experimental localization
point B 0, i.e. expression (19) (see Fig. 5). The com-
Table 1
Comparison of experimental and calculated nominal strains and stres

Localization point e�L ðe�PL Þ r�
Lðr�P

L Þ [MPa]
B 0.00876 433
Btheory 0.00803 403
B 0 0.00810 433
B0
theory 0.00747 403

B and Btheory are the raw experimental and calculated localization poin
calculated localization points respectively.
parisons of strains, stresses and damage for local-
ization, calculated theoretically and measured
experimentally are listed in Table 1.
Now, two conclusions can be drawn. The first is

that damage localization may be closely related to
strain localization. And the second is that theoret-
ical condition for damage localization gives an
early prediction of the occurrence of localization.
Though localization implies a prelude to failure,
it is by no means failure itself. In addition, from
Fig. 5, it can be seen that the differences between
the observed and predicted ones in peak load
and failure are very distinct. This means that be-
yond localization the mean field approximation is
no longer valid. So, in order to foresee failure
more reasonably, we had to go further to find
other precursors to failure. The promising candi-
date for this is critical sensitivity.

3.4. Critical sensitivity in rock experiment

Since the controlling variable is the boundary
displacement U in the experiment, a sensitivity of
energy release to external boundary displacement
U is defined by

S ¼ U
R

DR
DU

; ð24Þ

where R is the response of acoustic emission en-
ergy H recorded by the acoustic emission system
to boundary displacement U

R ¼ DH
DU

: ð25Þ

The sensitivity in a gabbro test is shown in Fig. 6.
Note that the relation between the nominal stress
and nominal strain presents a sudden failure be-
yond the maximum load. Correspondingly, the
ses of localization

eLðePLÞ rLðrPLÞ DL

0.745 0.678 –
0.683 0.630 0.00764
0.689 0.678 –
0.635 0.630 0.00764

ts respectively. B0 and B0
theory are the processed experimental and



Fig. 6. Critical sensitivity in a rock experiment. The arrow
indicates catastrophic failure.
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sensitivity S presents three different stages. At the
first stage, the sensitivity remains low and nearly
a constant. This is easy to understand. Then, it in-
creases and oscillates. This roughly corresponds to
the appearance of damage localization, as indi-
cated by B and Btheory, the transition points of
experimental and calculated damage localization
respectively. Finally, the sensitivity increases very
sharply ahead of eventual failure. Performed are
131 tests of gabbro. All tests show similar trend
in critical sensitivity. So, it seems that critical
sensitivity may provide a reasonable clue to
failure.
4. Discussions and conclusions

1. At first stage of deformation, strain fluctua-
tions in the rock test remain very low
(10�3), mean field approximation seems to
be valid there. And the agreement between the-
oretical and experimental nominal stress–strain
curves is very good at this stage (Fig. 5). In
addition, the predicted localization transition
point based on mean field approximation is
close to that from experimental observation.

2. Beyond localization, the fluctuations of strain
field increase and MF approximation is no
longer valid. it can be seen that the maximum
nominal stress predicted by the MF approxi-
mation is greater than the experimental one
(comparing D 0 and D0
theory in Fig. 5). In order

to predict failure more closely, it is necessary
to consider the effect of localization.

3. Experimental evidences show that critical sen-
sitivity provides a precursor to catastrophic
failure. This may provide a clue to the predic-
tion of failure quite punctually.

4. Since the theoretical model neglects the elastic
boundary condition acting on rock sample, it
is unable to deal with rupture. Actually, as
usual in experiments, the MTS tester is not
rigid enough compared to the rock samples
and its effect on failure must be considered.
Such effects will be discussed in a later paper.
In addition, the difference between rock sam-
ples and rock mass are significant and need fur-
ther intensive study.
Acknowledgments

This work is supported by the National Natural
Science Foundation of China (Grant No.
10172084, 10232050 and 10372012) and the Major
State Research Project ‘‘Nonlinear Science’’
G200007735.
References

[1] J.W. Rudnicki, J.R. Rice, Conditions for the localization
of deformation in pressure-sensitive dilatant materials, J.
Mech. Phys. Solids 23 (1975) 371–394.

[2] Y. Berthaud, J.M. Torrenti, C. Fond, Analysis of locali-
zation in brittle materials through optical techniques, Exp.
Mech. 37 (1997) 216–220.
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