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The effect of subgrid-scale(SGS) modeling on velocity(space-) time correlations is investigated in
decaying isotropic turbulence. The performance of several SGS models is evaluated, which shows
superiority of the dynamic Smagorinsky model used in conjunction with the multiscale large-eddy
simulation(LES) procedure. Compared to the results of direct numerical simulation, LES is shown
to underpredict the(un-normalized) correlation magnitude and slightly overpredict the decorrelation
time scales. This can lead to inaccurate solutions in applications such as aeroacoustics. The
underprediction of correlation functions is particularly severe for higher wavenumber modes which
are swept by the most energetic modes. The classic sweeping hypothesis for stationary turbulence
is generalized for decaying turbulence and used to analyze the observed discrepancies. Based on this
analysis, the time correlations are determined by the wavenumber energy spectra and the sweeping
velocity, which is the square root of the total energy. Hence, an accurate prediction of the
instantaneous energy spectra is most critical to the accurate computation of time correlations.
© 2004 American Institute of Physics. [DOI: 10.1063/1.1779251]

I. INTRODUCTION

Space-time correlations or their Fourier transformations,
wavenumber-frequency spectra are the simplest space-time
statistics of turbulent flows. They are of interest in funda-
mental turbulence research as well as in various practical
applications. For example, according to Lighthill’s theory,1,2

the acoustic intensity radiated by a turbulent flow depends on
the two-time, two-point velocity correlations. In wall-
bounded flows, the calculation of flow-induced vibration and
sound requires the wavenumber-frequency spectra of wall-
pressure fluctuations as a forcing function input to structural
models.3 In boundary-layer receptivity problems the
wavenumber-frequency spectra of free-stream disturbances
are critical to the transition from laminar to turbulent flows.4

In turbulence control and drag reduction applications,5 the
space-time characteristics of turbulent fluctuations have been
used as control inputs for the blowing and suction by actua-
tors. Further applications can be found in, for example, par-
ticle dispersion6 and predictability.7

In recent years there has been an increasing interest in
applying large-eddy simulation(LES) to solve flow prob-
lems, such as those mentioned above, in which the space-
time characteristics are important. The existing subgrid scale
(SGS) models are, however, mostly constructed to predict
spatial statistics such as energy spectra.8 It is not clear

whether these models can lead to accurate predictions of the
space-time correlations, or frequency contents at individual
wavenumbers. Hence, the accurate prediction of space-time
correlations presents a new challenge for SGS modeling.
This is particularly important to aeroacoustic predictions be-
cause, for a given frequency, only the spectral element of the
source field corresponding to the acoustic wavenumber in a
given direction can radiate sound in that direction.9 The ra-
diation represents a very small fraction of flow energy, and is
extremely susceptible to numerical and modeling errors.

For brevity, we henceforth refer to the two-time, two-
point correlation of the velocity field simply as time correla-
tion. It can be equivalently expressed by a two-time correla-
tion of velocity Fourier modes in spectral space

Csk,td = kuisk,tduis− k,t + tdl, s1d

or its normalized form

Rsk,td =
kuisk,tduis− k,t + tdl

kuisk,tduis− k,tdl
. s2d

A previous study by He, Rubinstein, and Wang,10 compared
the normalized time correlations, or correlation coefficients,
in forced isotropic turbulence calculated by direct numerical
simulation(DNS) and LES using the spectral eddy-viscosity
model of Chollet and Lesieur.11 The comparison shows that
the LES overpredicts decorrelation time scales.

In the present work, we examine the SGS modeling ef-
fects on time correlations further and from a different per-
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spective. The objectives are twofold. The first objective is to
evaluate the performance of several popular SGS models in
terms of time correlations by comparison with DNS solu-
tions. The models considered are the spectral eddy-viscosity
model,11 the classic Smagorinsky model,12 the dynamic Sma-
gorinsky model,13 and the multiscale LES method of
Hughes, Mazzei, and Oberai,14 in conjunction with the dy-
namic Smagorinsky model. A second objective is to analyze
the observed discrepancies based on the sweeping
hypothesis,15 in order to identify the sources of time-
correlation errors and their influence on aeroacoustic calcu-
lations. Unlike the previous study,10 the evaluations and
analysis are carried out for the un-normalized time correla-
tions, not the normalized ones, since the former are the ones
actually used in the computation of sound power spectra.
Furthermore, we consider decaying homogeneous isotropic
turbulence so that the results are not affected by forcing. In
contrast to the stationary turbulence considered earlier, the
time correlations are dependent on both time separations and
starting time. Two different starting times will be chosen, one
during the initial period characterized by the decay of
energy-containing eddies via energy propagation to small
scales, and another during the final decay period dominated
by viscous effects.

The analysis starts with a generalization of Kraichnan’s
sweeping hypothesis15 from stationary turbulence to decay-
ing turbulence. This involves replacing a constant convection
velocity by a time-dependent one in a simple kinematic
model. The solution of the kinematic model defines a time-
dependent sweeping velocity. Kraichnan’s sweeping hypoth-
esis is the foundation of the turbulence theory on time cor-
relations. Kaneda and Gotoh16 and Kaneda17 developed the
Lagrangian renormalization group theory and the Taylor ex-
pansion technique for time correlations. Rubinstein and
Zhou18 used the sweeping hypothesis to formulate the scal-
ing law of sound power spectra.

Finally, the present analysis on time correlations will be
used to shed some light on the ability of LES to predict
sound power spectra. This is an important issue given the
increasing use of LES for aeroacoustic prediction in recent
years(e.g., Ref. 19). A previous study of SGS modeling ef-
fects by Piomelli, Streett, and Sarkar,20 is focused on the
spatial statistics of Lighthill source terms. Other
evaluations,21–23 made directly on acoustic fields, unavoid-
ably have to cope with the numerical errors caused by the
truncation of the source region.24,25 Instead, we will discuss
the influences of SGS modeling on the accuracy of sound
prediction through an analysis of time correlations in the
Lighthill framework coupled with the quasinormal closure
assumption.

II. NUMERICAL RESULTS

A decaying homogeneous isotropic turbulence in a cubic
box of side 2p is simulated by DNS with grid size 2563 and
LES with grid size 643. A standard pseudospectral method is
used, in which spatial differentiation is made by the Fourier
spectral method, time advancement is made by a second-
order Adams–Bashforth method with the same time steps for

both DNS and LES, and molecular viscous effects are ac-
counted for by an exponential integrating factor. All nonlin-
ear terms are dealiased with the two-thirds rule.

The following SGS models are used in the LES.
(1) The spectral eddy-viscosity model: We use the

Chollet–Lesieur standard form for the spectral eddy
viscosity,11 where the cutoff energy is evaluated from the
LES.

(2) The Smagorinsky model:12 The Smagorinsky con-
stant isCs=0.22 and the filter width is set equal to the in-
verse of the largest effective wavenumberkc=21.

(3) The dynamic Smagorinsky model:13 The Smagorin-
sky coefficients are determined by the Germano identity. The
grid filter width is kc

−1 and the test filter width is taken as
2kc

−1.
(4) The multiscale LES method14 with dynamic SGS

model: We decompose the filtered Navier–Stokes equations
into large-scale equations for the lower one-half Fourier
modes and small-scale equations for the remaining half Fou-
rier modes. The dynamic Smagorinsky model is applied to
the small scale equations.

The initial condition for DNS is an isotropic Gaussian
field with energy spectrum

Esk,0d ~ sk/k0d4 expf− 2sk/k0d2g, s3d

wherek0=4.68 is the wavenumber corresponding to the peak
of the energy spectrum. The shape of the energy spectrum
excludes the effects of the box size. The initial Reynolds
number based on Taylor’s microscale is 127.4. The initial
condition for LES is obtained by filtering the initial DNS
velocity fields with filtering wavenumberkc=64/3<21.
Therefore, the initial LES and filtered DNS velocity fields
are exactly the same. At early stages, the LES and DNS
velocity fields are highly correlated due to the same initial
conditions. Therefore, the time correlations of the LES ve-
locity field are nearly the same as those of the DNS field. As
time progresses, the LES fields become decorrelated from
the DNS fields. The difference in time correlations between
the LES and DNS velocity fields are then observed. There-
fore, we first advanced the DNS and LES velocities in time
to decorrelate them before starting to calculate the time cor-
relations.

The energy spectra att=0.5 andt=4.0 are presented in
Fig. 1. Generally speaking, the LES spectra are in good
agreement with the DNS result at low wavenumbers but drop
off faster at higher wavenumbers. The decay of the total
resolved energy with time is presented in Fig. 2. The results
from LES with all SGS models follow the DNS results with
some deviations throughout the entire time range. They ex-
hibit excessive dissipation before the timet=1.5 (the energy
propagation range) and insufficient dissipations aftert=1.5
(the final decay range). In both Figs. 1 and 2, the classic
Smagorinsky model results are clearly the least accurate. The
performances of the other three SGS models are comparable
judged for the entire time range shown in Fig. 2. Fort
ø1.5, however, the multiscale LES with dynamic model is
superior compared with the dynamic Smagorinsky model
and spectral eddy-viscosity model. The latter two yield simi-
lar solutions.
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Figure 3 plots the un-normalized time correlations of the
velocity fields from the DNS and LES for wavenumbersk
=5, 9, 13, and 17, spanning a range of scales from the inte-
gral scale to the lower end of the resolved scale. The starting
time is t=0.5. A comparison clearly shows that there exist
discrepancies between the LES and DNS results, and that the
discrepancies become larger with increasing wavenumber.
The relative performances of the models are similar to those
observed in energy and energy spectra(cf. Figs. 1 and 2).
The classic Smagorinsky model results are again the least
accurate of all models, and the multiscale LES is the most
accurate. The dynamic Smagorinsky model and spectral
eddy-viscosity model yield comparable results for the first
two wavenumbers, but the former is significantly more accu-
rate at the two higher wavenumbers.

Figure 4 plots the same time correlations as in Fig. 3 but
with a different starting timet=1.5. The discrepancies ob-
served are qualitatively the same as in thet=0.5 case, except
for the lowest wavenumberk=5 at which the correlation
magnitude is overpredicted by LES, and the multiscale LES
gives the largest overprediction. Overall, the SGS modeling
errors are found to equally affect the time correlations in the
final decay range.

In summary, it is observed in decaying isotropic turbu-
lence that discrepancies exist between the un-normalized
time correlations calculated from DNS and those from the
LES. The multiscale LES approach, in conjunction with the
dynamic SGS model, provides the best overall results. This
is consistent with its superior prediction of the wavenumber
energy spectra. Note that the multiscale LES is a methodol-
ogy rather than a model, and the time correlations computed
using the multiscale LES is strongly dependent on the SGS
model employed. In an earlier study,26 the constant-
coefficient Smagorinsky model was used in the multiscale
LES, and the results were found to be less accurate compared
to those obtained using LES with the dynamic SGS model.

In the following section, the computed time correlations
are analyzed in the framework of Kraichnan’s sweeping
hypothesis,15 in order to explain the discrepancies between
the LES and DNS time correlations and identify the sources
of these discrepancies.

III. ANALYSIS OF NUMERICAL RESULTS

The analysis is based on the generalized sweeping hy-
pothesis for decaying turbulence. In the sweeping hypothesis
for stationary isotropic turbulence, the convection velocity is
constant.15 However, in decaying turbulence, the convection
velocity varies with time. A generalization can be made by
introducing a time-dependent convection velocity, which
evolves slowly relative to the time scales of velocity fluctua-
tions.

Consider a fluctuating velocity Fourier modeusk ,td con-
vected by a large-scale velocity fieldvstd. We assume that the
wavenumbersk of the fluctuating velocity are sufficiently
large. The flow scales associated with these wavenumbers
are small, over which the convection velocity is spatially
uniform and relatively large in magnitude. In this case, the
convection effect is dominant. The governing equation for
the fluctuating velocity modes is therefore

FIG. 2. Decay of total resolved energy. —, DNS; ----, dynamic Smagorinsky
model; —·—, multiscale LES;̄ ¯, Smagorinsky model; — — —, spec-
tral eddy-viscosity model.

FIG. 1. Energy spectra at(a) t=0.5 and(b) t=4.0. —, DNS; ----, dynamic Smagorinsky model; —·—, multiscale LES;¯¯, Smagorinsky model; — — —,
spectral eddy-viscosity model.
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]usk,td
]t

+ ifk ·vstdgusk,td = 0, s4d

which yields

usk,t + td = usk,tdexpS− iE
t

t+t

k ·vssddsD . s5d

Then, the time correlation can be expressed by

kusk,t + tdus− k,tdl

= kusk,tdus− k,tdl

3expS−
1

2
k2E

t

t+t E
t

t+t

kvss8dvss9dlds8ds9D . s6d

In the derivation of(6), the convection velocityvstd is as-
sumed to be Gaussian and independent of the velocityusx ,td
at the starting timet. These assumptions can be justified by
the near Gaussianity of the large-scale velocity and its initial
independence of the small-scale velocity. By introducing a
sweeping velocity

V2st,td =
1

t2E
t

t+t E
t

t+t

kvss8dvss9dlds8ds9, s7d

we obtain a general expression of time correlation similar to
the one in stationary turbulence

kusk,t + tdus− k,tdl = kusk,tdus− k,tdl

3expf− 1
2k2V2st,tdt2g . s8d

The calculation of the sweeping velocity,(7), can be
further simplified by assuming the following form of the
bulk velocity correlation:27

kvss8dvss9dl = kv2ss8dlexps− lus8 − s9ud, s9d

wherel−1 is a decorrelation time scale. Substituting(9) into
(7), we find

V2st,td =
1

t2E
t

t+t

kv2ss8dll−1s2 − expf− lss8 − tdg

− expf− lst + t − s8dgdds8. s10d

In isotropic turbulence, the bulk velocity is determined
by large scale motions. Hence, its decorrelation time scale
l−1 is much larger than those of velocity fluctuation modes

FIG. 3. Time correlationCsk,td vs time lagt with starting timet=0.5 for (a) k=5, (b) k=9, (c) k=13, (d) k=17. —, DNS; ----, dynamic Smagorinsky model;
—·—, multiscale LES;̄ ¯, Smagorinsky model; — — —, spectral eddy-viscosity model.
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considered here. Since the time separationt of interest is
within the decorrelation time scales of the velocity fluctua-
tions, we havelt!1. Using Taylor series expansion with
respect tolt and ignoring the second- and higher-order
terms in(10), we obtain

V2st,td =
1

t
E

t

t+t

kv2ss8dlds8. s11d

Note that the bulk velocity is associated with the energy-
containing motions, and its variancekv2stdl is the total en-
ergy. Hence, the sweeping velocity depends on the time his-
tory of the total energy. Since the energy decay is relatively
small over the decorrelation time scale, the sweeping veloc-
ity can be simply approximated byV2st ,td>fkv2stdl+kv2st
+tdlg /2.

Figure 5 plots the normalized time correlationsRsk,td
from DNS for wavenumbersk=5, 9, 13, 17, 30, 40, 50, 60,
70, and 80, where the correlations are normalized by the
instantaneous energy spectra at the starting timet=0.5. The
time separation is un-normalized in Fig. 5(a) and normalized
by the scale-dependent similarity variableVk in Fig. 5(b).
The latter figure exhibits that, with the time normalization,
virtually all curves collapse. The small deviation for thek
=5 curve arises because the length scale associated with this
wavenumber is close to the scale of the sweeping motion, so

that the sweeping hypothesis is less accurate. The results in
Fig. 5(b) verifies the general validity of the sweeping hy-
pothesis and the generalized sweeping velocity in decaying
turbulence.

Equation(8) indicates that for givenk, the normalized
time correlations are solely determined by the sweeping ve-
locities. In the present LES, the sweeping velocities are
somewhat smaller than their DNS counterparts because of
the reduced total energy. Therefore, the time correlations in
LES decay more slowly than the ones in DNS. That is, the
LES overpredicts the decorrelation time scales compared to
DNS. Figure 6 plots the normalized time correlations from
the DNS and LES with respect to the un-normalized time for
the modesk=5, 9, 13, and 17. It confirms the overprediction
of decorrelation time scales by LES, although the amount of
overprediction is relatively small. Again, the multiscale LES
method with dynamic SGS model is the most accurate and
represents a modest improvement over the standard LES
with the dynamic model. The classic Smagorinsky model is
the least accurate of all the models tested. The spectral eddy
viscosity model trails the dynamic model slightly.

Equation(8) also indicates that if the time separation is
normalized byVk, the un-normalized time correlations are
solely determined by the instantaneous energy spectra at the
starting time. Figure 7 plots the un-normalized correlations

FIG. 4. Time correlationCsk,td vs time lagt with starting timet=1.5 for (a) k=5, (b) k=9, (c) k=13, (d) k=17. —, DNS; ----, dynamic Smagorinsky model;
—·—, multiscale LES;̄ ¯, Smagorinsky model; — — —, spectral eddy-viscosity model.
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vs the normalized time separation. It shows that LES under-
estimates the magnitudes of time correlations relative to the
DNS results. The underestimation becomes more significant
as the wavenumber increases, which is consistent with the
more severe drops of the LES energy spectra at high wave-
numbers. Again, the relative performance of the SGS models

in terms of the magnitudes of time correlations is the same as
before.

In conclusion, the discrepancies between the time corre-
lations computed using DNS and LES consist of two parts:
the correlation magnitude and decorrelation time scale. The
errors in decorrelation time scales are induced by the sweep-

FIG. 5. Normalized time correlationRsk,td vs (a) un-normalized and(b) normalized time lag, with starting timet=0.5, for different Fourier modes computed
using DNS. —,k=5; ----, K=9; —·—, k=13; ¯ ¯, k=17; h, k=30; n, k=40; ,, k=50; x, k=60; v, k=70; L, k=80.

FIG. 6. Normalized time correlationRsk,td vs time lagt with starting timet=0.5 for (a) k=5, (b) k=9, (c) k=13, (d) k=17. —, DNS; ----, dynamic
Smagorinsky model; —·—, multiscale LES;̄ ¯, Smagorinsky model; — — —, spectral eddy-viscosity model.
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ing velocity, and the errors in magnitudes are induced by the
energy spectra. In relative terms, the errors in decorrelation
time scales are less significant than those in magnitudes.
However, they should not be ignored since the sound power
spectra are sensitive to the decorrelation time scale(see dis-
cussions in the following section). Note that the sweeping
velocity used in our analysis is the root mean square of ve-
locity fluctuations, or the square root of the total energy.
Thus, an accurate prediction of the instantaneous energy
spectra is critical to the accurate computation of the time
correlations. In the previous study10 in forced isotropic tur-
bulence, a significantly larger overprediction by LES of the
decorrelation time scales was observed, in contradiction with
the mild overprediction estimated by the theoretical analysis
presented in the same study. This is largely due to disparate
total energy levels in the DNS and LES. The much smaller
overprediction of decorrelation time scales by the present
LES is more in line with the theoretical analysis in Ref. 10.

IV. DISCUSSION

As an example of applications, the effect of time-
correlation errors on acoustic prediction is examined using
an analytical expression of acoustic power spectra based on
Lighthill’s theory and the quasinormal closure assumption.

The analytical expression is only valid for stationary turbu-
lence. However, reasonable inferences can be drawn for de-
caying turbulence through this analysis.

According to Lighthill’s theory,1 the acoustic pressure in
a far-field positionx is given by

psx,td =
1

4pc2

xixj

uxu3EV

dy
]2

]t2
TijSy,t −

ux − yu
c

D , s12d

whereTijsy ,td<ruisy ,tdujsy ,td is the Lighthill stress tensor,
V the source region,r the mean far-field density,c the speed
of sound in the far-field, andy a position vector in the source
field. The entropy and viscous stress terms have been ne-
glected in the Lighthill stress, which is valid for low Mach
number and reasonably high Reynolds number flows. Based
on this equation and the quasinormal hypothesis, the acoustic
power spectral density function can be written in the form28

Psvd =
p

2
r

v4

c5

32p

15
E

0

+`

4pk2 E2skd
s2pk2d2dk

1

2p

3E
−`

+`

R2sk,tdexps− ivtddt. s13d

In the following discussion, the normalized time corre-
lation Rsk,td is assumed to be of the exponential form

FIG. 7. Un-normalized time correlationCsk,td vs the normalized time lagt with starting timet=0.5 for (a) k=5, (b) k=9, (c) k=13, (d) k=17. —, DNS; ----,
dynamic Smagorinsky model; —·—, multiscale LES;̄¯, Smagorinsky model; — — —, spectral eddy-viscosity model.
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Rsk,td = exps− 1
2k2V2t2d , s14d

and the energy spectrumEskd is represented by the von
Kármán spectrum

Eskd = Ce2/3k0
−5/3sk/k0d4f1 + sk/k0d2g−17/6k−2, s15d

wherek0=5 defines the peak of energy spectrum. The expo-
nential form and the von Kármán spectrum are the appropri-
ate approximations to the time correlations and the energy
spectra, respectively, in our numerical simulations.

With the substitution of Eq.(14) into Eq. (13), the non-
dimensionalized sound power spectra are given by

PTsvd =
2Îp

15
rM5v4

V
E

0

+`

k−3E2skdexpS−
v2

4sVkd2Ddk,

s16d

whereM =V0/c is the Mach number andV0=v0/k0. k0 is the
inverse integral length scale andv0 the inverse integral time
scale.

The influences of decorrelation time scales on acoustic
power spectra can be seen in Fig. 8(a), where the sound
power spectra are evaluated according to(16) with the
sweeping velocitiesV equal to 1.0, 0.95, and 0.9. The small
variations, up to 10%, of the sweeping velocities cause sig-
nificant reductions of the sound power spectra at higher fre-
quencies. This illustrates the sensitivity of the acoustic power
spectra to the sweeping velocities.

The sweeping-velocity induced errors can be com-
pounded by the truncation of the energy spectra at high
wavenumbers, corresponding to unresolved scales in LES.
To test this effect, the energy spectrum is truncated[Eskd set
to zero] for eitherk.25 or k.13. These truncations corre-
spond to grid-size ratios of 1:4 and 1:8, respectively, between
LES and DNS. The sweeping velocities, computed based on
the respective truncated energy spectra, are 0.978 and 0.933
compared to 1 for DNS. Figure 8(b) plots the acoustic power
spectra calculated using the full and truncated energy spec-
tra. It shows that in the truncated cases, the acoustic spectra
drop considerably at moderate to high frequencies, and the
spectral peaks are shifted towards left to lower frequencies.

It should be noted that the above assessment is based on
a model energy spectrum, and therefore should be viewed in
a qualitative sense. At low wavenumbers, the correlation
function expression(14) based on sweeping hypothesis may
not be appropriate. Furthermore, it is generally considered
that noise generation by turbulent flows is predominantly
through the generation and nonlinear interaction of turbulent
eddies, which may not be adequately analyzed using the
sweeping hypothesis. A more systematic evaluation of the
acoustic power spectra will be pursued in the future in order
to quantify the SGS modeling effects on aeroacoustic predic-
tions.

V. CONCLUSIONS

Numerical comparisons in decaying isotropic turbulence
suggest that there exist discrepancies in time correlations
evaluated by DNS and LES using eddy-viscosity-type SGS
models. This is qualitatively consistent with the previous ob-
servations in forced isotropic turbulence. Comparisons
among different SGS models in the LES also indicate that
the model choice affects the time correlations. The dynamic
Smagorinsky model provides significantly more accurate
predictions than the classic Smagorinsky model and slightly
more accurate predictions than the spectral eddy-viscosity
model. The multiscale LES using the dynamic Smagorinsky
model on the small scale equations is shown to be the most
accurate approach.

The generalized sweeping hypothesis implies that time
correlations in decaying isotropic turbulence are mainly de-
termined by the energy spectra and sweeping velocities. The
analysis based on the sweeping hypothesis explains the dis-
crepancies in our numerical simulations: the LES underpre-
dicts the magnitudes of time correlations because the energy
spectrum levels are lower than the DNS values, and slightly
overpredicts the decorrelation time scales because the sweep-
ing velocities are smaller than the DNS values. Since the
sweeping velocity is determined by the energy spectra, one
concludes that an accurate prediction of the time history of
the energy spectra guarantees the accuracy of time correla-
tions. Note that the generalized sweeping hypothesis itself

FIG. 8. Effects of(a) sweeping velocity(—, V=1.0;¯ ¯, V=0.95; — — —,V=0.90) and(b) energy spectrum truncation(—, full spectra;̄ ¯, kc=25;
— — —, kc=13) on predicted sound power spectra. The corresponding sweeping velocities for the three cases in(b) areV=1, 0.978, and 0.933, respectively.
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does not explain the relative performance of the various SGS
models for space-time correlations. Rather, it explains their
accuracy in terms of their ability to predict the instantaneous
energy spectra, which is a simpler criterion.

As an example, the effect of time-correlation errors on
radiared sound power spectra is estimated based on Light-
hill’s theory and the quasinormal closure assumption. It is
shown that smaller sweeping velocities and energy spectrum
truncation can cause significant errors in the sound power
spectra, which exhibit a sizable drop at moderate to high
frequencies accompanied by a shift of the peaks to lower
frequencies. Based on this analysis, two possible ways to
improve acoustic predictions can be considered. The first is
to construct better SGS models to improve the LES accuracy
for time correlations. The second is to remedy the temporal
statistics of the Lighthill stress tensor in order to “recover”
the contribution from the unresolved scales in LES to time
correlations.
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