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The nonlinear amplitude equation, which was derived by Jian Yongjun employing expansion of two-time scales

in inviscid uids in a vertically oscillating circular cylindrical vessel, is modi�ed by introducing a damping term due

to the viscous dissipation of this system. Instability of the surface wave is analysed and properties of the solutions of

the modi�ed equation are determined together with phase-plane trajectories. A necessary condition of forming a stable

surface wave is obtained and unstable regions are illustrated. Research results show that the stable pattern of surface

wave will not lose its stability to an in�nitesimal disturbance.
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1. Introduction

Faraday[1] (1831) waves can be excited on the free

surface of a uid layer that is periodically vibrated in

the direction normal to the surface at rest when the

amplitude of the driving acceleration is large enough

to overcome the dissipative e�ect of uid viscosity

(Miles and Henderson[2] (1990)). These surface waves

have a frequency equal to half that of the excitation

and belong to subharmonic resonance. With a sinu-

soidal driving force, di�erent wave patterns can be ex-

cited depending on the uid properties and the driving

amplitude or frequency. Many spatially periodic pat-

terns, such as parallel stripes (Edwards and Fauve[3]

(1994), Daudet et al
[4] (1995)), triangular pattern

(M�uller[5] (1993)), competing hexagons and equilat-

eral triangles(Kumar and Bajaj[6] (1994)), square

(Ciliberto et al
[7] (1991)), and hexagonal, eightfold,

and tenfold (Binks andWater[8] (1991)) patterns, have

been observed in experiment.

E and Gao[9�11] (1996, 1996, 1998) carried out

the ow visualization of surface wave patterns in a

circular cylindrical vessel by vertical external vibra-

tions. They obtained very beautiful photographs of

free surface patterns in wider driven frequencies, and

most of them have not been reported before.

Benjamin and Ursell[12] (1954) showed that the

linear dynamics of the amplitudes of the surface modes

is governed by Mathieu's equation. Miles[13�15] (1976,

1984, 1993) studied nonlinear e�ects of this problem

adopting a variational approach in inviscid uids. Vis-

cous e�ects are usually included heuristically, propor-

tional to the kinematic viscosity �. This approxima-

tion ignores viscous boundary layers along the con-

tainer walls and beneath the surface, where additional

dissipation occurs.

Recently, an approximate theoretical treatment

associated with the experiments of Refs.[9{11] was es-

tablished by Jian and E[16;17] (2003), from which the

second-order free surface displacements and their con-

tours were obtained by two-time scale singular pertur-

bation expansion in ideal uids. Later on, the inu-

ence of the surface tension and weak viscosity was con-

sidered by Jian and E[18;19] (2004), and the theoret-

ical result approaches experiment results much more

than that in the case of no surface tension and vis-

cosity. An approximate expression for the damping

coeÆcient was determined analytically in Ref.[19] by

solving outer potential ow and the ow in the in-

ner boundary layer region with the perturbation tech-

nique.
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In this paper, the nonlinear evolution equation in

Refs.[16] and [17] is modi�ed by introducing the above

linear damping, and the stability of the modi�ed am-

plitude equation is studied together with phase-plane

trajectories. Unstable regions are determined by sta-

bility analysis with respect to the in�nitesimal distur-

bance to the equilibrium solution.

2.The modi�cation of the ampli-

tude equation

The nonlinear amplitude equation in Refs.[16] and

[17] is modi�ed by adding linear damping, which was

obtained from Ref.[19], and we obtain the modi�ed

equation

i

�
d

d�
+ �1

�
p(�) =M1p

2(�)�p(�) +M2e
2i�� �p(�); (1)

where i is the unit of imaginary number, p(�) is called

the slowly variable complex amplitude and �p(�) de-

notes the complex conjugate of p(�); � is a slowly

varying time scale, � denotes the di�erence between

the surface wave frequency and the forced frequency,

�1 is damping coeÆcient, and real coeÆcients M1 and

M2 can be found in Ref.[16]. �1 = Re(�) > 0, its

detailed expression is

�1 =

�
�[sinh(2�h=R) + 2�h=R]

8
 cosh2(�h=R)

+
�2

4
 cosh2(�h=R)
+

�2


2(�2 �m2)

�r
2�



: (2)

Note that, for the sake of clarity, all of the damp-

ing factors associated with the side-wall, bottom, and

meniscus term have been lumped into a single coeÆ-

cient equation (2).

For the convenience of solving the modi�ed am-

plitude equation (1), we make a transformation for an

unknown function p(�). Let

q(�) = p(�)e�i�� ; (3)

then Eq.(1) becomes

i
dq(�)

d�
= �i�1q(�) + �q(�) +M1q

2(�)�q(�) +M2�q(�):

(4)

The physical meanings of all the terms in the

right-hand side of Eq.(4) can be explained as follows.

The �rst term denotes the damping of the surface

wave, and can lead to energy dissipation in the ex-

ternally excited system. The second term means the

di�erence between half the forcing frequency and the

surface wave frequency. It reects the approximate

degree of the surface wave to Faraday resonance. The

third term describes the inuence of nonlinearity, and

this parameter determines the nonlinear intensity of

the surface wave. The last term indicates the energy

entering the system via external oscillation, and has

an important e�ect on mode selection and instability

of the surface wave.

The stable properties of the amplitudes p(�) and

q(�) are equivalent, which can be proved from Eq.(3).

That is to say, if Eq.(4) is stable, then Eq.(1) is still

stable, and vice versa. Divide the unknown vari-

able into real and imaginary parts, and the amplitude

equation (4) yields the following simultaneous nonlin-

ear ordinary di�erential equations:

dq1(�)

d�
=� �1q1(�) + (� �M2)q2(�)

+M1q2(�)[q
2
1(�) + q22(�)]; (5)

dq2(�)

d�
=� �1q2(�)� (� +M2)q1(�)

�M1q1(�)[q
2
1(�) + q22(�)]; (6)

where q1(�) and q2(�) are the real and imaginary parts

of q(�) respectively.

Simultaneous equations (5) and (6) are our orig-

inal modelling equations. In the following we investi-

gate the stability of their linearization.

3.The stability of the linearized

equation

Neglect the nonlinear terms in the right-hand

sides of Eqs.(5) and (6), and make q̂1(�) and q̂2(�)

the in�nitesimal disturbances associated with the zero

solutions of q1(�) and q2(�). The disturbances q̂1(�)

and q̂2(�) satisfy

dq̂1(�)

d�
= ��1q̂1(�) + (� �M2)q̂2(�); (7)

dq̂2(�)

d�
= �(� +M2)q̂1(�)� �1q̂2(�): (8)

The eigenfunction of Eqs.(7) and (8) can be given

as ���� Æ + �1 �(� �M2)

� +M2 Æ + �1

���� = 0;

namely

(Æ + �1)
2 =M2

2 � �2: (9)

The eigenvalue Æ can be obtained easily from Eq.(9):

when

M2
2 � �2; then Æ = ��1 � (M2

2 � �2)1=2;
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however, when

M2
2 < �2; then Æ = ��1 � i(�2 �M2

2 )
1=2:

Instability will happen if the real part of the eigen-

value Æ is larger than zero: namely, when

M2
2 > �2 + �2

1 ; (10)

the surface wave appears at the free surface. How-

ever, the free surface remains planar if the real part

of the eigenvalue Æ is smaller than zero. Under this

condition, the eigenvalue yields

M2
2 < �2; or �2 < M2

2 < �2 + �2
1 : (11)

From the physical point of view, conditions (10)

and (11) indicate that when the external forced en-

ergy is larger than that of the viscous dissipation, the

surface wave appears due to the instability of the free

surface. On the other hand, when the external forced

energy is smaller than that of the viscous dissipation,

the surface wave cannot be produced.

Fig.1. Unstable region determined by damping coef-

�cient �1 and excited coeÆcient M2 (�=0.02).

Fig.2. Unstable region determined by frequency

di�erence coeÆcient � and excited coeÆcient M2

(�1=0.01).

The results of instability are illustrated in Figs.1

and 2, and the unstable regions are determined by

inequality (10). The shaded regions in Figs.1 and 2

are the unstable regions. When the parameters enter

these regions, the surface wave can be excited due to

�rst instability. In contrast, when the parameters lo-

cate outside of shaded regions, the surface waves can-

not be excited.

In the next section, the instability of the nonlin-

ear amplitude equations (5) and (6) are studied by

linear stable theory.

4.Linear stability of the non-zero

solution

4.1. Instability condition for appearance of sta-

ble surface wave

In order to discuss the stability of the nonlin-

ear amplitude equations (5) and (6), we seek for the

nonzero equilibrium solution of Eq.(4). The analysis

of the instability associated with the �nite-amplitude

solution is so called `secondary instability'. In Eq.(4),

let the derivative with respect to time equal zero; the

equilibrium solution yields

i�1q(�) = �q(�) +M1q
2(�)�q(�) +M2�q(�): (12)

Let q0 = a0e
i# 6= 0 (where a0 is a real number) be an

equilibrium solution of Eq.(12), and insert the expres-

sion q0 into Eq.(3): we have

a0 =

�
�� �

p
M2

2 � �2
1

M1

�1=2
; sin 2# = �

�1
M2

: (13)

Assuming q0(�) is an in�nitesimal disturbance asso-

ciated with the equilibrium solution q0, substituting

disturbed expression q1(�) = q0(�) + q0 into Eq.(4),

and ignoring the nonlinear term of in�nitesimal dis-

turbance, the disturbance equation can be written as

i
dq0(�)

d�
=� i�1q

0(�) + �q0(�) +M2�q
0(�)

+M1(q
2
0 �q

0(�) + 2jq0j
2q0(�)): (14)

We separate Eq.(14) into real and imaginary parts,

let q0(�) = A1 (�) + iA2(�), and substituting it into

Eq.(14), we have the following simultaneous ordinary
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di�erential equations:

dA1

d�
=� �1

�
1 +

�� �
p
M2

2 � �2
1

M2

�
A1

+

�
(� �M2) + (�� �

q
M2

2 � �2
1)

�

�
2�

p
M2

2 � �2
1

M2

��
A2; (15)

dA2

d�
=

�
�(� +M2)� (�� �

q
M2

2 � �2
1)

�

�
2�

p
M2

2 � �2
1

M2

��
A1

� �1

�
1�

�� �
p
M2

2 � �2
1

M2

�
A2: (16)

The eigenfunction of Eqs.(15) and (16) can be given

as

(Æ + �1)
2 = �4

�
M2

2 �
5

4
�2
1 � �

q
M2

2 � �2
1

�
: (17)

Since we consider the equilibrium solution of �nite

amplitude now, the condition (10) must be realized.

Subsequently, we study the stability of the equilibrium

solution q0. Two kinds of circumstances (M1 > 0 and

M1 < 0) are discussed below.

4.1.1.When M1 > 0

(a) For the equilibrium solution

a0 = [(�� + (M2
2 � �2

1))=M1]
1=2;

when � > 0, since a0 is a real number, the equilibrium

solution q0 exists and Eq.(17) yields

(Æ + �1)
2 = �4

�
M2

2 �
5

4
�2
1 � �

q
M2

2 � �2
1

�
: (18)

According to the condition (10), we can assume

M2
2 = �2(1 + s) + �2

1 ; where s > 0; (19)

and Eq.(18) can be expressed as

(Æ + �1)
2 = 4

�
��2[1 + s� (1 + s)1=2] +

1

4
�2
1

�
:

(20)

Since 1 + s > (1 + s)1=2, the eigenvalue satis�es

(Æ + �1)
2 � �2

1 . Hence, under this condition, the real

part of the eigenvalue is smaller than zero, and the

equilibrium solution is stable.

When � < 0, the equilibrium solution q0 still ex-

ists. From inequality (10), we let

s1 = (M2
2 � �2

1)=�
2; where s1 > 0; (21)

and the eigenfunction of Eq.(18) is written as

(Æ + �1)
2 = 4

�
��2(s1 + s

1=2
1 ) +

1

4
�2
1

�
: (22)

Since s1 + s
1=2
1 � 0, we have (Æ + �1)

2 � �2
1 . Hence,

under this condition, the real part of the eigenvalue

is smaller than zero, and the equilibrium solution is

stable.

(b) For the equilibrium solution

a0 = [(�� � (M2
2 � �2

1))=M1]
1=2;

when � > 0, from inequality (10), we can assume

M2
2 = �2(1 + s) + �2

1 ; where s > 0; (23)

and we have [�� � (M2
2 � �2

1)] < 0. Hence, we de-

duce that a0 is not a real number and the equilib-

rium solution will not exist. Similarly, when � < 0,

[�� � (M2
2 � �2

1)] < 0, and the equilibrium solution

will not exist.

4.1.2.When M1 < 0

(a) For the equilibrium solution

a0 = [(�� + (M2
2 � �2

1))=M1]
1=2;

when � > 0, we can use the same approach to know

[(�� + (M2
2 � �2

1))=M1] < 0:

Thus a0 is not a real number, and the equilibrium

solution

a0 = [(�� + (M2
2 � �2

1))=M1]
1=2

will not exist.

(b) For the equilibrium solution

a0 = [(�� � (M2
2 � �2

1))=M1]
1=2;

when � > 0, a0 is a real number, and this equilibrium

solution is stable, which can be con�rmed by using the

same method.

In summary, whenever M1 > 0 or M1 < 0, if

the condition M2
2 > �2 + �2

1 is ful�lled, stable surface

waves can be formed.

4.2. Stability of the surface wave

Will a stable surface wave mode lose its stability

to an in�nitesimal disturbance? In this case, the con-

dition (10) must be satis�ed. It can be shown that

the equilibrium mode will not lose its stability to an
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in�nitesimal disturbance using reductio ad absurdum

as follows.

We assume that the equilibrium mode will lose

its stability to an in�nitesimal disturbance. That is

to say, the eigenvalue of expression (17) has a positive

real part, namely

Æ = ��1 �

s
�4

�
M2

2 �
5

4
�2
1 � �

q
M2

2 � �2
1

�
> 0;

(24)

and the inequality

�4

�
M2

2 �
5

4
�2
1 � �

q
M2

2 � �2
1

�
� 0; (25)

will be satis�ed. If inequality (25) cannot be yielded,

then the value on the left-hand side of inequality (25)

is smaller than zero. Thus the real part of the eigen-

value (24) is ��1, which is contrary to the assumption

of the appearance of the instability. We can obtain the

following expression from Eqs.(24) and (25):

0 < M2
2 � �2

1 < �2: (26)

Since inequality (26) is contrary to the condition (10),

the equilibrium mode will not lose its stability to an

in�nitesimal disturbance.

In the following section, the solution properties

of the nonlinear amplitude equations (5) and (6) are

studied by numerical computation. The validity of our

theoretical analysis is proved.

5.The properties of modi�ed am-

plitude equation

5.1. The validity of the linear stability

Some numerical computations for the simultane-

ous modi�ed amplitude equations (5) and (6) are pre-

sented by the fourth order Runge{Kutta approach

with equivalent time-step. The evolution of the ampli-

tude with time is investigated in di�erent parameter

regions. The properties of the amplitude are illus-

trated by phase-plane trajectory.

The evolutions of the amplitude with time and

the phase-plane trajectory are depicted in Figs.3(a)

and 3(b) respectively. The choice of the parameters

satis�es the �rst condition of inequality (11). It can

be easily seen from Fig.3 that the amplitude decreases

gradually and tends to zero eventually on the pre-

scribed initial conditions.

Fig.3. The evolution of the amplitude with time and

phase- plane trajectories (�=0.5, M1=10, M2=0.4,

�1=0.02).

This indicates that the externally driven energy

can not overcome the viscous dissipation, and the sta-

ble surface wave cannot be formed.

Similarly, when the parameters ful�ll the second

condition of inequality (11), the stable surface wave

still cannot be formed. This situation is plotted in

Figs.4(a) and 4(b).

However, when the parameters yield the condi-

tion (10), the instability will happen and the surface

wave will appear.
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Fig.4. The evolution of the amplitude with time and phase-plane trajectories (�=0.4,

M1=10, M2=0.4001, �1=0.02).

Fig.5. Evolution of amplitude with time and phase- plane trajectories (�=0.4, M1=10,

M2=1, �1=0.02).

Figure 5 illustrates the evolution of the amplitude

with time and corresponding phase-plane trajectory.

It can be seen respectively from Figs.5(a) and 5(b)

that the amplitude tends to a constant and a �xed

point with the passage of time. Under this condition,

the stable surface wave is formed.

5.2. The inuence of the initial conditions on

the amplitude

We �nd computationally that the shape of the

phase-plane trajectory is sensitive to the initial condi-

tions of the amplitude equations (5) and (6). Figures

6(a){6(e) show di�erent phase-plane trajectories when

the initial conditions are changed.

There are two equilibrium solutions deduced from

Eq.(13). We can see that if the initial conditions are

located in the neighborhood of one equilibrium solu-

tion, then the solution of the amplitude equation will

be attracted to the region of the equilibrium solution.

In contrast, the solution of the amplitude equation

will be attracted to the region of another equilibrium

solution.

The evolution of the transformed amplitude q(�)

with time has been studied. In the next section, we in-

vestigate the evolution of the original amplitude p(�)

with time.
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Fig.6. The e�ect of initial conditions on the phase-plane trajectories (�=2, M1=10, M2=5,

�1=0.01).

5.3. The evolution of the original amplitude

variable with time

Figures 7(a){7(d) illustrate the evolution of the

transformed and the original amplitudes with time.

We can see from Figs.7(a), 7(b) that the transformed

amplitude q(�) tends to a �xed point with the evolu-

tion of time, and the surface wave is stable. Figures

7(a), 7(b) show that the surface wave is oscillatory at

�rst and a stable periodical solution can be formed

with the passage of time. Similarly, Figs.7(c), 7(d)

indicate that the surface wave evolves into a stable

limited cycle with the passage of time.

The parameters that can give rise to stable sur-

face waves as mentioned above satisfy the unstable

condition (10). However, not all of these parameters

that satisfy the unstable condition (10)can insure the

formation of stable surface wave. That is to say, the

condition (10) is a necessary rather than a suÆcient

condition.
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Fig.7. Evolution of amplitude with time and phase- plane trajectories (�=0.5, M1=10, M2=7, �1=0.02).

6.Conclusions

From the above analyses, the following results can

be obtained:

1. The modi�ed amplitude equation is more rea-

sonable physically to describe the motion of vertically

excited surface waves.

2. A necessary condition of producing stable sur-

face waves is derived, and the unstable regions are

determined by the instability analysis.

3. The theoretical results are proved by the nu-

merical computation of the modi�ed amplitude.
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