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Abstract: Interactions between different scales in turbulence were studied starting from the 

incompressible Navier-Stokes equations. The integral and differential formulae of the short- 

range viscous stresses, which express the short-range interactions between contiguous scales 

in turbulence, were given. A concept of  the resonant-range interactions between extreme 

contiguous scales was introduced and the differential formula of the resonant-range viscous 

stresses was obtained. The short- and resonant-range viscous stresses were applied to 

deduce the large-eddy simulation ( L E S )  equations as well as the multiscale equations, 

which are approximately closed and do not contain any empirical constants or relations. 

The properties and advantages of  using the multiscale equations to compute turbulent flows 

were discussed. The short-range character of  the interactions between the scales in 

turbulence means that the multiscale simulation is a very valuable technique for the 

calculation of turbulent flows. A few numerical examples were also gtven. 
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Introduction 

Turbulent flow contains a wide range of time- and length-scales. The nonlinear interactions 

between different scales play a key role in the evolution of the turbulent flow. In the theoretical 

researches and engineering calculations for the turbulent flows, the concept of eddy-viscosity, 

which was presented and extended by J. Boussinesq, G. Taylor and L. Prandtl, has been widely 

used in the last hundred years E1'2] . In the eddy-viscosity theory, the virtual turbulent-eddy 

motions are analogized to gas molecular motions, therefore, the eddy-viscosity should be 

originated from the interactions between widely separated scales in turbulence. However, it is 

generally believed that the dominant interactions are between contiguous, rather than widely 

separated, scales [a] . This subject has been studied in many papers. For example, the "direct 
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interaction" theories presented by R. Kraichnan confirm that at sufficiently large Reynolds number 

the energy transfer is mainly amongst traids for which three Fourier components satisfy k ~. k' 

k - k' [4]. Some new results for nonlinear interactions between the scales had been acquired 

recently through the analysis of direct numerical simulation databases for the incompressible 

channel flow by J. Domaradzki et al.  E5,6]. Their main results are as follows: i ) The nonlinear 

dynamics of the resolved modes with wave number k < k~ are governed by their interactions with 

a limited range of modes with wave number not exceeding 2 k 1 and much smaller scales have a 

negligible effect on the resolved ones; Ii ) The nonlinear dynamics of the modes with wave 

number ranging from k~ to 2kl are largely determined by their interactions with the resolved scales 

with wave numbers k < k I . Both of the large-small scales equations for turbulence calculation 

developed by Gao-Zhuang [7- 9] and the multiscale method in turbulence presented by T. Hughes 

et al.  [10] are built undoubtedly on the basis of the interactions between the scales (wave 

numbers) are mainly those between contiguous scales (wave numbers). 

The nonlinear interactions between the scales in turbulence are further analyzed starting from 

the incompressible Navier-Stokes equations. The dominant interactions were proved to be short- 

range ones between contiguous scales. A concept of resonant-range interactions between extreme 

contiguous scales was introduced. Three integral and differential formulae of the short- and 

resonant-range viscous stresses were given. With these formulae a new large eddy simulation 

(LES) equations and the multiscale equations governing both the motions of large eddies and the 

fluctuation motions of contiguous small scales relating to the large ones were presented. 

1 S h o r t . R a n g e  I n t e r a c t i o n s  B e t w e e n  t h e  S c a l e s  i n  T u r b u l e n c e  

The short-range interactions between contiguous scales in turbulence can be vividly expressed 

as: the turbulent viscous stresses of the scale-range with scales Ax < Axe, Ay < Ay~ and Az < 

Azc (for short, with scales Ax < Axe, the same below) acting on the large scale-range with 

scales Ax > Axe are mainly supplied by a limited range of scales lying between Axf and Axe, 

where Ax r < Axe (see Fig. 1 ) .  The procedure of proving the proposition of the short-range 

interactions is as follows: taking the space averaged system of the incompressible Navier-Stokes 

(NS) equations, deducing the differential formulae of turbulent viscous stresses, and then the 

proposition of short-range interactions may be proved and both the integral and differential 

formulae of short-range viscous stresses can be deduced; introducing a concept of resonant-range 

interactions and giving the differential formula of resonant-range viscous stresses. 

The incompressible Navier- Stokes (NS) equations are 

u i 
_ o ,  ( 1 )  

1 3z ui 3ui Oul O_p_ + , (2) 
O----t + uj 3xj  = - Oxi Re 3xjOxj 

Uo L 
where Re - 

I) 
- - - ,  ul, xl, t and p are made dimensionless with reference to the free-stream 

velocity U0, the boundary characteristic length L,  L~ U o and pU 2, respectively, The space 

averaged (or call the box-filtered) system of the incompressible NS Eqs (1)  and (2) can be 

written as 
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A x c ~ - ~  

0 Axf Axe 1 
I I I I > 
scale Kolmogoroff @ontiguous scales~ 

where 

Fig. 1 A sketch of interactions of between the scales in turbulence 
(the scales are made dimensionless with reference to the 
boundary characteristic length) 

8 Uci 
--0, 

OX i 
0 Ucl 3 U~i Opt 1 

a--F+ vo~ ~x i - - - ~  + 
0 2 Uci 

Re 3 xjO xj - Fei(ui, Uci), 

(3) 

(4) 

1/" ( Ucl,Pc) = ~7-~1 (u l ,p)dv ,  Vc = AxcAycAzc, (Sa) 
rcJ vo 

Fci(ui'Uci) = -~cf (Uj-- Ucj) ~xj(u i - Uci)dv. (5b) 
Ve 

Here Uc~ ,Pc and Fci( u~, Uci) are respectively the /-component of the space averaged velocity, 
the space averaged pressure and the/-component of viscous stresses of the small-scale-range with 
scales Ax < Axe acting on the large one with scales Ax > Axe. 

Suppose the solutions ul of the NS Eqs. ( 1 ) and (2) be continuity and differential, the 
derivatives of ui exist. Taking the center of the small volume element Vc = AxcAydXzc as the 
original point of Cartesian coordinates, owing to Axe << 1 ,Ayc << 1 ,Azc << 1 then we have 

1 [,,~ n [/,,n [a,/2 aui / aui/ 
Uci = ~ ; u j d v  - Axc&yeAz~J_~o/aJ_~ro/2J-;,o/2[uJ~ (OX,o x + (Oy,o  y §  

3u//  1 {3_~ / x 2 + l ( O 2 u j /  y2 1(32% ") z 2 + ""]dxdydz= 
( ~z]oZ +'2~0X2]0 3y2]0 + -2-~ ~z2 0 

[s + 3z  2 ~ A o ] +  4 4 , . . .  , Uio+l[~aX2]o  ~Sy 2 oAy2c + O(Axc,Ayc ) (6a) 

o {ou, I O3u, I 

~ } o  y + ( ~ } 0  + " )"  (rb) 
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Using the formulae (6a) and (6b) we deduce 

+ (Oy,oy+ 

.... ] [ (W,o ~ 1 ,  . . . .  ~~ ~u, I ( ~u, I (0z/o + Ujo 24~,aX2]o x 

~=u, I a~,,,~ a'u, I au, I 
( 3~i~ y ] oY ( xjO Z } o + + 

. . . .  

1( o " ' : 1 -  = 1 o - ~iay2] jdxdydz 

l [ , c g x l ( ~ x _ . _ ~ j A x :  +(Oyi[a~i~y ) Yc+ 

-~/[]  ~ ]  ~2//'i /A,g 2] 4 4 3z + O(Ax~,Ayr (7) 

In fe rence  The viscous stresses of the small-scale range with scales Ax < Axf acting on 

the large-one with the scales Ax > Axf is (see Fig. 1) 

F. (  ui, U . )  = ~ v, 

1 {3u] O2u, Ax~ Ou] 3Zui A z ~ui 32ui Az21 
-~t 3x OxjOx + Oy OxjOy yf + Oz O~jOz f] + 
O(~x~ 2 2 , A x f A y f , ' " ) ,  (8) 

where 

1 f (uj ,p)dv,  (Uf,,pf) = ~ v, (Sa) 

Vf = AxfAyf/kzf (/kxf < Axe, Ayf < Aye, Azf < Aze). 
Suppose, not losing generality, the side-length of the small volume elements Vo and Vf 

satisfy Axf/Axc = Ayf/Ayc = Azf/Azo (see Fig. 1), then we deduce from the formulae (7)and 

(8) 

Ffi(u i ,U. )  = Ax--'~Fci(ui,Ur + O(Ax4r (9) 

From the formula (9) we deduce that the viscous stress of the scale-range with scales Ax < 

Axf acting on the scale-range with scales Ax > Axf is only Ax~/Ax~ thatof the scale range with 

scales Ax < AXe acting on the scale range with scales ofAx > Axe (see Table 1). Imagine that 

even if the viscous stress Ffi( ui, Ufi) exerts totally on the scale-range with scales Ax > Axe, the 
2 2 viscous stress F~i(ui, U~i) is by (1 - Axf/Ax~)Fci(u~, U~i) larger than Ffi(ui, Ufi). From 

2 2 Vr can be physical consideration we know that the short-range stress (1 - Axf/Ax~)Fr ui, 
supplied only by the scales ranging from Axf to Axe, which prove that the viscous stresses of the 

small scale range with scales Ax < Ax~ acting on the large one with scales Ax > Axe is supplied 

mainly by the scale range near Axo, precisely speaking, by the scale range lying between Axf and 

Axe. The state above is physical connotation of the short-range viscous stresses. 
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2 I n t e g r a l  a n d  D i f f e r e n t i a l  F o r m u l a e  of  t h e  S h o r t - R a n g e  V i s c o u s  S t r e s s e s  

From the integral formulae (5b)  and (8)  for Fci(u i , Uci) and Fri(u i , Ufi) we may infer 

that the integral formula of the viscous stresses of the scales ranging from Axr and Axe acting on 

the scale-range with scales Ax > Axe, i. e . ,  the integral formula of the short-range viscous 
stresses should be as follows: 

1 ( U f j -  U~j)8xj Ufi - U~i)dv (10) Fr Ufi' Uei) : ~ Vo 

where Uci and Ufi are given in the formulae (5a) and (8a ) ,  respectively. 

Proof of E q .  ( 1 0 )  F~i (u  i , U~i ) is resolved into the following relation: 

Fr ) = 1 ( u y -  Ufy + U q -  Uoi)-ff-~xi(Ui- Ufl + Uf i -  U~i)dv = 
Vo 

1 ( u  i -  UfJ)Ox i Urn- Uo~)dv+ 1 (uj Uf i) (ui - Ufi)dv + -~r V 
V " 

if (u,- uoi) (u,- U,i)dv+ Fcfi(Ufi,Uci). (11) 

Not losing generality, we suppose that there are m 2 identical Vf within V~ and that both Vc and Vf 

are similar cubes. The surface of Vc is covered with surfaces of numerous Vf. For any arrangement 

of m 2 identical Vf within Vr the equality of Vr = m 2 Vf holds. S indicates the center of any Vf 

with V~. Then the first term on the right hand side of the formula (11) can be transferred to 
m z 

-~c~__d~vr(ltj- U f i ) 9 - ~ j ( l t i -  Ufl)dv = F f i ( l t i , U f i ) +  O(Ax2Ax2c).  (12a) 

Next, we prove that the order-of-magnitude of the second term on the right hand side of the 
formula (11) is equal to O(Ax~Ax~) 

if Ufj) ~--'~---( vo ax i ~ i -  Uoi)dv = 

+ - + (Y - y~ + 

) 1 / 8 - ~ ' 1  l{82uy / Ax 2 _  (L~ (z z,)+ (~ -~)~+  - 
~ , - ~ ~x 2 , " . -  ui, ~ ~x21  ' 

8Y z , , A y 2  . . . .  ] [ ( 8 x j )  + 1(~]83ui I "~, 83ui I 11 + + . . . .  

-ff~Xj]o - l,oxm.OXZ]o ""] }dxdydz  

m2 1 {8ZUil 83Ui I 1 [O2Uil 
- 

2 2 
0 ( A x f A x o , ' " ) .  

83ui I 
, ~ ] o A x 2 A y :  ] = 

(12b) 

Through similar operation, one can prove that the third term on the right-hand side of the formula 
(11 ) is the same order of magnitude as the second term 

f ~_L( = - O(Ax fAx~ , . . . ) .  (12c) 1 ( Ufj - Uej ) 8Xj ui Ufi)dv z 2 
~ V o  
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Using the formulae (9)  and (12a) ~ (12c ) ,  we obtain the following relation: 

F ~ i ( u i , U ~ i )  = F u ( u i , U r i )  + Fcr i (Uu ,U~i )  + O(Ax2Ax2~) ,  (13) 

(1 Axr2/ 
Fefi( Ufi , Uei ) = - Ax2e ] Fei(12,i ,  Uei ) + 0 ( m x 4 e , " ' ) .  (14) 

The physical inference for the short-range interactions between scales given in Section 1 is 

confirmed by the formula (14 ) ,  in which the Foi( u i , Uci) expresses the viscous stress of whole 

small scale-range with scales Ax < Axo acting on the large one with scales Ax > Axe, see Fig. 

1. This is usually called the interactions between widely separated scales, i . e . ,  the long-range 

viscous stresses[3'4]; Fefi(  Ufi ,  Ue i )  expresses the viscous stress of the contiguous scales Ax 

ranging from Axr to Axc(Axr < Ax < Axo) ,  acting on the scale-range with scales Ax > Axe, 

i . e . ,  the short range viscous stresses. The variation of the viscous stress ratio I Fcri I / I F~i I 

with the scale-ratio A x f / A x ~  is given in Table 1. 

T a b l e  1 V a r i a t i o n  of  t h e  s t r e s s . r a t i o  I F,~i I / I Fci I a n d  I F m  I / I F a i  I w i t h  t h e  s c a l e - r a t i o  

Axf /Axc  

Ax f /Axc  0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

I Fcf i I / I Fci I 0.36 0.51 0.64 0.75 0.84 0.91 0.96 0.99 

I Ffrll / I Fefi l / / / 0.33 0.19 0.10 0.04 0.0b 

From the data in Table 1 we know that the contiguous small scales, i . e . ,  the short-range 

1 1 
or ~-Ax~, in cases scales should range from Axe to ~-Axr both the contiguous scales offer 75 % or 

1 1 
91% of the viscous stresses of the whole scale range with scales Axo < -~-Axr or -~-Ax~ acting on 

1 1 
the large ones with scales Ax > Axe and much smaller ones with scales Ax~ < ~-Ax~ or ~ A x c  

have a negligible effects on the large ones with scales Ax > Axe. The above conclusions are 

consistent with chief conclusions acquired through treating the direct numerical simulation (DNS) 

databases for the incompressible channel flow [5'6] . This chief conclusion is that the nonlinear 

dynamics of the resolved scales with wave numbers k < k l are governed almost exclusively by 

their interactions with a limited range of scales with wave numbers not exceeding 2 k l and much 

smaller scales have a negligible effect on the resolved ones. However, the formula (14) is not 

only suitable to the turbulent flow in the channels but also suitable to all turbulent flows. 

As we know that the space average velocity-components Ufl and Uci are continuity and 

differential, the derivatives of Ufi and Ucl exist. Therefore, starting from the integral formula 

(10) of the short range viscous stresses and through similar operation used in deducing the 

differential formula (7 )  of Foi( u i , U~i),  it is not difficult to obtain the following differential 

formula of the short range stresses : 

+ 8y  8xjOy Ay~ + F e f i ( U f i '  Uci )  = 3 x  j 

8 Ufj 

8z  j . 

From the formula (15 )  we see that short-range viscous stress of the scale range lying 

between Ax~ and AXc(AX f < Ax < Ax c) acting on the large scales Ax > Ax~ are nonlinear 
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functions of the first- and second-order derivatives of the space average velocities on the fine grid 

( i . e .  the scale Axr ) and are proportional to the area of the course grid, i . e . ,  the square of the 

scale Axe. 

3 A C o n c e p t  of  R e s o n a n t  I n t e r a c t i o n s  a n d  R e s o n a n t - R a n g e  V i s c o u s  

Stresses 

Consider the interactions between the scales being smaller than but near extremely Axe and 

the scales Ax > Axe, which are different from the short-range interactions. In order to distinguish 

them, we should introduce a concept of resonant range interactions, which express the 

interactions between the small scales being smaller than but near extremely Axe and the scales 

Ax > Axo. According to the definitions of the space averaged velocities we know that the Ufi 
tends to U~i if the Axf tends to Axe, i . e . ,  the Vf tends to V~, see Fig. 1. Therefore, the 

differential formula of the resonant-range viscous stresses can be deduced directly from the 

formula (15) of the short-range ones. 

1 {3Uq 3 2U~iA 2 3Uq;9 2Uci 
Feei( Uei'Uei) = - ~  3x 3xj3x -xe + 3y 3xj3y Ay2c + 

3 Ucj 3 2UeiAz21 
3z 3~i3z ~] + O(Ax4~'"')" (16) 

Similarly, the differential formula of the resonant range viscous stresses for the scale Axf should 

be as follows: 

l ( 3 Uf, i ~ 2 U f i ^  2 3 Uf, i 32 Ufi 2 
Fffi(  Ufl ' Ufi) = - - x  3x  bxj3x/2Lxf + 3y ~Ayf + 

3U f/ 
3z 

From the formulae (16) and (17) ,  we see that the resonant-range viscous stresses of the 

scales &x < &xf (or Axo) acting on the scales Ax > Axf (or Axo) are nonlinear functions of the 

firt- and second-order derivatives of the averaged velocities on the scale Axf (or Axe) and are 

proportional to the area of the grid, i . e . ,  the square of the scale Axf (or &xo). 

The resonant-range viscous stress Fffi( U . ,  Uf~) is formally similar to the subgrid scale 

(SGS) model based on the Smagaorinsky hypothesis El'21 , but the concept causing them is 

different. The SGS model corresponding to Fffi( U . ,  U . )  is as follows E1'3]. 

3Xj~'-~('CiJ)' Z'iJ = (CA)2[ 3efi{oefi~ + ~Ufjl ] 1/2{3efi + 3--~Uf'/ ' (18a) 

~ ( r ~ . )  is corresponding to F f f i (  Ufi , Ufi), c is dimensionless empirical constant, where 3xj 

indicates the filtered scale or grid scale and is chosen as 

A = (AxfAyfAzf) 1/2 or (Ax 2 + Ayf 2 + Az~) 1/2. (18b) 

Comparing the resonant-range viscous stress with SGS model, the former does not include 

any empirical constant and relation and stems from the resonant-range interactions between 

extremely contiguous scales in turbulence; the SGS model includes empirical constant and relation 

and is based on classic eddy viscosity concept, i . e .  the interactions between the scales are the 

long-range ones between widely separated scales in turbulence I~ -43. The SGS model is used to 
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close approximately the large eddy simulation (LES)  equations. Of course, the differential 

formula (17) of the resonant-range viscous stress can be used to induce new LES equations. 

4 A N e w  L a r g e  E d d y  S i m u l a t i o n  ( L E S )  E q u a t i o n s  

Using the resonant-range viscous stress tensor given in the formula ( 17), it is not difficult to 

construct the following space averaged (or box filtered) Navier-Stokes equations, i . e . ,  a new 

large eddy simulation (LES) equations: 

3 Ufi 
- 0 ( i  = 1 , 2 , 3 ) ,  (19a) 

Ox i 

3 Ufi 3 Ufl 3pf  1 32 Ufi _ 
8----t- + Uq 8xj - - 8xl + Re 8xjSxj  Fffi( Ufi'Ufi) ( i  = 1 , 2 , 3 ) ,  (19b) 

where Ufi and Fffi( Ufi , Ufi ) are given in the formulae (8a) and (17) ,  respectively. According 

to the short-range character of interactions between the scales, the molecular viscous terms in Ext. 

(19b) ought to be neglected, reserving them is to match the boundary conditions at the solid 

surfaces. For the viscous fluid the condition of no slip on solid surfaces must be satisfied and the 

molecular viscous terms play an important role in the laminar sub-layer next to the wall. 

Similarly, the short-range character of interactions between the scales means that the resonant- 

range viscous stresses in LES Eq. (19b) act only on a local range with the scales &x > &xf but 

extremely near to Axfand do not act on the whole scale range with scales Ax > Axf, see Fig. 1. 

Therefore, it would be best to adopt multiscale equations to compute turbulent flows, i . e . ,  to 

divide prior the resolved scales into two or more than two scale-ranges and to solve simultaneously 

the multiscale equations governing the motions of these scale ranges. Only so the physical 

mechanism of the short range interactions between the scales can be detected perfectly. 

5 M u l t i s c a l e  E q u a t i o n s  i n  T u r b u l e n c e  

Dividing the resolved scales into two or more than two scale ranges and utilizing the 

formulae of both short- and resonant-ranges viscous stresses, we can obtain multiscale equations 

governing turbulent flows. For example, if the resolved scales are divided into the small scales 

ranging from Axf to Ax c and the large scale range lying between 1 and Axe, see Fig. 1 the large 

scale (space averaged) equations governing the motion of large scale range is as follows: 

8 U~i 
- 0 (20a) 

8 x  e 
( i  = 1 ,2 ,3 ) .  

8 U~ 8 Ur 8p~ 1 32 Uci 
8---t + Ucj 8xj - - 8xi + Re 8xjSx~. - Fell( Ufi' Ucl) (20b) 

Substracting the large scale Eqs. (20a) - (20b) from the LES Eqs. (19a) ~ (19b) ,  we 

obtain small scale equations governing the fluctuation motions of the small scale (fine-grid) 

averaged quantities relating to the large scale (coarse grid) averaged ones 
8 

8xi (  Ufi - Uci) = 0, (21a) 

8 
T t (  U,, - Uo,) + ( U,~ Uc~) __8_( U " -  Uo,) = 8xj 

2q_( 8 
- , o )  v o j  % v .  - v o , )  - ( - vc ) + 
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1 o 32 

3xj3xj( Uu - Uol) + Feu( Uu, Uel) - Flu( U , ,  Ufi) , (21b) Re 
where Uel and Ufi are given in the formulae (5a) and (8a ) ,  respectively. Both the integral and 

differential formulae of the short range viscous stresses Feu ( Uu, Uel ) can be used and are given 

in the formulae (10) and (15 ) ,  respectively. The resonant-range viscous Fff i ( Ufi, Uu) is given 

in the formula (17 ) .  The Axf ,Ayf  and Azf (for short, the Axf) are consistent with the filtered 

scale in LES, andAxe ~ (2 ~ 3)Axf.  

Obviously, the large-small scale (LSS)  equations are closed approximately and do not 

contain any empirical constants or relations. The cause of retaining the molecular viscous stresses 

in the multiscale Eqs. (20) ~ (21) is the same as that in the LES Eqs. (19a) ~ (19b) .  The short- 

range viscous stresses in the large scale Eq. (20b) are supplied by the resolved small scale-range 

with scales Ax lying between Axrand Axe(Ax f  < Ax < Axe).  Fffl in the small scale Eq. (21b) 

indicates the resonant-range viscous stress of the unresolved much smaller scales Ax (Ax < Axf) 

acting on the resolved small scales Ax(Axr  < Ax < Axe) .  In the conditions of the coarse and 

fine grids are geometrically similar and satisfy A x f / (A x  e) = A y f / ( A y  e) = A z f / ( A z e ) ,  we 

Ax,  / Ad/-1 
deduce from the formulae ( 9 )  and (14)  that Fui/Fefi ~. Ax2~lo - AxE ] , see Table 1. 

Therefore, the viscous stresses acting on the resolved small scales A x (A x f  < Ax < Axe) are 

mainly supplied by the resolved large scales Ax (A x  > Axe) and much smaller unresolved scales 

Ax(Ax  < Axr) have secondary influences. The above states for the large small scales (LSS)  

Eqs. (20) - (21) are consistent with the conclusions given by treating DNS databases for channel 

turbulent flow [5'6] . A main conclusion of Refs. [ 5 , 6  ] is drawn in the illustration of Table 1, 

other main conclusion is that the dynamics of the subgrid scales with wave numbers ranging from 

k l to 2k 1 are largely determined by their interactions with the resolved large scales with wave 

numbers k < k l and much higher wave numbers k > 2k I have secondary effects. 

Some comparisons of the multiscale Eqs. (20) ~ (21) with the traditional LES Eq. (19) are 

as follows. In the former the unresolved scales act only on the small scale range of the resolved 

scales, and in the latter the unresolved scales act on whole range of the resolved scales; therefor, 

as to detecting the nonlinear interactions between the contiguous scales and their effects, the 

former gains dominance over the latter. On the other hand, the unresolved scales contain still a 

wide range of time- and length-scales, any method using a few parameters and formulae to 

describe the perfect effects of the unresolved scales certainly include undetermined and unknow 

factors. The effects of the above unknow factors are confined to the small scale range of the 

resolved scales in the multiscale method, however, these unknown factors do affect the whole 

range of the resolved scales in the traditional LES methods. The multiscale method can supply 

simultaneously data about the space average and fluctuation motions. There are obvious 

advantages of the multiscale method compared with the traditional LES method. 

The momentum and energy transfer between the resolved scales are introduced in the 

multiscale method, which is, of course, able to describe well experimental phenomena and 

observation results, such as the large eddies breaking into small ones and the energy cascade etc. 

The data about the space averaged and fluctuation motions and the characters of transfer between 

the resolved scales given by the multiscale method can be obtained by the direct numerical 
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simulation (DNS)  for turbulent flow. For this end, it is necessary to divide afterwards the 

resolved scales into several scale-ranges and treating the DNS database. It is worthy of studying 

further consistency and difference between the results given by the multiscale method and treating 

the DNS databases. Such analysis for an incompressible planar shear flow is given in the next 

section. 

In addition, the molecular viscous terms are linear ones, while the short- and resonant-range 

viscous terms are nonlinear ones. The energy ought not to accumulate at the smallest scale Axr of 

the resolved scales, hence the dissipation must be dominant at Axf, i . e .  the sum of the last three 

terms on the right-hand side of Eq. (21b)  must be larger than zero. If this requirement is not 

satisfied, we may use the multiscale equations with the scale-ranges being more than two, or 

increase properly the resonant-range viscous stresses, or use empirical subgrid scale (SGS) model 

instead of the resonant-range stresses, 

6 Time Evolution of the Incompressible Planar Mixing Layer Flow 

For the three-dimensional time evolution of an incompressible planar mixing layer flow we 

use the quasi-spectrum method to solve the multiscale Eqs. (20) - (21) and the unsteady Navier- 

Stokes equations Es'9l . 

The initial conditions of the incompressible planar mixing layer flow are as follows: 

( U c , V c , W  c) = ( U 0 t a n h ( 2 ~ ) , 0 , 0 ) ,  

U f -  Uc = A2sin:~cosff + A3sin~cosycos~, 

V f -  Vc = -  A2cos~sin ff - A3cos~sinycos~, (22) 

Wf Wc 0 ( ~ , y , ~ )  = ~0(  - = , x , y , z ) ,  

where A2,A 3 = 10 -4 are the amplitudes of two- and three-dimensional initial disturbances, 

respectively. Uo is the averaged velocity of two coming flows. The velocity, the time, the 

coordinate variables and the pressure are made dimensionless with reference to the Uo, To = 

C~~ #~ and pU~, respectively. #~ is the initial thickness of vorticity. Re  = Uo~~ , v  is the 

kinematic viscosity. In order to examine well the solutions of the large-small scale ( L S S )  

equations and compare them with the solutions of the Navier-Stokes (NS)  equations, the same 
2 2 grid system is used in solving of LSS and NS-equations. For instance for Re  = 10 ~ w / V ,  the grid 

numbers are 32, 64 and 128 in the x- ,  y- and z-coordinate directions, respectively. Some typical 

results are as follows. The mean quantities of the velocity, the fluctuations and the shear viscous 

stress given b y  the LSS-solutions are consistent with those by treating database of the NS- 

solutions, see Fig. 2 and Fig. 3. Some new results are also given by the LSS-solutions, for 

examples, the time evolutions of both maximum fluctuation velocity and maximum shear viscous 

stress are obviously different from those of respective mean quantities, especially, both evolutions 

appear nearly in the meantime twice sudden-increases. The time of appearing sudden-increase is 

consistent with that of appearing inverse transfer of energy from the resolved small scales to the 

resolved large ones and also with that of roiling up spanwise- and rib-vortices. These facts mean 

that the momentum and energy exchanges between the resolved large and small scales are principal 

cause of evolutions of large scale motion. The sudden-increases of both maximum stress and 

maximum fluctuation are undoubtedly corresponding to the burst phenomena in the transition 
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process: It should be mentioned that the maximum stress and maximum fluctuation are not 

acquired through the analysis of  the database of the NS-solutions, see Fig, 2 and Fig. 3. 
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Fig. 2 Maximum and average fluctuation Fig. 3 Maximum and average shear 

velocities in an incompressible viscous stress in an incompressible 

planar mixing flow planar mixing flow 

7 Conclusion 

Turbulent flow contains a wide range of time- and space-scales. The principal mechanism 

governing nonlinear dynamics of turbulence is the interactions between the scales, which is mainly 

short-range ones between the contiguous scales. Therefore, the calculations of turbulent flows 

ought to adopt the multiscale method. The short range interactions between the contiguous scales 

are studied, the formulae for the short- and resonant-range viscous stresses are obtained. These 

formulae are applied to deduce both the multiscale and LES equations, which are closed 

approximately and do not have any empirical constants and relations. 
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