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Numerical simulation of Richtmyer-Meshkov
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Abstract The compressible Navier-Stokes equations discretized with a fourth order accurate
compact finite difference scheme with group velocity control are used to simulate the Richtmyer-
Meshkov (R-M) instability problem produced by cylindrical shock-cylindrical material interface
with shock Mach number Ms=1.2 and density ratio 1:20 (interior density/outer density). Effect
of shock refraction, reflection, interaction of the reflected shock with the material interface, and
effect of initial perturbation modes on R-M instability are investigated numerically. It is noted that
the shock refraction is a main physical mechanism of the initial phase changing of the material
surface. The multiple interactions of the reflected shock from the origin with the interface and
the R-M instability near the material interface are the reason for formation of the spike-bubble
structures. Different viscosities lead to different spike-bubble structure characteristics. The vortex
pairing phenomenon is found in the initial double mode simulation. The mode interaction is the
main factor of small structures production near the interface.
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1 Introduction

Consider a material interface between two different media. As an incident
shock interacts with the material interface the interface becomes unstable due
to shock acceleration. The small disturbances at the interface start to grow.
This kind of instability is called Richtmyer-Meshkov instability (or simple R-M
instability). R-M instability problem can be met in many important practi-
cal applications. For example, the propagation of sound boom in turbulent
atmosphere, the Inertial Confinement Fusion (ICF), and the explosion of the
supernova.

The R-M instability is also a model problem for studying the physical mech-
anism of fluid motion from instability to turbulence.

The R-M instability is closely related to the R-T (Rayleigh-Taylor) instabil-
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ity. The R-T instability is an interfacial instability between two different me-
dia driven by an external force. Both R-M and R-T instabilities have common
features, for example, formation and growth of the bubble and spike structures.
But the dynamic characteristics of R-M and R-T instabilities are qualitatively
different. The R-T instability occurs only in the case when the external force
acts from the heavy fluid to the light fluid, whereas for the R-M instability
the interface is always unstable whether the shock collides with the interface
from the heavy fluid phase to the light fluid phase or vice versa. The physical
phenomenon is more complicated for the R-M instability. Much work has been
done for studying the R-M instability[1−4], but mainly for the case of interac-
tion between plane shock and plane interface with perturbation and interaction
between plane shock and cylindrical interface with single mode perturbation.

In this paper we present the numerical study of cylindrical shock-cylindrical
material interface interaction by using the two-dimensional compressible Navier-
Stokes equations (N-S equations) which are discretized with a high order ac-
curate finite difference approximation[5]. The shock is going from the heavy
outside gas through the interface to the light gas. Some results are presented
for the case in which the shock Mach number Ms is 1.2, and the density ratio
of the inside light gas to the heavy outside gas is 1:20. The shock refraction,
reflection, interaction of the reflected shock with the material interface, and
effect of the initial perturbation modes on the R-M instability are investigated.

The numerical method is briefly described first, then the method is vali-
dated with some model tests, and finally the method is used to study the R-M
instability.

2 Simulation method

2.1 Method description

A fourth order accurate symmetrical compact difference approximation is
used to discretize the viscous terms of the N-S equations, a fourth order ac-
curate compact difference approximation with group velocity control[5] is used
to discretize the convection terms, and a three stage R-K method is used in
advance of time.

The method consists of computing a difference approximation Fj/Δx of
∂f

∂x
using the following equation:
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The function g(ρ) is used to control the accuracy and numerical dissipation,
while the function S(ρ) is used to control the numerical group velocity and
accuracy of the scheme. The difference approximation has fourth order accuracy
in the smooth region.

2.2 Method validation

In order to see the capability of the method for capturing shocks with high
pressure ratio and material interface with high density ratio the following test
models are solved.

(i) Steady one-dimensional shock tube problem

The method presented in section 2.1 is used to approximate the steady one-
dimensional shock tube problem with incoming Mach number Ma = 30. The
computed pressure and density distributions are given in fig. 1.

Fig. 1. 1-D shock tube problem. (a) Pressure; (b) density.

(ii) One-dimensional Riemann problem

In fig. 2 are given the results for the one-dimensional Riemann problem in
which the initial conditions are as follows:

u1 = u2 = 0, p1/p2 = 10, ρ1/ρ2 = 800.

(iii) Two-dimensional Riemann problem

Consider a two-dimensional Riemann problem. The initial distribution is
given as follows:

ρ1 = 1.5, p1 = 1.5, u1 = 0.0, v1 = 0.0.
ρ2 = 0.4670, p2 = 0.2228, u2 = 1.369, v2 = 0.0.
ρ3 = 0.094, p3 = 0.0082, u3 = 1.369, v3 = 1.369.
ρ4 = 0.4670, p4 = 0.2228, u4 = 0.0, v4 = 1.369.
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Fig. 2. Solution of 1-D Riemann problem. (a) Pressure; (b) density.

The subscripts in the above
equations are the index of the
region in which the physical
parameters are given (see fig.
3).

The computational do-
main is 0 � x � 1, 0 � y � 1,
and the mesh grid system is
400 × 400. The ratio of pres-
sure between regions 1 and 3
is p1/p3 = 183. ρ, p, u, v de-
note the density, pressure, and
velocity components in x and
y directions respectively. In
fig. 4 Fig. 3. The 2-D Riemann problem.

Fig. 4. Solution of a two-dimensional Riemann problem. (a) Pressure contours; (b) density contours.

are given the density and pressure contours for two-dimensional Riemann prob-
lem with the limit initial conditions satisfying the R-H relation. From these
figures we can see the double Mach reflection and contact discontinuity clearly.
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From the above numerical tests we see that the numerical method used in
the present paper can capture well the unsteady shock with high pressure ratio
and contact discontinuity with high density ratio.

3 Numerical simulation of R-M instability

Consider an R-M instability produced by interaction of a cylindrical shock
with cylindrical material interface. The shock is going inward from the heavy
gas with density ρ1 to the light gas with density ρ2. This problem is solved
by using the two-dimensional compressible N-S equations discretized with the
method described in the previous section. A coordinate transformation is used
in order to make the mesh finer near the material interface. The interface is
tracked with time according to the maximal density gradient (gradρ)max. The
computational grid is 429 × 429.

3.1 Interaction without surface perturbation

In order to understand the effect of collision of the refracted and reflected
shock with the material interface on compressibility of the light gas we first
consider the case of interaction of the cylindrical incident shock with the in-
terface without perturbation. In figs. 5 and 6 are given the results for the
case in which the shock Mach number Ms =1.2, the density ratio ρ1/ρ2 =
20, and the Reynolds number Re = 5000 and 5×105 respectively. The vari-
ation of pressure at the cylinder center with time is given in fig. 5. When
the shock comes into collision with the interface the discontinuity bifurcates
into refracted shock (transmitted shock) going toward the cylinder center, and
a reflected wave going outward. The outward propagating wave is a rarefac-
tion wave because the shock collides with the interface from heavy gas to light
gas. When the transmitted shock approaches the center the center pressure
increases, and then reflected shock is formed. This reflected shock is going
outward, and the gas in the central region starts to rarefy with decreasing

Fig. 5. Variation of central pressure with time (without perturbation). (a) Re = 5 × 105; (b) Re = 5000.
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pressure. This outward going shock
in light media will collide with the
interface behind which the gas is
heavy. After interaction an inward
going reflected shock is formed. The
inward going shock will reach the
center, then it reflects, and it col-
lides with the interface again. From
fig. 5(a) we can see that there
are six times of this kind of col-
lision for the case Re = 5 × 105.
The strength of the shock becomes
weaker and weaker after multiple in-
teraction. In table 1 are given time
t1 when the shock reaches the cen-
ter, and time t2 when the reflected Fig. 6. Variation of interface with time y = 0.

shock collides with the material interface. Comparing fig. 5(a) with fig. 5(b) we
see that the viscosity accelerates the shock propagation in the light media and
weakens the compressibility. Define the relation C = rmin/r0 as a compression
ratio to characterize the compressibility of the interior media, where r0 is the
initial interface radius, rmin is the minimal interface radius after multiple inter-
action. For the case Re = 5×105, we have C = 0.68 which agrees well with the
theoretical result[3]. In fig. 6 is shown the variation of interface location with
time. We can see that the material interface dilates with multiple collision of
the shock with interface.

Table 1 Collision time

t1 0.29 0.66 0.97 1.25 1.56 1.90

t2 0.43 0.75 1.06 1.34 1.70 2.02

3.2 General characteristics of R-M instability

When the interface is perturbed with small amplitude the interface becomes
unstable after collision of the incident shock with the interface. Now we are
going to discuss the general characteristics of interface instability based on
initial single mode perturbation with small amplitude.

Consider a case with Ms = 1.2, Re = 5 × 105, ρ1/ρ2 = 20, and the initial
cylindrical surface with perturbation is defined as

r0 = 1 + a cos(nϕ), a = 0.033, n = 12,
where the radius is normalized with the radius of the initial interface without
perturbation. The computed results are given in figs. 7—10. Fig. 7 shows
the density contours at different time. We see that at t = 1.3 the discontinuity
bifurcates into reflected rarefaction wave and refracted shock after collision with
the interface. The pertubation starts to grow linearly, and the interface starts
to deform. Existence of pertubation on the interface leads to non-parallelism
of the shock gradient [gradp] with the density gradient [gradρ]. The vortex
production due to this non-parallelism leads to R-M instability. On the other
hand, the interface pertubation makes direction changing of the refracted shock
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as shown in fig. 8. As we know the wave refraction rate is n = c2/c1, where c1,
c2 are the sound speed inside and outside the material interface. Because the
light gas is inside the surface we have c1 > c2, and n < 1. According to the
Snell law we have sin θi = n sin θr, where θi is the incident angle and θr is the
refracted angle. From Snell law we know that in our case the incident angle is
less than the refracted angle. From fig. 8 it can be seen that inside the interface
near the inward concave region there is compression, and inside the interface
near the outward convex region there is rarefaction. This phenomenon can
be explained with the optical refraction law. This physical mechanism leads
to the change in the phase of the perturbed wave (see fig. 7(b)), and the
stage of nonlinear growth of perturbation starts from the phase changing. The
transmitted shock reaches the center and reflects. Collision of this reflected
shock with the interface increases nonlinear development of the perturbation
(fig. 7(c)). After multiple collisions of the reflected shock with the interface
the spike and bubble structures are formed. The spike is a portion of heavy gas
penetrating into the light gas, and the bubble a portion of light gas penetrating
into the heavy gas. fig. 9 shows variations of density and pressure along the ray
of angle θ = 45o at different time. From fig. 9 we can see propagation direction
of the incident shock, reflected shock and rarefaction wave. From fig. 9(b) we
also can see pressure pulsation near the interface for t � 0.9 due to formation
of secondary shock[3].

Fig. 7. Density contours at different time (with single mode). (a) Density contours at

t = 0.13 (Ms = 1.2, Re = 500000); (b) density contours at t = 0.65 (Ms = 1.2, Re =

500000); (c) density contours at t = 2.04 (Ms = 1.2, Re = 500000); (d) density contours at

t = 3.87 (Ms = 1.2, Re = 500000).
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Fig. 8. Schematic diagram of incident and reflected wave.

Fig. 9. Density and pressure distribution along the ray θ = 45o. (a) Density distribution

(Ms = 1.2, Re = 500000); (b) pressure distribution (Ms = 1.2, Re = 500000).

3.3 Effect of initial perturbation on R-M instability

The cases Ms = 1.2, Re = 5000, ρ1/ρ2 = 20 with both single and double
initial interface perturbation modes at interface are computed in order to study
the effect of initial perturbation on R-M instability.

The perturbed interface for single mode is the same as in section 3.2. The
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double mode perturbed interface is given as
r0 = 1 + a[cos(n1ϕ) + cos(n2ϕ)],
n1 = 12, n2 = 60, a = 0.033.

The computed results are given in figs. 10—12. Fig. 10 shows the variation of
pressure with time at the cylinder center. By comparing fig. 10(a) with fig. 5(b)
we see that the interface instability weakens the effect of compressibility inside
the interface from collision of the shock with the interface.

Fig. 10. Variation with time of the pressure at center. (a) Single mode perturbation; (b) double mode perturbation.

Fig. 11. Variation of surface location with time.

For the case with single mode
perturba-
tion four times collisions of reflected
shock with the interface can be seen
clearly. In fig. 11 is given the vari-
ation with time of the interface lo-
cation. The interface location is
defined as r = 1

2
(rmax + rmin),

where rmin and rmax are the min-
imal and maximal radial inter-
face location respectively. It can
be seen from figs. 10 and 11
that influence of mode competition
on propagation speed of the in-
cident and reflected shock in the
light medium is small. The times
with which the shock reaches the

center are listed in table 2, where t1 is for the single mode case and t2 is for the
double mode case. For the case of single mode perturbation the compression
ratio is C = 0.57, and for the case of double mode perturbation C = 0.54. As
it is noted before, interface instability reduces the effect of compressibility in the
light gas region, but mode com-

Table 2 Time when the shock reaches the center

t1 0.40 0.95 1.32 1.78

t2 0.37 0.90 1.30 1.70
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Fig. 12. Vorticity contours for single and double mode initial perturbation at different time.
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petition has small effect on it. Comparing development of interface perturbation
we see that the mode competition mainly has effects on the early stage of R-M
instability, and its influence on large scale structures is small.

The vorticity contours with two different initial mode perturbation are given
in fig. 12. Comparing the results with different initial perturbation modes in
fig. 12(a)1 and fig. 12(a)2 we see that the initial subharmonic is appended on
the basic mode perturbation. With nonlinear growth of perturbation secondary
instability occurs, and vortex pairing can be seen in fig. 12(b)1 and fig. 12(b)2.
With further development of perturbation we can see array of vortex structures
with different strength (fig. 12(c)1 and fig. 12(c)2). The numerical results tell
us that the mode competition changes the small structures near the surface,
and amplifies the vortex interaction. This is an important factor for stimulating
turbulence development.
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