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I. INTRODUCTION 

In this paper, we study the issues of modeling, numerical methods, and simulation with compar- 

ison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid 

mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The 

mathematical model is based on the assumption of one-dimensional flows, incompressible in both 

particle and fluid phases, equal particle diameters, and the wall friction force on both phases 

being ignored. The model consists of a set of coupled differential equations describing the con- 

servation of mass and momentum in both phases with coupling and interaction between the two 

phases. We demonstrate conditions under which the system is either mathematically well posed 

or ili posed. We consider the general model with additional physical viscosities and/or additional 

virtual mass forces, both of which stabilizes the system. Two numerical methods, one of them 

is first-order accurate and the other fifth-order accurate, are used to solve the models. A change 

of variable technique effectively handles the changing domain and boundary conditions. The 

numerical n'mthods are demonstrated to be stable and convergent through careful numerical ex- 

periments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared 

with experimental data. 

The equations we are solving in this paper are in the form of conservation laws 

ou a/(u) 
+ ax =G (1.1) 

or, in general, a first-order system 

0u + A (u) 0u a-7 = G, (1.2) 

where G contains forcing and possibly viscosity terms. Notice that (1.1) is a special case of (1.2) 
with A(u) = ~ .  System (1.2) is called hyperbolic (when G does not contain viscosity terms) 
if the eigenvalues of the matrix A(u) are all real and there is a complete set of independent 
eigenvectors. Hyperbolic systems are mathematically well posed, meaning that their solutions 
depend continuously on the initial conditions. This can be proven for the linear case and also 
for some nonlinear cases. On the other hand, if the eigenvalues of A(u) have nonzero imaginary 

parts, the system becomes elliptic. Typically, the system becomes elliptic only in certain regions 

of u and remains hyperbolic in other regions. Such systems are called mixed type. Elliptic and 

mixed-type systems are not mathematically well posed. Perturbations in high modes grow in an 

unbounded way. Such systems are very difficult to simulate numerically. 

In recent years, many high-order, high-resolution numerical methods have been developed in 

the literature to solve hyperbolic systems. The main applications are in computational fluid dy- 

namics, but there are also applications in other physical and engineering areas. In this paper, we 

apply both low-order and high-order finite-difference WENO (weighted essentially nonoscillatory) 

schemes [1,2] to solve both the well-posed and ill-posed models. In particular, fifth-order WENO 

schemes in [i] and splitting techniques in [3] to treat mixed-type systems are used. The numerical 
procedures are summarized in Section 3. These numerical methods are found to be very useful in 

computational fluid dynamics and in other applications, because of their simultaneous high-order 

accuracy and nonoscillatory property in the presence of shocks and other discontinuities or sharp 
gradient regions in the solution, or in general for convection dominated problems. For a review 

of such methods, see [4]. 
The simulation and experiments reported in this paper are for the fluidized beds. Fluidized 

beds are common and important reactors in process engineering such as catalytic reactions and 
bioreactions because of the high contact efficiency between the fluid and solid. It is well known 

that there are concentration nonuniform structures such as bubbles and slugs in fluidization. 

Bubbling and slugging are undesirable for efficient operations, because they can reduce the con- 
tact efficiency. Lots of studies show that fluidization quality can be significantly improved by 
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externally applied vibrations or pulses, e.g., [5-7]. However, the theoretical understanding of 
pulsed fluidized beds is far from complete. 

It is well known that the widely used two-fluid model, referred as the basic equation set in [8] or 
Model A in [9] without the particle stress, is ill posed and was discussed by Gidaspow [10] and in 
more detail by Lyezkowski [11]. A well-posed model was given first by Rudinger and Chang [12] 
and was extended by Lyczkowski [11] and is referred as Model B in [9]. The two models have 
the same mixture momentum equations. The major difference between the two models is that, 
in the latter one, all pressure drops are in the continuous phase momentum equations, without 
any pressure drop in the solid phase momentum equation. 

Drew et al. [13] proposed a generalized formulation of added mass force. The model is objective, 
that is, frame indifferent. Lahey, Jr. et al. [14] studied the effect of the added mass on numerical 
stability and computation efficiency on steady bubbles/liquid flow through nozzles and diffusers 
using Model A with the above added mass force formulation. Their investigations have shown 
that the inclusion of appropriate virtual mass effects into the two-fluid model does not appreciably 
change the numerical results but is a physically realistic way to improve numerical stability and 
computation efficiency and to achieve accurate results. 

Jones and Prosperetti [15] examined the suitability of the general class of Model A, that is, the 
first-order differential models for two-phase flow problems. They carried out an analysis of the 
linear stability of steady uniform flow in a straight pipe and derived two explicit stability criteria 
against small perturbations. They illustrated their theory using three specific models, one of them 
is the model with the added mass formulation of Drew et aI. [13]. A review on the modeling of 
disperse multiphase flows has been given by Prosperetti [16]. A general result on the relationship 
between the hyperbolieity and stability was presented and its implications were discussed. 

The organization of the paper is as follows. In Section 2, we present the mathematical models 
of the two-phase flow under consideration. We emphasize two features in the general model to 
stabilize the system. One is the additional physical viscosities, and the Other is the additional 
virtual mass force parameterized by the virtual volume coefficient C and a free parameter ),, the 
details of which will be provided in Section 2. The additional physical viscosities render the system 
to be incomplete parabolic; and the additional virtual mass force renders the system hyperbolic 
under certain combinations of C and A. In Section 3, we present two numerical methods to 
be used for the simulations in this paper. The first method is  a first-order Lax-Friedriehs-type 
scheme, which is adapted as in [3] to effectively simulate both hyperbolic and mixed-type systems. 
The second one is a fifth-order WENO-type method [1], suitable for simulating hyperbolic or 
incomplete parabolic systems. In Section 4, we describe our experimental apparatus and method. 
Section 5 contains our simulation results and comparisons with experimental data. Concluding 
remarks are provided in Section 6. 

2. M O D E L S  O F  T H E  T W O - P H A S E  F L O W  

The continuity and momentum equations for the solid phase and the fluid phase are, respec- 
tively, (e.g., [17]) 

0 0 
o-7 ( pPP) + N = o, 
0 0 

( fPJ) + = 0, 

0 0 OP  0 2 
0"'~ (O~ppp~tp) -~- E (O~Ppp~2) -4- O~p OX : --O~pppg + ffp + EI-~x 2 (OlppptLp), (2.1) 

0 0 OP  0 2 

0--7 ( spl i) + + = - r ;  + , 

ap + a f  = 1, 

OLpUp @ O~fUf = U @). 
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Here, ap and a 2 are the volume fractions of particles and fluids, respectively, in the mixture. 
Up and uf are the velocities, and pp and pf are the (constant) densities of particles and fluids, 
respectively. P is the pressure, g is the gravity acceleration, U(t) is a given function of t, 
measuring the instantaneous fluid inlet rate (or flnidization velocity), controlled by a time-lag 
relay and electromagnetic valve in our experiment. Fp is the interaction force per unit volume 
between the solid and fluid phases, given by Fp = Fo +Fc, where Fo represents a drag force being 
a function of the local relative velocity (u s - Up) and is often expressed as ([18,19]) 

F o  - - p s  (w - u p ) ,  ( 2 , 2 )  
UT 

where, for uniform sized particles, the index n depends on the particle Reynolds number, Rep = 
UTdppf/#y with dp denoting the diameter of the particles and #Y denoting the viscosity coefficient 
of the fluid, n decreases with an increase of Rep, reaching n = 1.39 when Rep > 500, see [20]. 
UT is the terminal velocity of a single particle in a static fluid (when the drag force of the fluid 
acting on the particle balances with the weight of the particle in the fluid) and can be calculated 
as 

- ps) 
UT-- g. 

k#y 

For nonuniform sized particles, the expression above is just for a reference. Fc represents the 
virtual (or added) mass force related to the local relative acceleration. A good expression for this 
force has not been well researched yet. The following expression was given by Drew et al. [13] 

Oup Ouf Our o (us - 1 up--'~- z - ( 1  - )~) (u I Up) . (2.3) Fc = -c ppS k ot + us ot - j 

Here, C is the virtual volume coefficient and ~ is a free parameter. Drew et al. [13] treated 
them as model parameters being functions of ap. According to their opinion, the range of these 
parameters should be 0 < C < 0.5 and 0 < )~ < 2, and when ap --* 0 (as the limiting case of a 
single particle moving in an infinite flow field), then C = 0.5 (this can be proved by the theory 
of fluid mechanics) and ,k = 2 (this is more heuristic). 

The physical motivation for the additional physical viscosities in the momentum equations 
in (2.1) parameterized by el and z2 is the normal stresses ~-p~ and 7S~ , whose x-derivatives are 
added to the two momentum equations. In a nonhomogeneous bed, the f~ormal stress can be 

Oup expressed as ~-p~ = #p-57-~, where #p is the particle viscosity. No theory or experimental data 
about #p is available. Batchelor [21], Anderson et al. [22], and Glasser et al. [19,23] gave two 
different conjectures for tZp. Clearly, el and ~2 have similar meanings as those for #p and #Y' We 
have taken them as constants in this paper for simplicity. 

We use the dimensional form of the equation (2.1) with meter-kg-second measuring system. 
As we mentioned before in the introduction~ this model is based on the assumption of one- 
dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and 
the wall friction force on both phases being ignored. 

We remark that  the last equation in (2.1) can be obtained from the first two continuity equa- 
tions and the second last equation, and hence, is not an independent equation. Notice that  there 
are only two independent evolution equations in (2.1), due to the last two constraints. We choose 
to write out the equations for ap and Up and eliminate all the other variables, resulting in the 
following nonconservative form of systems: 

Oap . Oap Oup 
Ot + A1 --~--z + B1 --~--z = 0 '  

Oup + A Oap ~ Oup 
Ot 2--O-x-z + IJ2"-O-x-z = D + E, 

(2.4) 
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where 

A1 = Up, 

B 1 = O~p~ 

A2 = fl~ (uy - up)2 [~y + c (1 - ~)] 
ay (ay + app.) + Cpr ' 

~ y p ~  (2uy - up) + ' O ' p  + cfl~ [2uy - up - :~ (uy - u~)] 

D =  - g +  

a I ( a  ] + apfl~) + Cp~ 

2-n ( 1 -  f l~)g(uy - u~) 1 fl~ 0 + u'  (t)) (~y + c )  + ~y 
ay (a~ + apfl~) + cp~ a~ (a I + ~pp~) + cfl~ UT 

(2.s) 

If we using the model with C > 0, then we set sl  = E2 = 0; otherwise, we need the viscosity 
terms to make the system well posed, thus, 

E = SlOlY @ Z2OZpPr cQ2 

Here, Pr = fly~Pp. Notice that  it is impossible to write the momentum equation in conservation 
form if we eliminate the pressure P. We thus have adopted this nonconservative form for the 
simulation. This is allowed as long as no shocks or other discontinuities appear. 

To check if system (2.4) is mathematically well posed (when the viscosity term E = 0), we 
look at the eigenvalues of the Jacobian 

A1 B1 ) 
A2 B2 ' 

which are given by 

Q A u (  pr ~ 1/2 
_ _  H1/2, ~'1,2 = - ~  + --ff \ a y a p  / 

where Au = uf  - up, and 

_ _  P ~  R=p__& + 1 + C, 
off o 0 

_ 2p~u______Ly 2up + ~ [u e + Up + (1 A) Au] Q -  ay + - ' 
~p cef ~p 

1 p,. ( G ) 2 { a + 2 ( a y _ c ~ p ) ( l _ A ) + ( l _ A ) 2 }  H = - 1  + ay 

Notice that  these eigenvalues are real only if H _> 0. This, for example, is never true when C = 0. 
Thus, the system without physical viscosity is always ill posed if no additional virtual mass force 
characterized by C and A is added. 

We remark that  preliminary simulation results using a Lax-Wendroff-type scheme were pro- 
vided in [24], for the model with C = 0, with also comparison with experimental results. The 
study in this paper is however more exhaustive both in the generality of the models (including 
those with C > 0 and the physicM viscosities) and in the accuracy and robustness of the numer- 
ical methods. Moreover, the experimental results for both the bed height h(t) and the particle 
concentration ap are obtained in data form and compared with the simulation results. 
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3. N U M E R I C A L  M E T H O D S  

In the simulation presented in Section 5, the computational domain is given by 0 < x < h(t), 
with an initial value given as 

C~p (x, 0 ) -  1 -  ( U  (0__~) ~ 1/(n+1) , 
\UT / 

up (x, 0) = 0, (3.1) 
U(0) 

u: (x, O) -- 1 - C~p (x, 0)' 

h (o) : ho. 

The boundary condition is given by 

x = 0 : up (0, t) = 0, 

x = h (t) : - -  

O~p(O,t)  = I-- ( Y ( t ) ~ l / ( n + l ) ,  
k, UT  / (3.2) 

dh (t) = Up (h (t) ,t) . 
dt 

In the simulation, the length of the computational domain [0, h(t)] is changing with the time t 
according to the boundary condition (3.2) which describes the evolution of the bed height h(t) 
when the velocity Up at the right (top) boundary is given. An efficient method for the computation 
is through a transformation 

x = ~ ) ~  and t = T, 

where (x, t) is the original physical coordinate and (~, ~-) is the computational coordinate in which 
the spatial mesh size is kept uniform. If we define 

h' (t) u~ (h (t), t) C o -  ho C1_ _ 

h ( t ) '  h (t) h( t)  ' 

then we have 
0 0 0 0 0 
at -- 07" C1~-~ ' O--x = C°~-~ ' 

and the eigenvalues of the Jacobian in the new coordinate system (~, 7) are given by 

/)1,2 = COPl,2 -- CI{, (3.3) 

The final system to be solved numerically is thus 

Oc~p ~ Oap - Oup 
09- q- A 1 W  q- B 1 W  = 0 '  

Oup ft Oap ~ Oup 
07 + ~- -~  + B2-0T = D' 

where 

(3.4)  

i l  = Coup - C1~, 

/ ) i  = Co, lp,  

.,i~ = Cop~ ( ~ :  - ~p)~ [~:  + C ( i  - ;9] 
a:  (af  + %p~) + Cp,. ' 

Co {~p~:p~ (2~: - ~p) + ~ } ~  + c p r  [2~: - ~p - ~ (~: - ~p)l } 
/)2= - 0 1 ~ ,  

a: (c v + c~pp~) + Cp, 
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for the case C > 0, where D is still given by (2.5), and 

8up Cop~ 

where 

and 

8T O~ f + flrOLp 

0 %  O(Co%up - C140p) = - C 1 % ,  
8-c + 04 

84 + up = -Clup + E + F, 84 

(3.5) 

j~ : 02 (~lO~f -~ [20~pPr) 82 
% ( ~  + %p~) 042 (%~p), 

for the case C = 0. Notice that ,  for the simpler case (3.5), we have wri t ten the system grouping 
as many terms in a conservation form as possible. 

We now describe the numerical methods used in solving systems (3.4) and (3.5). We first 

describe spatial discretizations. Two different numerical methods are used. 

The first method is a simple first-order accurate Lax-Friedrichs-type spatial discretization, 

adjusted as in [3] to handle mixed-type systems. Thus, all the first derivative terms in (3.4) 

and (3.5) are approximated by a second-order central difference formula. For example, ~ in 

the second equation of (3.4) is discretized by the formula 

8OZp84 [:~i ~ (O!p)Jq-12A4--(O@)j-1 

To correct the instability caused by central approximations,  we add numerical viscosity terms to 
the equations in (3.4) and (3..5). To the first equation in (3.4) and (3.5), we add a t e rm 

C°/~l°" ((o~io)jq_ 1 -- 2 (O/p)j ~-@ep)j_l) (3.6) 
A4 

and to the second equation in (3.4) and (3.5), we add a te rm 

00/~20- ((~Zp)jq_l- 2 (%p)j Jr-(ltp)j_l) (3.7) 
A 4 

where cr is the max imum in absolute value of the eigenvalues defined in (3.3) taken over the 
whole 4 line. /Fx and/F2 are two constants, which can actually change with the mesh size A4: 
as long as they  do not grow as fast as l /A4 ,  the terms defined above will approach zero when 
A 4 --+ 0, and hence, can be justified as numerical (rather than  physical) viscosities. We take 
f12 = 0 for the second equation in (3.5), since the physical viscosities already take effect in this 
equation. 

The  second method is the high-order weighted essentially nonoscillatory (WENO) method.  In 
particular, we use the fifth-order WENO finite-difference method in [i]. The advantage of the 

WENO scheme is that it maintains uniform high-order accuracy while automatically adapting its 
reliance on local stencils to obtain information from a locally smoothest region, hence, avoiding 

numerical oscillations and instabilities when the solution contains either shocks or sharp gradient 

regions. The higher-order accuracy of the method allows us to use fewer grid points to obtain 
ag 

good resolution of the solution. Thus, for any of the first derivative terms, such as ~ with 

g --- ~p, we discretize it by a fifth-order conservative WENO difference formula 

0~ ~=(J 1 
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where the numerical flux gj+ l /2  is obtained with the following procedure. We describe only the 
construction of this numerical flux with a left-biased stencil, suitable for computing the derivative 
with a positive flow direction. The procedure for the numerical flux with a right-biased stencil 
would just be a mirror symmetry with respect to j + 1/2 when computing gj+l/2. We obtain the 
numerical flux by \ 

. 2.(1) , 2(2) W ~(3) 
gj+l /2  W l Y j + l / 2 " ~ w 2 y j + I / 2  ~- 3Yj+I /2 ,  

where t~ (m) j+1/2 are three third-order fluxes on three different stencils given by 

~(1) 1 7 11 
j+~/2 = -~gj-2 - -6gj-~ + y g j ,  

~(2) i 5 1 
j + l / 2  = - - -~gj -1  -k -~gj + -~gj+l,  

t)(3) 1 5 1 
j ÷ l / 2  = -3gJ AV -~gj÷l  -- -~gj+2, 

and the nonlinear weights am are given by 

~ m  

3 
E az 
l=1 

(s + sz) ~' 

with the linear weights ~/t given by 

1 3 3 

and the smoothness indicators sl given by 

13 1 
= ~ (gj_~ - 2gj_~ + gj)~ + ~ (gj_~ - gj_~ + 3~j) ~ , 81 

13 1 2 
82 ~- - ~  (gj--1 -- 2gj "~- g j÷ l )  2 ~- ~ (gj--1 -- g j+ l )  

13 1 
= ~-~ (gj - 2gj+l + gj+2) 2 + ~ (3gj - 4gj+l + gj+2) 2 • 83 

Finally, E is a parameter to avoid the denominator to become 0 and is taken as s = 10 -6 in the 
computation of this paper. 

Thus, for the conservative terms, i.e., the terms o ( c o ~ p , , , - c l ~ , )  and in (3.5), 0~ o~ 
we perform a Lax-Friedrichs flux splitting 

1 
f+  = ~ (f  q- ~ p ) ,  f -  = f - I t ,  (3.8) 

for f = (Coc~pUp - C t ( a p ) ,  and 

1 
f+  = -~ ( f  q- ~/CrUp) , f -  = f : f+ ,  (3.9) 

for f = ((Co/2)u2p - C l ~ u p ) ,  where (r is again the maximum in absolute value of the eigenvalues 
defined in (3.3) taken over the whole ~ line, and V is a constant controlling the numerical viscosities 
in this flux splitting. ~ can change with the mesh size A~. As long as it does not grow as fast as 
1/A~, the numerical viscosity will vanish together with A~ and the scheme is still at least formally 
fourth-order accurate, justifying the scheme as a high-order method. The WENO flux difference 
approximation is then used, with a left-biased flux to approximate the derivative of f+ ,  and a 
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right-biased flux to approximate the derivative of f-. The sum of them is then an approximation 

to the derivative of f. 

We now describe the WENO recipe for the nonconservative first derivative terms, such as all 

the first derivative terms in (3.4) and the term -~C, - z~a r _ c~ ~o(~+~s~) in (3.5). The [ Opr/[ f T pr p}} cO~ 
approximation for the "diagonal terms", namely, A1 ~ in the first equation of (3.4) and/~2 
in the second equation of (3.4), is taken as an upwind-biased WENO approximation. Namely, 
if the coefficient, for example, cj = (A1)j, is positive, then the derivative ~ is approximated 
by a left-biased stencil based WENO; otherwise, it is approximated by a right-biased stencil- 
based WENO. For all the other terms, the WENO approximation is central, namely, taken as 
the average of the the left-biased stencil based approximation and the right-biased stencil based 
approximation. Finally, the numerical viscosity terms in (3.6) and (3.7) are added. This seems 
necessary, not to control any instability, but to maintain the bed height h(t) to reach a periodic 
(in time) pattern. See Section 5 for details. 

We now describe the time discretization. For the first-order Lax-Friedrichs-type approximation, 
a simple Euler forward is used in time. For the fifth-order WENO scheme, we use the following 
third-order TVD Runge-Kutta time discretization [25]: 

¢(1) = ¢~ + AtL (¢'~, t~), 

~¢3~ 4¢(~ ~ ¼AtL nt) ¢(2) = + + (¢(~), t~ + 

¢ n+l 1 n = ~ ¢  + 3 ~(2) + 2 A t L ( ¢ ( 2 ) , t ~ + l A t )  

where ¢ represents the quantities to be evolved in time, namely, ap, up, and h(t), and L is 
the approximation to the spatial derivatives and the forcing terms (the right-hand side of the 
ODE for the time variable t when all spatial derivatives have been discretized). Notice that 
this TVD Runge-Kutta method is just a convex combination of three simple Euler forward time 
discretizations. 

We finally summarize the computational procedure as follows. We only describe the procedure 
for Euler forward in time, since the third-order TVD Runge-Kutta method is just a convex 
combination of three such Euler forward steps. 

1. Given ap, up and h(t) at t = t ", compute a f  and uf at t = t" by the last two equations 
of (2.1). 

2. Compute all the spatial derivatives and forcing terms in (3.4) or (3.5) using one of the 
numerical methods described above. 

3. Update the bed height h(t) by 

h (t ~+~) = h (t ~) + ~ t ~  (h (t~), t~). 

4. Update ap, up using Euler forward, and go back to Step 1. 

4.  E X P E R I M E N T A L  A P P A R A T U S  A N D  M E T H O D  

Figure I is the schematic diagram of the experimental apparatus. The experiments have been 

carried out under ambient conditions in a 29 ID and 1150 high perspex column fitted with a 

porous plate distributor. The variations of bed height and particle concentration have been 

recorded using a Sony @ digital video camera recorder (DCR-TRV6E). 

Particles are fluidized by pulsed liquid. The liquid flows through two routes: one is a steady 

flow and the other is a pulsed flow. The two routes intersect before liquid flows through a section 

with packed particles, then into the bed to make the flow uniform. The flux is measured using a 

stopwatch and a platform balance. The sketch map of flux vs. time is illustrated in Figure 2. The 

pulse frequency, and the time of on-period and off-period are controlled by the graded time-lag 

relay. 
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,r • i: "%" "%% ~ 

:! 

1 1 2  ¸ 

~2 

Figure 1. Schematic diagram of the experimental apparatus. 1: fluidized bed; 2: 
pressure transducer; 3: plate distributor; 4: spheric valve; 5: time-lag relay and 
electromagnetic valve; 6: lower water tank; 7: centrifugal pump; 8: upper water 
tank; 9: amplifier; 10: A/D converter; 11: computer; 12: water gathering vessel; 13: 
ruler. 

u~ 

UI . . . . . . . . .  4 

b 

0 " - ' t  

Figure 2. Illustration diagram of flow rate varying with time. 

We now describe the  exper imental  method.  We put  a ruler beside the  bed  in the  experiment  

and record the  var ia t ion process of the  bed  height by the  camera.  The  camera  can record 25 
frames per second. The  var ia t ion of b e d  height vs. t ime is measured from a frame by  frame 
playing of the  tape.  In  order to get the  concentrat ion dis t r ibut ion,  we must  cal ibrate  the  relat ion 

between the par t ic le  concentrat ion and the scale of the  photos.  We car ry  out  the  experiment  at  

night, and use six 500W iodine- tungsten lamps in vert ical  direction to  get uniform background 
light. We make space corrections considering the nonuniform exposure of the  film even to a 

uniform light. For example,  F i g u r e  3a shows tha t ,  even for a uniform state ,  th roughout  the bed, 
the scale of the  photo is still  nonuniform along the  bed. After  we make the corrections, we can 

get a much more uniform dis t r ibut ion of the  part icle  concentrat ion,  and the s t anda rd  deviat ion is 
about  0.7% and the system error is about  1.0%, Figure  3b. This  is allowable for dense two-phase 

flow measurement  in the  overall flow field. 
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Figure 3. 

5. S I M U L A T I O N  R E S U L T S  A N D  
C O M P A R I S O N  W I T H  E X P E R I M E N T S  

In the numerical tests, we consider the initial and boundary conditions (3.1),(3.2) with 

V (t) = { U1, C~,I < t < CT,2, 
U2, O<t<_CTa, 

1447 
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Case 1 

Case 2 

Case 3 

Q. ZHANG ctal. 

Table 1. Summary of the three test cases. 

U2(m/s) U1(m/s) 

0.1020 0.0400 

0.1541 0.0376 

0.0550 0.1062 

CT,1 (s) CT,2(s) n UT(m/s) ho(m) 

4 8 1.44 0.194 0.909 

2 6 1.44 0.194 0.476 

6 9 1.44 0.191 1.365 

and periodical ly extended with  per iod C:r,2. Note tha t  U(0) = U1 as ini t ial  condition. Three  
cases are s tudied in the  numerical  simulation: the corresponding pa ramete r s  for these cases are 

given in Table 1. 

Fur thermore ,  we have pf  = 1000 k g / m  s and pp = 2500 k g / m  3. 

In all the  simulations,  we set the  CFL number to  be 0.1, where the  CFL number  is defined by 

A t  Co 2 (ZlaS + z2appr)  A t  

and cr is again the  largest  eigenvalue (in absolute value) of the  Jacobian  in (3.3) over the  whole 

line and zl  and a2 are the  physical  viscosity coefficients. For the  model  wi th  C = 0, we set the 

coefficients of the physical  viscosity as al  = ~2 = 10 -5.  For the  model  wi th  C > 0, we do not 

include any physical  viscosity (sl  = E2 = 0) and set C = 0.5 and A = 3 for all the  tes t  cases; 

Ideally, we would like to keep A between 0 and 2, however, i t  seems t ha t  the  system is still ill 

posed when A is in this  range. The choices for C and ,k are taken after extensive numerical  

exper iments  to guarantee  hyperbol ic i ty  and good numerical  results.  

Numerical  simulations are continued for a long t ime until  a s teady  per iodic  pa t t e rn  is observed. 

Figm'es 4-15 contain comparisons between the exper imenta l  d a t a  and the s imulat ion results 

for the  bed  height h(t) ,  for the  three cases and two numerical  methods.  The  square symbols 

represent the  exper imental  data ,  the  circles represent  the  numerical  s imulat ion results  with a 

coarser mesh, and the lines represent the numerical  s imulat ion results wi th  a refined mesh. For 

the  first-order method,  we use 300 points for the  coarser mesh and 600 points  for the  refined 

mesh; for the  fifth-order W E N O  method,  we use 150 points  for the  coarser mesh and 300 points 

for the refined mesh. 
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135 

1 . 2 5 3 ~  0 ' T , , I i I , , I ~ ~ , I T i ~ ~ I 
35 40 45 50 

t ime(s)  

Figure 4. Case 1 with C = 0. First-order numerical method. Squares are the experi- 
mental data, circles are the simulation result with 300 grid points, and the solid line 
is the simulation result with 600 grid points. 
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Figure 5. Case 1 with C = 0. Fifth-order WENO numerical method. Squares are 
the experimental data, circles are the simulation result with 150 grid points, and the 
solid line is the simulation result with 300 grid points. 
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Figure 6. Case 1 with C = 0.5 and A = 3. First-order numerical method. Squares 
are the experimental data, circles are the simulation result with 300 grid points, and 
the solid line is the simulation result with 600 grid points. 
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We summarize  the numerical  viscosity coefficients fll and/32 in (3.6) and (3.7), and the co- 

efficient 7 in front of the  largest  eigenvalue in (3.8) and (3.9), in Table 2. We have made sure 
to choose these values so t ha t  the  numerical  viscosity vanishes wi th  grid refinement, just i fying 

the t e rm "numerical  viscosity".  Also notice tha t  there  is no numerical  viscosity added for the 

second equat ion when C = 0 because the  second equation comes from the momen tum equations 

and actual ly  contains physical  viscosity. The  results remain  close when these parameters  take 
values in a ne ighborhood of the  chosen values, However, the bed height h(t) does not  s tay in a 
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Figure 7. Case I with C = 0.5 and )~ = 3. Fifth-order WENO numerical method. 
Squares are the experimental data, circles are the simulation result with 150 grid 

points, and the solid line is the simulation result with 300 grid points. 
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Figure 8. Case 2 with C ~ 0. First-order numerical method. Squares are the experi- 
mental data, circles are the simulation result with 300 grid points, and the solid line 
is the simulation result with 600 grid points, 
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time periodic fashion (rather it either increases or decreases without  bound for large time) when 

these parameters are in the wrong range. It  is not  clear a p r i o r i  mathematical ly  tha t  the bed 

height h(~) to these models should mainta in  a periodic pat tern  in t ime with the given initial and 

boundary  conditions. 

Figures 4-7 are for the first case. Among them, Figure 4 represents the result for the model 

with C = 0 using the first-order method, and Figure 5 represents the result for the same model 

with C = 0 using the fifth-order WENO method. Figures 6 and 7 contain the first-order and 

fifth-order results, respectively, for the model with C > 0. We notice tha t  convergence is observed 
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Figure 9. Case 2 with C = 0. Fifth-order WENO numerical method. Squares are 
the experimental data, circles are the simulation result with 150 grid points, and the 
solid line is the simulation result with 300 grid points. 
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Figure 10. Case 2 with C = 0.5 and A = 3. First-order numerical method. Squares 
are the experimental data, circles are the simulation result with 300 grid points, and 
the solid line is the simulation result with 600 grid points. 

during mesh refinement for both numerical methods and both models. The numerical results are 

reasonably close to the experimental  results for both models, however, the match seems to be 

bet ter  for the model with C = 0, especially for the first-order simulation result. 

Figures 8-11 are for the second case. Among them, Figures 8 and 9 represent the results for 

the model with C = 0 using the first-order method and the fifth-order method, respectively. 

Figures 10 and 11 contMn the first-order and fifth-order results, respectively, for the model with 

C > 0. Again, we notice tha t  convergence is observed during mesh refinement for both numerical 

methods and both models. The numerical results are close to experimental  data  for both models. 
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Figure 11. Case 2 with C = 0.5 and A = 3. Fifth-order WENO numerical method. 
Squares are the experimental data, circles are the simulation result with 150 grid 
points, and the solid line is the simulation result with 300 grid points. 
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Squares are the Figure 12. Case 3 with C -= 0. First-order numerical method. 
experimental data, circles are the simulation result with 300 grid points, and the 
solid line is the simulation result with 600 grid points. 

It  seems that  the model with C > 0 fits the experimental r e su l tbe t t e r  for this case. It  also seems 

that  the fifth-order results are closer to the experimental results than  the first-order results for 

this case, especially for the model with C > 0. 

Figures 12-17 are for the third case. Among them, Figures 12 and 13 represent the results 

for the model with C = 0 using the first-order method and the fifth-order method, respectively. 

Figures 14 and 15 contain the first-order and fifth-order results, respectively, for the model with 

C > 0. Again, the numerical results are well converged for both  methods and both  models, 
and the agreement between the simulation results and experimental  da ta  is very good. Finally, 
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Figure  13. Case 3 wi th  C = 0. Fif th-order  W E N O  numerical  method .  Squares  are 
the  exper imenta l  data,  circles are the  s imulat ion result  wi th  150 grid points ,  and the  
solid line is the  s imulat ion resul t  wi th  300 grid points.  
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Figure  14. Case 3 wi th  C = 0.5 and A = 3. F i rs t -order  numerical  method .  Squares  
are t he  exper imenta l  data,  circles are the  s imula t ion  result  wi th  300 grid points ,  and  
the  solid line is the  s imulat ion result  wi th  600 grid points.  

Figures 16 and 17 contain the comparison between the simulation results and the experimental 

data for the volume fraction of particles ~p, for five equally spaced time snaps during a time 

period. Figure 16 is for the model with C = 0, and Figure 17 is for the model with C > 0. The 

first-order results are shown on the left, and the fifth-order results on the right. The solid lines 

represent the simulation results with the refined mesh, and the symbols are the experimental data. 

We can observe a reasonably good agreement between the simulation results and the experimental 

data for ~p. The results obtained by the fifth-order WENO method seem to be smoother (less 

numerical overshoot) near the junction than those obtained by the first-order method. 
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Figure 15. Case 3 with C = 0.5 and ~ = 3. Fifth-order WENO numerical method. 
Squares are the experimental data, circles are the simulation result with 150 grid 
points, and the solid line is the simulation result with 300 grid points. 

Table 2. Summary of the numerical viscosity coefficients. 

Test Mesh First Order 
Cases 

Coarse 0.5 0 
Case 1 

Refined 0.5 0 

Coarse 0.75 O 
Case 2 

Refined 1.25 0 

Coarse 0.25 0 
Case 3 

Refined 0.375 0 

C = 0  ~ = 3  

Fifth Order 

0.5 0 

0.5 0 

0.5 0 

0.5 0 

0.5 0 

0.5 0 

C ---- 0.5, 

First Order 

2.5 1.75 1.75 

4.0 3.0 3.0 

0.15 2.0 2.0 

O.4 3.25 3.25 

4.0 1.25 1.25 

5.0 1.5 1.5 

Fifth Order 

0,85 0.85 

1.2 1.2 

0.448 0.448 

0.59 0.59 

0.5 0,5 

0.9 0,9 

i i i I t I i i I i i i r I i i I = , I t 
0.2 0.4 0 .6  0 .8  

h e i g h t ( m )  

(a) Simulation results of the first-order method with 600 points at t ---- 0.0 in a period. 

Figure 16. The ap for Case 3 for the model with C ---- 0. Solid lines: simulation 
results; symbols: experimental data. 
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(b) Simulation results of the first-order method with 600 points at t = 1.8 in a period. 
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(c) Simulation results of the first-order method with 600 points at t = 3.6 in a period. 
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(d) Simulation results of the first-order method with 600 points at t -- 5.4 in a period. 

Figure 16. (cont.) 
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(e) Simulat ion results  of the  first-order method wi th  600 points  at  t = 7.2 in a period. 
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Figure 16. (cont.) 
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(h) Simulation results of the fifth-order WENO method with 300 points at t = 3.6 
in a period. 
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(i) Simulation results of the fifth-order WENO method with 300 points at t ---- 5,4 in 
a period. 
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(j) Simulation results of the fifth-order WENO method with 300 points at t = 7.2 in 
a period. 

Figure 16. (cont.) 
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(b) Simulation results of the first-order method with 600 points at t = 1.8 in a period. 
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(d) Simulat ion results of the first-order method with 600 points  at  t = 5.4 in a period. 
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(e) SimuIation results of the first-order method with 600 points  at  t = 7.2 in a period. 
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(f) Simulat ion results  of the fifth-order W E N O  method wi th  300 points  at  t = 0.0 in 

a period. 

Figure 17. (cont.} 
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(h) Simulation results of the fifth-order WENO method with 300 points at t -- 3.6 
in a period. 
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Figure 17. (cont.) 
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6. C O N C L U D I N G  R E M A R K S  

We have studied a general particle-fluid two-phase model involving a solid-liquid mixture 
medium. Two physical mechanisms to stabilize the system, one by additional physical viscosity 
and the other by additional virtual mass forces, are considered. Two different numerical meth- 
ods, one first-order Lax-Friedrichs-type and the other fifth-order WENO scheme, are developed 
to solve this general system. A reMistic pulsed liquid fluidized bed is simulated and the simulation 
results are compared with experimental data. It is found that both numerical methods converge 
well for all test cases during grid refinement, indicating their suitability for the simulation of such 
a general model. The fifth-order method provides better resolution for the same number of mesh 
points, or comparable resolution using fewer mesh points, when compared with the first-order 
method. Simulation results agree in general quite well with experimental data. 
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