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It is demonstrated that the primary instability of the wake of a two-dimensional circular cylinder
rotating with constant angular velocity can be qualitatively well described by the Landau equation.
The coefficients of the Landau equation are determined by means of numerical simulations for the
Navier–Stokes equations. The critical Reynolds numbers, which depend on the angular velocity of
the cylinder, are evaluated correctly by linear regression. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1730269#

The flow past a constantly rotating circular cylinder is
characterized by the Reynolds number Re and the spin pa-
rameterȧ, which is defined as the ratio of the peripheral
speed of the cylinder surface to the free stream velocity. The
flow at low Reynolds numbers, concerning the primary in-
stability of the wake, has been studied both numerically and
experimentally.1–3The most recent studies include Huet al.,4

Kang et al.,5 and Barnes.6 Hu et al.4 obtained the stability
curve by low-dimensional Galerkin method. Kanget al.5 es-
timated the stability curve by numerically solving the two-
dimensional unsteady Navier–Stokes~NS! equations with a
fully implicit fractional-step method in time and a second-
order central difference scheme in space. Barnes6 experimen-
tally measuredȧ at which the periodical vortex shedding is
suppressed. Note that Kanget al.5 and Barnes6 obtained not
a definite stability curve but a stability ‘‘boundary’’ with
width of Dȧ50.1 due to the confinement of their ap-
proaches. Huet al.4 obtained a definite stability curve, but
the finite dimensions of the Galerkin method limited the ac-
curacy of the results. Naturally their results, which are shown
in Fig. 2, scatter distinctly.

In this paper the stability curve in the regime 0<ȧ
<1.5 is determined by employing the Landau equation,
which was formulated by Landauet al.7 and has been widely
used in the stability analysis of the steady flows, especially

for the bluff body wakes. For instance, Provansalet al.,8

Noacket al.,9 and Schummet al.10 studied and described the
transient regime above the oscillation threshold in the wake
of a circular cylinder by the Landau equation. Albare`de
et al.11 investigated the formation of oblique shedding and
‘‘chevron’’ patterns in cylinder wakes by the idealized model
of a transverse Ginzburg–Landau equation. Schatzet al.12

employed the Landau equation to analyze the onset of the
primary stability of the plane channel flow with a
streamwise-periodic array of cylinders and to determine the
critical Reynolds number.

Below we briefly introduce the Landau equation. Con-
sider the complex amplitude of an independent solution for
the disturbed equationA(t)5cegte2 ivt, in whichc, g, andv
are real, and

g5k~Re2Rec!1O~~Re2Rec!
2! when Re→Rec . ~1!

uAu, i.e., the amplitude of the disturbance, approximately sat-
isfies the Landau equation

duAu/dt5guAu2guAu3/2. ~2!

According to Schatzet al.,12 g.0 for the supercritical bifur-
cation of the bluff body wakes. It follows that the asymptotic
amplitude of the disturbanceuAum5(2g/g)1/2. Consequently,

uAum
2 >

2k

g
~Re2Rec! when Re→Rec10. ~3!

It indicates thatuAum
2 approximately linearly increases with

Re. Hence Rec can be estimated through the linear regression
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of the samples of Re anduAum
2 by the least-squares method.

In the present work, the data needed for the fittings are ob-
tained from the numerical simulations of the unsteady wake.
Below the numerical method is outlined.

At low Reynolds numbers the flow past a rotating cylin-
der may be assumed to be two-dimensional. So the two-
dimensional NS equations for the incompressible fluid

]V/]t52“p1¹2V/Re1N~V!, ~4!

“"V50, ~5!

are considered, whereN(V)52V"“V represents the nonlin-
ear convection operator. The solving procedure is time-split
into the substeps as

S Vn11/32 (
q50

J21

aqVn2qD Y Dt5 (
q50

J21

bqN~Vn2q!, ~6!

¹2pn115“"~Vn11/3/Dt !, ~7!

~Vn12/32Vn11/3!/Dt52“pn11, ~8!

~g0Vn112Vn12/3!/Dt5¹2Vn11/Re, ~9!

where the superscripts denote the discrete time step.Vn11/3

andVn12/3 are intermediate values of the velocity. The coef-
ficients J, aq , bq , and g0 , as well as the details of the
splitting algorithm, can be found in Karniadakiset al.13 The
spectral element method is employed to solve Eqs.~7! and
~9!. The detailed implementation can be found in Patera,14

Korczaket al.,15 and Xionget al.16 Xiong et al.16 also vali-
dated the mesh in the simulations of the flow past a cylinder.

The NS equations are solved as described above at a
series of Reynolds numbers beyond Rec . When the flow
reaches the asymptotic periodic state, the amplitudes of the
velocities and the pressure at specific locations in the flow
field are extracted and play the role ofuAum in Eq. ~3!. Note
that the Reynolds numbers chosen as the samples for the
linear regression should be close enough to Rec so that the
Landau equation is valid. On the other side, the samples
selected for the linear regression should not be too close to
each other, otherwise the error of the linear regression will
increase. In practice the above two aspects should be bal-
anced. For instance, the flow at Re552, 55, 60, 70, and 80
are calculated forȧ50 in the present work.

In practice the obtained Rec depends on the quantity be-
ing extracted as well as on the extraction location, which
means that the accuracy for the Landau model to describe the
instability dynamics varies with the location. Due to the spa-
tial evolution of the wake, the velocity and pressure signals
at the location downstream distinctly deviate from the trigo-
nometric wave in shape. To be consistent with the assump-
tion of A(t)5cegte2 ivt, the extraction location is therefore
chosen in the vicinity of the cylinder, e.g., the points
P1(20.486,0.728) andP2(0.726,0.486), where the shed-
ding vortices emerge from the instability. Note that the Lan-
dau equation is substantially an extrapolation tool. Thus it
would be useful to check how linear the plot ofuAum

2 vs Re
is. Consequently the correlation coefficient of the linear re-
gression is used to validate the Landau model and to pick out
the proper quantity and location further. The more the corre-

lation coefficient approaches 1, the more accurately the Lan-
dau model describes the dynamics at the specific location
and consequently the more accurate the evaluated Rec is.

The correlation coefficients of the linear regressions for
the samples of Re and the squared amplitude of the velocities
and the pressure at pointsP1 andP2 are shown in Fig. 1. The
correlation coefficients derived fromn at point P1 are gen-
erally closer to 1 with various angular velocities than that
from the other quantities. Consequently the corresponding
estimated Rec are adopted. The determined stability curve is
illustrated in Fig. 2, compared with the previous numerical
and experimental results. The present results are essentially
in agreement with those of the previous studies. Whenȧ
.1, the present stability curve lies between those of Kang
et al.5 and Barnes.6 When ȧ,1, the critical Reynolds num-
ber given by the present work is higher than that of Huet al.4

In particular, whenȧ50, Hu et al.4 found Rec545.6; while
the present study yields Rec547.5, which is closer to the
experimental results for the cylinder with large aspect ratio,
for example, a value of 48 by Leeet al.17 and 47.4 by
Norberg.18

Meanwhile the investigations on the temporal evolution
of the disturbance amplitude are carried out. The coefficients
of the Landau equation are estimated with the method sug-

FIG. 1. The correlation coefficient of the linear fitting.

FIG. 2. The stability curve in the Re–ȧ plane.~s! The results of Huet al.
~Ref. 4!; ~h! and ~L! Kang et al. ~Ref. 5!; ~,! and ~n! Barnes~Ref. 6!;
~d! the present paper.~h! and ~,! The periodic flow;~L! and ~n! the
steady flow. The approximate stability boundary: dash and dot curve is from
Kang et al. ~Ref. 5!; dashed curve from Barnes~Ref. 6!. Solid curve is the
present result, which is obtained by the Akima cubic spline.
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gested by Schummet al.10 First the Landau equation is re-
written as

1

uAu
duAu
dt

5g2
g

2
uAu2. ~10!

It indicates that the instantaneous growth rateuAu21duAu/dt
is linear function ofuAu2. So the growth rate of the distur-
banceg can be evaluated by fitting Eq.~10! to the transient
data obtained from the numerical simulations. The time de-
rivatives ofuAu in Eq. ~10! are evaluated by finite differences.
The resulting dependencies ofg on Re at variousȧ are il-
lustrated in Fig. 3. Forȧ50, the estimated Rec and the
growth rate ofg with Re, i.e.,k, are

Rec547.6460.61, ~11!

k50.004 3460.000 21 ~or equivalently

k Rec50.20760.013!, ~12!

respectively, which essentially conform not only with the
result Rec547.5 obtained above from the asymptotic distur-
bance amplitudes but also with the value Rec546.760.3,
k Rec50.2160.005 by Schummet al.,10 andk50.003 99~or
equivalentlyk Rec50.215) by Noacket al.9 Figure 3 also
indicates that both Rec and k increase withȧ. It is well
known that the rotation of the cylinder can suppress the dis-
turbance and therefore stabilize the wake, which counts for
the increase of Rec with ȧ. At the same time, from the in-
crease ofk ~the growth rate ofg with Re! with ȧ we specu-
late that the stabilizing effect of the rotation only acts in the
vicinity of the critical Reynolds number. When Re is large
enough, the effect of the rotation is to amplify the distur-
bance and destabilize the wake.

The stability curve can be approximately formulated as
the dependence of the critical Reynolds number on the an-
gular velocity. Due to symmetry~independence in the sense
of rotation!, the dependence is quadratic, so the polynomial
form

Rec5b0ȧ41b1ȧ21b2 ~13!

is adopted, where the values ofbi ( i 50, 1, 2! can be evalu-
ated by least-squares fitting. Eventually we get

Rec52.917ȧ411.270ȧ2147.65. ~14!

From Eq.~14! it is easy to obtain the critical rotation rate as
a function of the Reynolds number. Here we will not write
out the explicit expression.

In summary the combination of the Landau equation and
the numerical simulations is successfully employed to inves-
tigate the primary instability of the flow past a constantly
rotating circular cylinder. The numerical experiments are
performed to determine oscillation amplitudes in the super-
critical regime. Then these data are fitted to an amplitude
function derived from the standard Landau equation, which
leads to the critical Reynolds number of transition for the
given rotation rate. In the fitting process, the correlation co-
efficient of the linear regression providesa posteriori esti-
mation of the accuracy.
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FIG. 3. The dependencies of the growth rate of the disturbance on the
Reynolds number for various angular velocities.
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