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Abstract

The analytical expressions of the fractal dimensions for wetting and non-wetting phases for
unsaturated porous media are derived and are found to be a function of porosity, maximum
and minimum pore sizes as well as saturation. There is no empirical constant in the proposed
fractal dimensions. It is also found that the fractal dimensions increase with porosity of a
medium and are meaningful only in a certain range of saturation Sw, i.e. Sw > Smin for
wetting phase and Sw < Smax for non-wetting phase at a given porosity, based on real porous
media for requirements from both fractal theory and experimental observations. The present
analysis of the fractal dimensions is verified to be consistent with the existing experimental
observations and it makes possible to analyze the transport properties such as permeability,
thermal dispersion in unsaturated porous media by fractal theory and technique.
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1. INTRODUCTION

Katz and Thompson1 presented experimental evi-
dence indicating that the pore spaces of a set of
sandstone samples are fractals and are self-similar
over three to four orders of magnitude in length ex-
tending from 10 A◦ to 100 µm. They argued that
the pore volume is a fractal with the same fractal di-
mension as the pore-rock interface. This conclusion
was supported by correctly predicting the porosity
from the fractal dimension, which was measured by
a log-log plot of number of pores versus the pore
size. The correlation from their measurements is

φ = C(l1/l2)
3−Df (1)

where φ is the porosity of porous sandstone, Df (=
2 ∼ 3) is the fractal dimension of pores, C is a
constant of order one, and l1 and l2 are the lower
and upper limits of self-similar regions, respectively.

Yu and Li2 derived a relation for fractal di-
mension for saturated/single phase porous media.
This relation analytically relates the fractal dimen-
sion Df to porosity and microstructure parameters,
λmax and λmin, and the relation is given by

Df = d −
ln φ

ln
λmin

λmax

(2)

where d is the Euclidean dimension, and d = 2
and 3 in the two- and three-dimensional spaces, re-
spectively. When d = 3, Eq. (2) is identical with
Eq. (1) as C = 1 in Eq. (1). Equation (2) is valid
not only for exactly self-similar fractal geometries
such as Sierpinski carpets but also for statistically
self-similar fractals such as random/disordered sat-
urated porous media, rough surfaces and aggre-
gates, etc. It, however, should be noted that for
random/disordered porous media, λmax and λmin

are the maximum and minimum pore sizes in a
unit cell (representative cell). This also implies that
the statistical self-similarity exists in the range of
λmin ∼ λmax. For the exactly self-similar fractal ge-
ometries such as Sierpinski carpets and Sierpinski
gaskets, λmax is the side length of such structures
and λmin = 1. Equation (2) has been successfully
used to describe the fractal dimension Df in fractal
transport models such as permeability3,4 and nucle-
ate pool boiling heat transfer.5

Compared with the single phase (or saturated)
transport phenomena in porous media, the multi-
phase (or unsaturated) immiscible flows (or trans-
port) in porous media are not well understood yet.
The multiphase immiscible flows in porous media

are very important in practical applications such as
petroleum industry, chemical engineering and soil
engineering, etc. The saturated porous medium is,
in fact, only the special case of the unsaturated
porous medium. It is, therefore, more meaningful
for practical applications to develop an analytical
solution for transport properties of unsaturated (or
multiphase) porous media. The fractal theory and
technique may have the super potentials for such so-
lution, and the determination of fractal dimensions
of unsaturated (or multiphase) porous media may
be the first step toward the solution. In this work
we, therefore, focus our attention on derivation
of the fractal dimensions for unsaturated porous
media.

2. FRACTAL DIMENSIONS FOR

UNSATURATED POROUS

MEDIA

A porous medium consists of numerous irregu-
lar pores and solid particles (such as sandstones).
According to Katz and Thompson’s1 experiments,
the pore volume is a fractal with the same fractal
dimension as the pore-rock interface. Therefore, in
this work, we only consider the pore volume fractal
dimension.

Figures 1(a) and (b) show the Sierpinski car-
pets of stage n = 0 and stage n = 1, respec-
tively. They can be considered as the idealized single
phase/saturated fractal porous media, in which only
a fluid (or gas) and solid are involved. In this situ-
ation, the pore area fractal dimension is described
by Eq. (2) with d = 2, λmax = 3 and λmin = 1 for
Fig. 1(a), and λmax = 9 and λmin = 1 for Fig. 1(b).
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Figure 1  Yu 

 

 

 

 

       Figure 1  Sierpinski carpets of (a) stage n = 0, and (b) stage n = 1. 
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gas or non-wetting phase solid phase

Fig. 1 Sierpinski carpets of (a) stage n = 0, and (b) stage
n = 1.
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 Figure 2   Yu 
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Figure 2  (a) An image photo [3] of the bi-dispersed porous medium ( 54.0=φ ) at  

         magnification of 50, the white are solid and the black are pores (since the micro-pores  

         inside clusters are very small and the cooper particles are soft, it is difficult to see the  

         micro-pores inside clusters after the sample being polished.), and (b) a unit cell for an  

         unsaturated porous medium. 

 

gas or non-wetting phase wetting phase solid phase

Fig. 2 (a) An image photo3 of the bi-dispersed porous medium (φ = 0.54) at magnification of 50, the white are solid and
the black are pores (since the micro-pores inside clusters are very small and the cooper particles are soft, it is difficult to see
the micro-pores inside clusters after the sample is polished), and (b) a unit cell for an unsaturated porous medium.

Figure 2(a) shows a real porous medium, a
bi-dispersed porous medium with porosity 0.54.3

This medium is composed of clusters (at macro-
level), which are agglomerated by small particles
(at micro-level). There are macro- and micro-
pores between and within the clusters respec-
tively. Since the clusters and particles within the
clusters are randomly distributed, the macro- and
micro-pores are also randomly distributed. Fig-
ure 2(b) is a unit cell for such a porous medium
in the multi-phase/unsaturated state, in which
two fluids (wetting and non-wetting) and solid
are concerned, i.e. the pore is partially filled
with liquid (wetting phase) and gas (non-wetting
phase).

It is known that the measure of a fractal object,
M(L), is related to the length scale, L, through a
scaling law in the form of 6,7

M(L) ∼ LDf (3)

where M can be the length of a line, the area of
a surface, the volume of a cube, or the mass of an
aggregate, and Df is the fractal dimension of the
object. Equation (3) implies the property of self-
similarity, which means that the value of Df from
Eq. (3) remains constant over a range of length
scale, L.

According to Eq. (3) and Fig. 2(b), the wetting
phase volume Vw can be expressed as

Vw = LDf,w (4)
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where Df,w is the fractal dimension for wetting
phase (e.g. water). In Eq. (4), the length scale L has
the same meaning as that in Eq. (3). For simplic-
ity, L and Vw are taken to be dimensionless quan-
tities, and L = λmax/λmin.

2 Here λmax and λmin

have the same meanings as those defined in Eq. (2).
For example, for a Sierpinski carpet of stage n = 0,
L = 3/1 = 3; for a Sierpinski carpet of stage n = 1,
L = 9/1 = 9.

Similarly, the non-wetting phase (or gas) volume
is given by

Vg = LDf,g (5)

where Df,g is the fractal dimension for non-wetting
phase (or gas).

The total pore volume Vp can be written as

Vp = LDf . (6)

The total volume Vt of the unit cell is

Vt = Ld (7)

where d is the Euclidean dimension, and d = 2
and 3 in the two- and three-dimensional spaces,
respectively.

It is clear that we have

Vw + Vg = Vp . (8)

Divided by Vt, Eq. (8) becomes

Vw

Vt

+
Vg

Vt

=
Vp

Vt

= φ (9)

where φ is the porosity. Equation (9) can be
rewritten as

φ = φw + φg (10)

where φw and φg are the volume fractions of wetting
and non-wetting phases, respectively, and

φw = Vw/Vt (11-1)

φg = Vg/Vt (11-2)

Due to Eqs. (4)–(7), Eq. (9) can be expressed as

LDf,w−d + LDf,g−d = LDf−d . (12)

It is seen that Eq. (12) relates the pore volume frac-
tal dimension Df to the fractal dimensions, Df,w

and Df,g, as well as the length scale L.
According to the definition8 of saturation for

porous media, the saturation is given by

Sw = Vw/Vp . (13)

For the non-wetting phase, its content Sg is

Sg = Vg/Vp (14)

and clearly the following relation holds

Sw + Sg = 1 . (15)

Due to Eqs. (9) and (13)–(15), Eq. (11) can be
rewritten as

φw = Vw/Vt = Vwφ/Vp = Swφ (16-1)

φg = Vg/Vt = Vgφ/Vp = Sgφ = (1 − Sw)φ . (16-2)

From Eqs. (4)–(7), Eq. (11) can be also expressed
as

φw =
Vw

Vt

=
LDf,w

Ld
= LDf,w−d (17-1)

φg =
Vg

Vt

=
LDf,g

Ld
= LDf,g−d . (17-2)

Combining Eqs. (16) and (17) yields

Df,w = d +
ln(Swφ)

ln L
(18-1)

Df,g = d +
ln[(1 − Sw)φ]

ln L
(18-2)

where L = λmax/λmin. Equation (18-1) indicates
that when Sw = 1, Eq. (18-1) will be reduced to
Eq. (2), meaning that the medium becomes a single
phase/saturated porous one. If Sw = 0 , Eq. (18-2)
will be also reduced to Eq. (2) and the medium is
also a single phase/saturated porous one. It can be
seen that Eq. (2) is only a special case of saturation
Sw = 1 in Eq. (18-1) or Sw = 0 in Eq. (18-2), and
Eq. (18) is the general expression for fractal dimen-
sion for porous media, including both saturated and
unsaturated porous media.

3. RESULTS AND DISCUSSIONS

To illustrate the determination of the fractal dimen-
sions, we take the bi-dispersed porous medium [see
Fig. 2(a)] as an example of a real porous medium.
Consider the medium is in the unsaturated or in the
three-phase state at porosity 0.54.

In order to determine the fractal dimensions of
phases, we need to calculate the length scale L =
λmax/λmin in Eq. (18). The maximum pore size for
the bi-dispersed porous media is given by3

λmax = R

√

2
φ − φi

1 − φ
(19)

where R is the characteristic cluster radius, and φi

is the porosity inside the cluster and given by9

φi = 0.347φ . (20)
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Figure 3 

 
 

 
Figure 3  The possible arrangement of particles inside a cluster forms a  

minimum pore. 
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Fig. 3 The possible arrangement of particles inside a clus-
ter forms a minimum pore.

The minimum pore size λmin can be determined by
the possible arrangement (see Fig. 3) of particles
touching each other inside a cluster,

λmin =
2r
√

π

√

√
3 − π/2 (21)

where r is the radius of particle in a cluster. It
is generally assumed that the macro- and micro-
pore sizes have the same order of magnitude as the
characteristic cluster and particle sizes, respectively.
Thus, we take R/r = 400/80.9 Therefore, we obtain
the ratio of

L =
λmax

λmin

=
5
√

2

2

√

π(φ − φi)/(1 − φ)
√

√
3 − π/2

. (22)

It is seen that L depends on porosity only,
independent of saturation.

Inserting Eq. (22) into Eq. (18) with d = 2,
we can calculate the fractal dimensions Df,w and
Df,g under different saturations and porosities. Fig-
ure 4 presents the fractal dimensions, Df,w and
Df,g, versus saturation Sw at different porosities

in two dimensions [d = 2 in Eq. (18)]. It is seen
from Fig. 4 that the fractal dimension Df,w in-
creases monotonously with saturation. As satura-
tion tends to 1, the fractal dimension Df,w reaches
its maximum possible value of about 1.78 [see
Fig. 4(a)] at porosity 0.54, approximately the same
value as that of 1.81 measured by the box-counting
method3 for the medium at porosity 0.54. This is
expected because when saturation tends to 1, the
unsaturated porous medium is close to a single
phase/saturated porous medium, Eq. (18-1) gives
the result of Df,w = 1.78, very close to the re-
sult of 1.81 measured by the box-counting method3

for the real bi-dispersed porous medium at poros-
ity 0.54. The similar phenomenon can be observed
for the non-wetting phase. The fractal dimension
Df,g reaches its maximum possible value 1.78 [see
Fig. 4(b)] as saturation is close to zero at porosity
0.54. This means that as saturation tends to zero,
the medium is fully filled with a non-wetting fluid
(or single-phase fluid), so it is expected that the
fractal dimension is exactly the same as that for the
saturated porous medium. Figure 4 also shows that
the fractal dimensions, both Df,w and Df,g, depend
on porosity. The higher the porosity, the higher the
fractal dimension. This can be interpreted that the
higher porosity implies larger pore area, the larger
pore area leads to the higher phase volume and
the higher fractal dimension. In the limiting case,
as porosity tends to 1, a unit cell of the medium
becomes a smooth plane, whose fractal dimension
is 2. Therefore, the present results are reasonable.
From Fig. 4, an important phenomenon can be also
found. That is when saturation Sw < Smin (= 0.1,
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Figure 4  The phase fractal dimensions, wfD ,  and gfD , , versus saturation at  

         different porosities, P.  
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Fig. 4 The phase fractal dimensions, Df,w and Df,g , versus saturation at different porosities, P.
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at φ = 0.60), the fractal dimension Df,w < 1. This
reveals that when saturation Sw < Smin (= 0.1, at
φ = 0.60), the wetting phase distribution in porous
media is non-fractal according to fractal theory. The
value of Smin is, thus, defined as the lower limit of
saturation, below which the wetting phase becomes
non-fractal. From Fig. 4(a), it is also seen that the
lower limit of saturation is also related to poros-
ity. At lower porosity such as at φ = 0.50, the lower
limit of saturation is about 0.2. Similarly, when sat-
uration Sw > Smax (= 0.9, at φ = 0.60), Df,g < 1.
This means that the non-wetting phase distribu-
tion is also non-fractal when Sw > Smax (= 0.9, at
φ = 0.60). The value of Smax is, therefore, defined as
the upper limit of saturation, above which the non-
wetting phase becomes non-fractal. This suggests
that only when Sw > Smin and Sw < Smax at a
given porosity, the wetting and non-wetting phases
are fractal objects, respectively. On the other hand,
according to literature10 by Kaviany, at very low
saturation the wetting phase becomes disconnected
(or immobile), and at very high saturation the non-
wetting phase becomes disconnected (or immobile).
Usually, the experimentally relative permeability
data8,10 were reported also in the ranges of about
Sw > 0.1 ∼ 0.2 (= Smin) for wetting phase and
about Sw < 0.9 (= Smax) for non-wetting phase.
Thus, the present analysis is consistent with the
experimental observations. The fractal dimensions,
Df,w and Df,g, are meaningful only in the ranges
of Sw > Smin for wetting phase and Sw < Smax

at a given porosity for non-wetting phase for the
present bi-dispersed porous medium for require-
ments from both fractal theory and experimental
observations.

4. CONCLUDING REMARKS

A complete analysis of fractal dimension for both
saturated and unsaturated porous media is pre-
sented in this paper. The general expressions for
the fractal dimensions, Df,w and Df,g, given by
Eqs. (18-1) and (18-2), are expressed in terms of
porosity φ, saturation Sw and microstructure pa-
rameters, λmax/λmin. There is no empirical constant
in the proposed fractal dimensions. The fractal
dimension Eq. (2) is only a special case of the un-
saturated porous medium by setting Sw = 1 in

Eq. (18-1) or by setting Sw = 0 in Eq. (18-2). The
fractal dimensions, Df,w and Df,g, are meaning-
ful only in the ranges of Sw > Smin for wetting
phase and Sw < Smax for non-wetting phase at
a given porosity for the present real bi-dispersed
porous medium for requirements from both fractal
theory and experimental observations. The present
analysis of the fractal dimensions is verified to be
consistent with the experimental observations and
it makes possible to analyze the transport prop-
erties such as permeability, thermal dispersion in
unsaturated porous media by fractal theory and
technique. This work is currently in process.
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