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A B S T R A C T :  The role of dispersions in the numerical solutions of hydrodynamic equation systems 
has been realized for long time. It is only during the last two decades that extensive studies on the 
dispersion-controlled dissipative (DCD) schemes were reported. The studies have demonstrated that 
this kind of the schemes is distinct from conventional dissipation-based schemes in which the dispersion 
term of the modified equation is not considered in scheme construction to avoid nonphysical oscillation 
occurring in shock wave simulations. The principle of the dispersion controlled aims at removing 
nonphysical oscillations by making use of dispersion characteristics instead of adding artificial viscosity 
to dissipate the oscillation as the conventional schemes do. Research progresses on the dispersion- 
controlled principles are reviewed in this paper, including the exploration of the role of dispersions 
in numerical simulations, the development of the dispersion-controlled principles, efforts devoted to 
high-order dispersion-controlled dissipative schemes, the extension to both the finite volume and the 
finite element methods, scheme verification and solution validation, and comments on several aspects 
of the schemes from author's viewpoint. 
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1 I N T R O D U C T I O N  

Computational simulation is now becoming a 

promising approach in solving full Reynolds aver- 

aged Navier-Stokes equations for geometrically real- 

istic three-dimensional problems with supercomput- 

ers available. This technology enhances people's abil- 

ity to highlight physics in fluid flows that are too 

complicated to be clearly visualized experimentally. 

However, there are still some major issues in CFD, 

which need further investigation. One of the major 

issues arises from the simulation of flowfields with 

shock waves, that  is, the nonphysical oscillation oc- 

curring near shock waves or other kinds of disconti- 

nuities, such as the contact surface and the strong 

expansion waves. These kinds of discontinuities are 

the fundamental flow phenomena resulting in more 

complex fluid flows. Taking shock wave, a highly non- 

linear phenomenon in aerodynamics, as an example, 
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we believe it is a unique source that may generate 

vortices and turbulence in fluid flows except for solid 

walls. On other hand, numerical theories on shock- 

capturing schemes have occupied an important posi- 

tion in the CFD development because of nature of the 

variable discontinuities across shock waves. The weak 

problem of fluid dynamics has attracted many scien- 

tists to dedicate to for more than three decades, and 

remains an interesting topic in the new century. 

A number of stability conditions has been pro- 

posed as criteria for numerical scheme development. 

The relevant introduction can be found in the CFD 

text books and some of them are cited here as refer- 

ences. The discrete perturbation analysis was firstly 

proposed by Thom and Apelt in 1961[ 1], with which 

scheme stability is examined by introducing a dis- 

crete perturbation at arbitrary mesh point and its 

effect is followed. Stability is indicated if the per- 

turbation dies out as iteration procedure proceeds. 
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In the yon Neumann stability analysis [2], a more 

widely applied method, the finite Fourier expansion 

of numerical solutions to a model equations is made. 

Whether each mode remains bounded or not is con- 

sidered separately to determine scheme stability. In 

the Hirt stability theory [31, all the terms of finite dif- 

ference equations are expanded with Taylor series at 

the presently-calculated mesh point to develop con- 

tinuum differential equations. The stability requires 

that the effective viscosity in the continuum equations 

must be proposed non-negative. The Warming stabil- 

ity condition [4] was based on the same idea as applied 

in the Hirt stability theory, but it requires that the 

sum of all the coefficients of even-order derivatives in 

the modified equation must be positive. In the deriva- 

tion of the modified equation, it is not necessarily 

assumed that numerical solutions satisfy the original 

partial differential equation for eliminating the time 

or the mixed time and space derivatives. 

It is obvious that the above-mentioned stabil- 

ity criteria are proposed mainly based on dissipation 

principle, that is, the amplitude of mlmerical errors 

must be decreasing as computational iteration pro- 

ceeds. Furthermore, the Total Variation Diminishing 

(TVD) condition, developed by Harten and Osher [5], 

requires that the total variation in the next time step 

should be no more than that at the present time step. 

However, most schemes widely used in practice still 

exhibit nonphysical oscillation near shock waves in 

predicted solutions even though one or two foregoing 

stability criteria are satisfied. This circumstance has 

led people reluctantly to utilize artificial viscosity to 

obtain non-oscillatory solutions. 

In Warming's numerical theories, a modified 

equation can be derived from a difference equation 

obtained by discretizing a partial differential equa- 

tion with any numerical scheme. The modified equa- 

tion with more higher order derivatives is different 

from the original partial differential equation. The 

two differential equations are equivalent only when 

these high order derivatives are negligible if time step 

and mesh size are infinitely small. Unfortunately, the 

requirement cannot be achieved in practice. There- 

fore, it is not surprise to see that the numerical solu- 

tion is quite different from the exact solution of the 

original partial differential equation even if the same 

initial and boundary conditions are specified. For in- 

stance, there is no spurious oscillation in the exact 

solution, but the nonphysical oscillation may often 

occur in the numerical solution. And also, the dissi- 

pation effect may exist in the numerical solution, even 
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if the original partial differential equation is, actually, 

viscosity-free. As a matter of fact, they come from the 

contribution of the high-order terms in the modified 

equation. Nowadays, it is understood that the gener- 

ation of spurious oscillation is closely related with dis- 

persion terms in the modified equation due to phase 

shift errors, and has little connection to dissipation. 

The artificial viscosity does work to suppress the oscil- 

lations and capture shock waves as the Lax-Wendroff 

and the Beam-Warming schemes demonstrate, but ru- 

ins the resolution of numerical schemes in recognizing 

shock waves. Even though non-linear artificial vis- 

cosity could be introduced in schemes like ENO and 

TVD schemes, the over-dissipated problem was often 

reported because of the widely-varying intensity of 

various discontinuities in flowfields. 

Effects of the dispersion terms on numerical so- 

lutions have been realized for a long time, but ex- 

tensive studies on the dispersion-controlled dissipa- 

tive scheme have just been carried out for only two 

decades. The work on scheme dispersion reduction 

was reported at first by Fromm as early as in 1968 [6]. 

Two difference schemes having opposite phase errors 

are linearly combined to eliminate dispersion or even 

achieve a zero average phase shift. Later on, Rusanov 

succeeded in minimizing dispersive errors in 1970 by 

proposing a third-order difference scheme, of which 

the third-order dispersion term vanishes [7] . However, 

his numerical results still exhibited tiny overshot near 

discontinuities. A significant advance on dispersion 

study was made by Warming and Hyett in 1974 [4]. 

The modified equation was derived by initially ex- 

panding each term of a difference scheme in a Taylor 

series, and then eliminating time derivatives higher 

than first-order, and mixed time and space deriva- 

tives. Contrary to common practice, the original par- 

tial differential equation has not been used to elimi- 

nate these derivatives. They declared that the modi- 

fied equation represents the actual partial differential 

equation solved when a numerical solution is com- 

puted by solving a finite difference equation. A trun- 

cated version of the modified equation can be used to 

gain an insight into the nature of both dissipative and 

dispersive errors. The role of the third-order disper- 

sion term in the modified equation was clearly demon- 

strated in a paper on dispersion control in scheme con- 

struction presented by Zhang in 1988 [9]. Then, he pro- 

posed NND scheme based on a criterion that the sign 

of the coefficient of the third-order derivative must 

be changed when computation iteration goes across 

shock waves. He further proved that the scheme 
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constructed in this manner  satisfies the entropy in- 

crease condition. Along this line, a further study has 
been carried out theoretically by Jiang in 1993 [l~ and 
was summarized for pun i sh ing  later in 199.5 [Ill . In 

his work, general dispersion conditions, based phrase 

shift error analysis, were proposed for construction of 

non-oscillatory shock capturing schemes. It  is found 

tha t  the conditions implemented with the Warming 

necessary stability condition can be taken as a suffi- 
cient stability criterion for the non-oscillatory shock- 

capturing schemes, and the dispersion conditions are 

reduced to Zhang's  criteria if the first-order approx- 

imation is accepted. Fu et al. analyzed nonphysical 

oscillations from a viewpoint of wavelet group veloc- 

ity and proposed some schemes by combining fast or 
slow schemes [12]. The fast schemes have the leading 

prase shift error and the slow ones have the lagging 

one. The dispersion conditons were extended to the 
third and fourth-order schemes by He and Zhang [13], 

and Li et al. [14], respectively. Reviewing these re- 

search progresses, Zhuang and Zhang et al. have rec- 

ommended the dispersion conditions as a principle in 

the construction of high order non-oscillatory shock- 
capturing schemes [15], the principle based on disper- 

sion control. Extension of the dispersion-controlled 

principle to the Finite Volume Method (FVM) on un- 
structured grid was reported by Zhang and Zhang [16], 

and the relevant scheme of the Finite Element Method 
(FEM) was proposed by Wu and Cai [17]. Extensive 

verification, validation and applications were reported 
by Takayama and Jiang [ls], Jiang and Takayama [19], 
Zhuang [2~ Huang et al. [21], Ye et al. [221, Li and 

Zhang [23], Jiang et al. [241 and Jiang (2003) [25] . From 

their work, efficiency and accuracy of the dispersion- 
controlled dissipative schemes have been well demon- 

strated. 

In this paper,  research progresses on the 
dispersion-controlled principle for non-oscillatory 

shock-capturing schemes are reviewed, including the 

exploration of the role of dispersions in numerical sim- 

ulations, the development of the dispersion-controlled 
principles, efforts devoted to high-order dispersion- 

controlled dissipative schemes, the extension to both  

FVM and FEM, scheme verification and solution 

validation, and comments  on several aspects of the 
schemes from author ' s  viewpoint. 

2 W A R M I N G ' S  M O D I F I E D  E Q U A T I O N  

The modified equation was proposed by Warm- 

ing and Hyett  in 1974 to analyze stabili ty and accu- 

racy of finite difference schemes[4I. In development of 

the dispersion-controlled principle, this equation oc- 

cupies a very important  position. From more general 
gas dynamic equations, its derivation is described here 

for completeness. 

To begin with, the one-dimensional Euler equa- 

tion is adopted as a model equation, given by 

ou OF(U) 
0~- + 0-----~ -- 0 (1) 

which can be rewrit ten as 

OU A OU 
0~- + Ox = 0 (2) 

here A -- OF(U)  denotes Jacobian Matrix, U un- 
OU 

known variable vector, and F flux vector. According 

to the local linearization assumption, A is taken as a 
constant matr ix  at any given grid point for analysis, 

therefore, it can be writ ten as A = S - 1 A S ,  where S 

denotes A ' s  right eigenvector matr ix  and A an diago- 

nal matr ix  consisting of matr ix  A ' s  eigenvalues. Let 

W = S U ,  Eq.(2) can be rewrit ten as 

O W  A O W  
+ 0 x  = 0 (3) 

Considering only one equation in Eq. (3) for simplicity, 

we can write it in the form of a simple wave equation 
by letting w I = u and c = A l to follow after Warm- 

ing's notation, where (l = 1 , . . . ,  3). 

Ou Ou 
+ = o (4) 

It  is easy to verify that  

u(x , t )  = e ik(x-ct) for c > 0 (5) 

is one of the exact solutions of Eq.(4) with the initial 
condition of u(x) = e ikx in the case of c > 0. The 

solution describes a simple wave with a wave number 

of k propagat ing at speed of c from left to right. If  

the initial condition given contains shock waves, the 

solution is composed of a series of the simple waves 

with various wave numbers. All the waves propagate  
at the same speed in the same direction with different 

amplitudes. 

Part ial  differential Eq.(4) must be discretized 

with a suitable numerical scheme in computat ion to 

obtain an algebraic equation or a finite difference 

equation. A general form of the finite difference equa- 

tion at gird point j in t ime step n + 1 can be writ ten 
as  

u 3 + l  = f(uj~+l) l =  + 1 , . . . ,  L (6) 

where paramete r  L varies depending on the numeri- 

cal scheme used for discretizition. Assuming that  the 
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solution of the finite difference equation does not nec- 
essarily satisfy the corresponding partial differential 
equation, another partial differential equation can be 
derived by expanding all the terms in Eq.(6) with Tay- 
lor series at gird point j in time step n, given in the 
form of 

ao Oi u 
0_ 0, = (7) 

i=2  

where #i denotes the coefficient of the i-th order 
derivative. This is the equation that  has been pro- 
posed and referred to as the modified equation of the 
finite difference equation by Warming and Hyett  in 
1974 [4]. Comparing it with Eq.(4), one can see that  

two equations are equivalent only if all the terms in 
the right of Eq.(7) approach to zero. It is impossible 
because of the limited mesh size and the time step 
possibly to take in computation. The numerical re- 
sult of the finite difference equation, actually, is the 
solution of the modified equation instead of the orig- 
inal partial differential equation. It is not surprised 
to see that the numerical solution behaves different 
from what we expect according to the original par- 

tim differential equation, for example, smeared shock 
waves due to numerical viscosity, nonphysical oscil- 
lations near discontinuities and solution instability. 
Such discrepancies also vary depending on numeri- 
cal schemes adopted, actually, on the variations of all 
the right terms in Eq.(7). From a viewpoint of the 
modified equation, the discrepancies, especially for 
the nonphysical oscillations, are not induced by nu- 
merical errors or perturbations possibly introduced in 
computational procedure, but represent the intrinsic 
characteristics of the modified equation. If the con- 
tribution of all the right terms in Eq.(7) to numerical 
solutions can be clearly classified, we may will benefit 
from this understanding in the construction of numer- 
ical schemes. 

3 N N D  S C H E M E  

The significant progress in the application of 
dispersion-controlled principle to numerical scheme 
construction was achieved by Zhang in 1988 [9] . He 

proposed a stability criteria for his NND scheme, 
which reads 

~3 > 0 behind shock waves 
(s) 

#3 < 0 ahead of shock waves 

To elucidate physical natures of the criteria, Zhang 
had carried out a theoretical analysis based on the 
second law of thermodynamics. By adding the third- 
order derivative to one-dimensional Navier-Stokes 

equations to achieve a high-order analogy of the mod- 
ified equation, an entropy equation is derived as fol- 
lows 

TDS 4 (Ou~ 2 OuO2u 
p - ~  = ~/,,t2\OX] +3#3CgXOX2 (9) 

where p denotes density, T temperature,  DS/Dt the 
mass derivative of entropy. Assuming that  a shock 
wave propagates from left to right, the following rela- 
tions should be satisfied ahead of or behind the shock 
wave, respectively: 
ahead of shock waves 

0u 
- - < 0  
Ox 

(loa) 
02u 
- - < 0  
cgx 2 

behind shock waves 

OU 
- - < 0  
Ox 

(lOb) 
02u 
- - > 0  OX 2 

Viscosity #2 is zero for the Euler equation, the 
entropy condition cannot be satisfied if the sign of 
#3 is kept unchanged in the entire computational do- 
main. In other words, this sign has to be varied ac- 
cording to Eq.(10) when calculating shock waves to 
simulate a physically realistic process of entropy in- 
crease. Even in solving the Navier-Stokes equation, 
the above-discussed problem may arise because the 
viscosity in aerodynamic problems is usually too small 
to make Eq.(9) satisfy the entropy increase principal. 

According to the criteria, Zhang proposed his 
Non-oscillatory and Non-free parameter  Dissipation 
(NND) difference scheme given by [9] 

Ot ,/j Ax (Hi+�89 H j-l~2) (11) 

with 

where 

F~-+�89 L 

Fj-+�89 a 

H~+�89 = F;+�89 + Fj+�89 

= F + + l m i n i m o d ( A F +  ~, A F + . I  
2 \ 2--~ J t ~ J  

= F5-+1 - l m i n i m o d ( A F -  t AF~-+~) 
2 3t7' 

(12) 

(13) 

F • = A i U  

(14) 

(15) 

where the minimod function is implemented according 
to the shock wave properties expressed with Eq.(10), 
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and acts automatical ly as a shock wave identifier, 

and flux splitting is carried out with the Steger and 
Warming method [s]. Actually, the NND scheme is a 

combination of the central difference and the second- 

order upwind scheme: the central difference being of 

zero phrase shift error and the upwind scheme of the 
leading one. The two schemes are applied ahead of 

or behind shock waves, respectively, to realize the 

dispersion-controlled principle. 

4 D I S P E R S I O N  C O N D I T I O N S  

exp{ik{x [c K-~r l ' nk  2n l 

The first t e rm of the solution represents the wave 

amplitude evolution resulting from all the dissipation 

terms in the modified equation, and the second one 

denotes the wave propagat ing speed that  varies de- 

pending on all the dispersion terms. If the terms in 

the right of Eq.(7) approaches to zero, the solution 

reduces to the exact solution of Eq.(5). This require- 

ment can imply that  

Motivated by the NND scheme, Jiang has 

carried out a systematic study on the dispersion- 
controlled principle since 1993 [l~ and published 

his dispersion conditions for non-oscillatory shock- 

capturing schemes in 1995 [11] . The work is based on 

the analysis on the modified equation and begins with 

the simple wave equation expressed with Eq.(4). As- 

suming that  the solution u(x , t )  has a series of form 

and following after the exact solution of Eq.(5), one 

has 

= Z (16) 
m 

where k m  is the wave number and real, but am may 

be complex. Because the equation is linear, superposi- 

tion can be used, therefore, we can examine behaviors 

of only a single te rm of the series. 

Um(X ,t) ~- ea~te ikmx ( 1 7 )  

and 

~-  ) ,~ #2,~ = 0 (23a) 

nk2n E ( - 1 )  .~#2n+1 = 0 (23b) 
n = l  

These two conditions are impossible to satisfy because 

the scheme being of infinitely high order of accuracy is 

not available in practice. In computat ion,  numerical 

solutions must be bounded so that  numerical schemes 

have to be dissipative. To ensure a scheme being dis- 
sipative, the requirement could be satisfied if the sum 

of all the dissipation coefficients is negative. The con- 

dition reads 

O<3 

E l  l~nk2n [ - -  ) rn P 2 n  < 0 ( 2 4 )  
n=l 

Substi tute Eq.(17) into Eq.(7) yields 

o~ o~ 

am-~i]~mC 2 n 2n " E l  l ~ n L 2 n + l  .. = ( - 1 )  k,~ #2n+1 t - ~ }  ~.~ ~2n+1 
n = l  n = l  

(is) 
Because km is real, am can be re-written as 

a . ~ = a ~ + i a i  (19) 

where 

and 

c)o 

K-~ l~nk2n a~ = 2_., k -  ) .~ #2n 
n=l 

(20) 

o~ 
x- '~ 1,nk2~ l a i  = - k . ~  c -  2_.,k- ) .~ t~2~+i] (21) 
n~l 

The real part, at, contains all the coefficients of 

the even-order derivatives and the imagery part, 

ai, includes all the odd-order ones. Substituting 

Eqs.(19)~(21) into Eq.(17) yields 

oo 
1 '~k 2n u , ~ ( x , t ) = e x p { [ E ( -  ) m#2n] t } "  

n = l  

To obtain a criteria more applicable according to 

Eq.(24), Warming and Hyet t  proposed their heuris- 
tic (necessary) condition which can be expressed as 

~o 

E ( - - 1 ) ( n - - 1 ) # 2 n  > 0 ( 2 5 )  

n : l  

The Warming's  scheme Is] can be demonstrated to sat- 

isfy the necessary condition, but  nonphysical oscilla- 

tions still occur near shock waves. Therefore, artificial 

viscosity has to be introduced into the scheme to sup- 

press the oscillations. From Eq.(22), it is obvious that  

the higher frequency wave will decay more rapidly due 

to its bigger dissipation coefficient and the role of the 

artificial viscosity is easy to understand. 

After examining dispersion terms in the modi- 
fied equation, Jiang [1~ appointed out that  the non- 

physical oscillation is resulting from phrase shift er- 

rors represented by the dispersion terms but it is also 

impossible to remove all the terms because these arise 

from the intended analogy of the convective flow phe- 

nomenon in fluid dynamics. It  may be easy to explain 
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if one examine  a shock solut ion in s p e c t r u m  space- 

since the  solut ion of a shock wave can be considered 

to be composed  of a series of the  simple waves of dif- 

ferent wave numbers  wi th  help of the Fourier  t rans-  

format ion.  T h e  t r ans fo rma t ion  can be d e m o n s t r a t e d  

with  Fig . l ,  where  a periodic square  wave is decom- 

f f(x)  

- -  I _  1 

(a) The periodic square wave 

X 

f(x) 

 12L/:l % p, X 

4 sin kx 
7r 

(b) The sine wave of k 

/-\ 

A// 
i~\Xkj//" 

4 
- -  sin 3kx 

/ \ 

(c) The sine wave of 3k 

t/TfXA/7~ 

- -  sin 5kx 
7r 5 

IJ ',-/ ',,.1 ',.., \.," ,',-/ \ /  

lAX J ' ~ , ~  t11 

4 ( sin kx § ~lsin 3kx -I- l sin5 5kx ) 

(d) The sine wave of 5k 
Fig.1 Synthesis of a periodic square wave, the con- 

tribution of the first three low frequency waves 

posed into a series of the  simple sine waves. The  
cont r ibu t ion  of the  first three low frequency sine 

waves to the per iodic  square wave is presented in 
F i g s . l ( b ) ~ l ( d ) ,  respectively.  For these waves, the  

higher the  wave n u m b e r  is, the  lower the  ampl i tude  

becomes.  

F rom the exact  solut ion of Eq.(4),  it is known 

that these simple sine waves must propagate at the 

same speed so that the discontinuity in the rectangu- 

lar wave could be kept sharp and moves at a given 

speed. In case of the wave speed changing upon their 

wave numbers due to phrase shift, the leading or lag- 

ging errors as demonstrated in examining the modi- 

fied equation, these simple waves will behave ahead 

of or behind the discontinuity, which leads to the so- 

called nonphysical oscillation. The oscillation is, ac- 

tually, not numerical errors arising from computation, 

but the reflection of nature of the modified equation 

associa ted  wi th  numer ica l  schemes in use. 
To verify the  idea, J iang et al. [11] examined  b o t h  

the  Lax-Wendrof f  and  the  B e a m - W a r m i n g  schemes by 

solving Eq.(4) in the  domain  ( - 1 ,  1) wi th  initial and  
b o u n d a r y  condit ions for u(x, t) as given below 

1 x �9 [ - 1 , - 0 . 5 ]  
u(x,O) = (26) 

0 x �9 ( - 0 . 5 ,  i] 

The modified equation of the difference equation 

obtained with the Lax-Wendroff scheme is 

ut + CUx = - l c ( A x ) 2 ( 1  - .~)u~- 

  c(z x)3.(1 _ . . . .  + . . .  (27) 

w h e r e ,  = (cAt)/(Ax), and At  and  A x  are t ime s tep 

and mesh  size, respectively.  By  apply ing  the Beam-  

W a r m i n g  upwind scheme [sl to Eq.(4) ,  the  modified 
equa t ion  can be expressed as 

ut + CUx = ~c(Z~x)2(1 - , ) ( 2  - - ) u x x x -  

8 - ~ t c ( A x ) 4 - ( 1  - - )2(2  - ,)Ux~x~ + " .  (28) 

If  , < 1, the coefficient of the th i rd-order  deriva- 

t ive is negat ive in Eq.(27),  but  posi t ive in Eq.(28). 
The  coefficient of  the  four th-order  derivat ive is neg- 

ative in b o t h  the  equat ions,  and therefore,  satisfies 

the Warming ' s  s tabi l i ty  condition. Fur thermore ,  two 

th i rd-order  dispersion coefficient is equal  to each o ther  

i f ,  is t aken  to be  0.5, bu t  the four th-order  dissipa- 

t ion coefficients are different. T h e  numerical  results 

ob ta ined  wi th  two schemes are p lo t t ed  in Fig.2. Fig- 
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oscillations due to the lagging one of the Lax-Wendroff 

scheme. And also, the oscillations are of the same am- 

plitude and the same frequency. This may imply that  

the third-order dispersion plays an important role in 

generating the nonphysical oscillation and the dissi- 

pation has little effect on it in the test case. Figure 

2(c) shows the result obtained by applying the Beam- 

Warming scheme behind the shock wave and the Lax- 

Wendroff scheme ahead of the shock. It is amazing 

that  the oscillatiofl totally disappeared without any 
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need of the artificial viscosity. 

Based on the above analysis and the numerical 

experiments, Jiang proposed his dispersion conditions 

for non-oscillatory shock-capturing scheme [l~ . The 

conditions read, 

behind shock waves 

V~[ l~n+lk2n+l. / l~[--  ) m ~2n+l > 0 (29a) 

ahead of shock waves 

oo  

E /  1xn+1]C2n+1 i-- ) m #2n-i-1 < 0 (29b) 

The primary concept having been casted into the con- 

ditions is to force high frequency waves to concentrate 

at a shock wave, in which the high frequency waves 

should be located, by actively changing the sign of 

phase shift errors of numerical schemes when compu- 

tation proceeds across a shock wave. The dispersion 

conditions implemented with the Warming's stability 

condition were evaluated as the sufficient conditions 

for non-oscillatory shock-capturing schemes. 

If the first-order approximation is applied to the 

dispersion conditions, the conditions for second-order 

schemes are reduced to the stability criteria proposed 

by Zhang in 1988. It reads 

# 3 > 0  

# 3 < 0  

#4 < 0  

behind shock waves 

ahead of shock waves 

in the whole region 

(30) 

(c) Dispersion-Controlled Scheme 

Fig.2 Dispersion behaviors of three scheme in solv- 
ing the scale wave equation for shock wave 
propagation [lq 

ure 2(a) shows that the positive dispersion does pro- 

duce pre-shock oscillations due to the leading phrase 

error of the Beam-Warming scheme, and Fig.2(b) 

shows that  the negative dispersion leads to post-shock 

5 D I S P E R S I O N - C O N T R O L L E D  S C H E M E S  

In order to verify the dispersion conditions, 

Jiang et al. had proposed a second-order scheme 

referred to as the Dispersion-Controlled Scheme 

(DCS) In]. The scheme is a combination of the Lax- 

Wendroff and Beam-Warming schemes with the min- 

imod limiter and can be also expressed with Eqs.(11) 

and (12), and its numerical flux is expressed as 
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and 

1 
L = r / +  

m i n i m o d ( A F  + ~ A F  + ~ ] 
3--~ 3+3 ] 

_ 1~_ F~+�89 = F~-+I - ~ A" 

minimod(AF~+ �89 A F t +  ~) 

(31) 

�9 ~ = 1 4- flA~ (32) 

where I is a unit matrix,  fl = At/Ax, and A A is a ma- 

trix consisting of the eigenvalues of matr ix  A. In these 

equations, the (.)+ or ( - ) -  superscript denotes flux 
vector splitting according to Steger and Warming [26]. 

A meaningful numerical result of the shock tube 

problem, as shown in Fig.3, was reported by Jiang in 

1993 [l~ For the classical problem, it is well known 

tha t  the shock wave and the contact surface propagate 
down-stream, but the expansion waves travel up- 
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Fig.3 Solutions of the shock tube problem solved 
with (a) the DCS scheme and (b) the 
Beam-Warming scheme [l~ 

stream. Figure 3(a) shows the results calculated with 

the DCS scheme, with which the extension of the 

dispersion-controlled principle to nonlinear equations 

was well demonstrated.  Figure 3(b) shows the re- 

sult obtained with the Beam-Warming scheme, from 

which nonphysical oscillations are observable at all 

the types of discontinuities. According to the above 

analysis on the Beam-Warming scheme, it is known 

tha t  the scheme has the leading phrase error, and its 

numerical solution must have oscillations in front of 

continuities. The  conclusion was well verified with 
Fig.3(b), where oscillations observable ahead of the 

shock wave, the contact surface and the expansion 

waves. This indicates that  the dispersion conditions 

are applicable not only to shock waves, but also to 

other discontinuities whatever has high gradient in 

its flow variables. Moreover, the dispersion condi- 

tions drawn from the analysis based on the linearized 

partial differential equation work well for non-linear 

one-dimensional Euler equations. 

The analysis on phrase shift errors was also re- 

ported by Fu et a]. in 1996 with the group velocity of 

wavelets [12] , and the effect of phrase shift errors on the 

solution of the partial differential equation was dis- 

cussed from another viewpoint. Some schemes were 

tested as combinations of the fast schemes (with lead- 

ing phrase error) and the slow schemes (with lagging 

phrase error). In the 7th International Symposium of 

Computational Fluid Dynamics, Zhuang and Zhang 

et al. (1997) had reviewed CFD research progresses in 

China, and the dispersion conditions were re-derived 

and evaluated as the principle for the construction of 

non-oscillatory shock-capturing schemes [15] . 

The above discussion indicates that the schemes 

based on the dispersion conditions are different from 

conventional shock-capturing schemes in their prin- 

ciples of stability requirements. Therefore, it is rec- 

ommended to define the scheme satisfying both the 

dispersion conditions and the Warming's necessary 

condition as the Dispersion-Controlled Dissipative 

(DCD) scheme to distinguish it from the conventional 

dissipative schemes. This is helpful not only for un- 

derstanding the scheme, but also for improving it by 

considering its nature in future. 

In order to solve partial differential equations 

with numerical methods by using computers, high- 

order errors, as expressed by the modified equations, 

cannot be avoided. However, if the high-order errors 

can be utilized to remove nonphysical oscillation, this 

must be better than adding more extra terms to dis- 

sipate it. This is because that there may be many 
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shock waves and contact surfaces in complex flow- 

fields, and their intensity varies dramatically here and 

there. The artificial dissipation required must vary ac- 

cording to oscillation amplitudes that depend on the 

discontinuity intensity so that optimum effects could 

be achieved. Unfortunately, it is too difficult to be 
realized, therefore, the over or under-dissipated prob- 
lems could not be avoided. Moreover, the free param- 
eters for controlling artificial dissipation have no phys- 
ical meaning and their selections induce something 
artificial in numerical solutions. In conclusion, the 
dispersion-controlled principal has been demonstrated 
to be an active way in which non-oscillatory shock- 
capturing schemes can be constructed, which indi- 
cates a new direction for the research of CFD theo- 
ries. It has been proved that  the dispersion-controlled 
dissipative schemes satisfy the entropy increase prin- 
cipal as the TVD scheme does. This does not mean 
the DCD schemes are the same as the TVD schemes, 
but  indicates that  all the well-designed schemes must 
satisfy some more fundamental physical laws like the 

Non-oscillatory Shock-capturing Schemes 

entropy increase principal. 

6 D E V E L O P M E N T  O F  H I G H E R  O R D E R  

D C D  S C H E M E  

6.1 T h e  T h i r d - o r d e r  D C D  S c h e m e  

To develop third-order non-oscillatory shock- 
capturing schemes based on the dispersion-controlled 
principal, the criteria for stability resulting from the 
second-order approximation of the dispersion condi- 
tions can be given as 

#5 < 0  

# 5 > 0  

# 4 < 0  

behind shock waves 

ahead of shock waves 

in the entire region 

(33) 

According to the criteria, He and Zhang proposed 

their third-order Essentially Non-oscillatory contain- 
ing No free parameter (ENN) scheme [13]. By follow- 
ing after Li's notation [141, the numerical flux in the 

scheme can be written as 

{ - = m i n i m o d ( A F . ,  3 - AF++ �89 1 + 
I~ Jt~ 

+ 
1 + 

AF+_} + ~minimod(AFj+�89 - 

AF++}, A F ; + }  - AFF3_}) for sw + < 0 

A F + _ } , A F ; _ }  - AF+_~)  for sw + >_ 0 

{ AF~+~ + - lmin im~  ~ 3  3*~ - 

HT+~_ = F}-+t - AF}-+�89 - l_minimod(AF-.  3 - 

AF}-+~,AF}-+~ - AFt+�89 for s w -  < 0 

AF~+�89  - A F t _ � 8 9  for 8w- ~ 0 

(34) 

(35) 

where, the switching limiter s w  + has the following 
definition 

(36b) 

Numerical tests were carried out with the third-order 
scheme and satisfactory results of the shock tube 
problem were obtained with nice resolution of the 
contact surface that  is often seared with second-order 
schemes, as shown in Fig.4. If carefully examining 
their numerical results, tiny oscillations are still ob- 
servable near the vicinity of discontinuities. 
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Fig.4 Solutions of the shock tube problem solved 
with the third'order DCD scheme [15] 
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Fig.4 Solutions of the shock tube problem solved 
with the third-order DCD scheme [15] 
(continued) 

6.2 T h e  F o u r t h - o r d e r  D C D  S c h e m e  

For the fourth-order DCD scheme, the require- 

ment for non-oscillations and stability can be pro- 

posed as follows 

#5 < 0  

#5 > 0  

# 6 > 0  

behind shock waves 

ahead of shock waves 

in the entire region 

(37) 

Based on the requirements, Li et al.  [14] have devel- 

oped a fourth-order scheme and more detailed infor- 

mation can be found in Refs.[9,15]. Even higher-order 

schemes are also possible to develop, but the schemes 

are usually too complex to be applied in practice. 

Verification of the fourth-order DCD schemes 

was carried out, and the result of the shock tube prob- 

lem was summarized by Zhuang et al. in his review 

lecture[ 151 , and is cited here in Fig.5. Figure 5 demon- 

! ! ! ! 

-0.50 --0.30 --0.10 0.10 0.30 
X 

(a) Density 

, b 
-0.50 --0.30 -0.10 0.10 0.30 

! 

X 

(b) Velocity 

Fig.5 Solutions of the shock tube problem 
solved with the fourth-order DCD 
scheme[lq 

strated higher resolution of the discontinuities, espe- 

cially for the contact surface. However, tiny oscilla- 

tions are also observable near the shock wave. The 

reason for the problem is not clear and needs further 

investigation. 

Both the second and third-order DCD schemes 

are dissipative because the schemes have the fourth- 

order dissipation term. The second DCD scheme 

demonstrates its non-oscillatory characteristic suc- 

cessfully, but the third-order one does not avoid tiny 

oscillations. Zhuang and Zhang et al. did not explain 

the reason for the observation, but recommended to 

use the entropy increase condition when calculation 

crossing shock waves [lq. From author 's viewpoint, 

the problem may be related to the scheme limiter. 

As is well known, the high-order schemes must be 

reduced to lower-order schemes in shock wave com- 

putation. It is expected that  there should be no os- 

cillations if the high-order schemes can be properly 

reduced to the second-order one. And also, the effort 

on pursuing high-order schemes in shock waves should 

be considered carefully because any order derivative 

in shock waves does not exist. 

7 E X T E N S I O N  T O  T H E  F V M  A N D  F E M  

7.1 T h e  F i n i t e  V o l u m e  S c h e m e  

The extension of the DCD schemes to the finite 

volume method was reported by Zhang et al. and nu- 

merical results on unstructured grid were presented in 

their work [16]. In the extension, the two-dimensional 

Euler equations in Cartesian coordinates can be writ- 

ten as 

fs f Ot + (Fnx + Eny)dl = 0 (38) 
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where, F and E are flux vectors in x- and y-direction, 
respectively, J? denotes the element cell for integra- 
tion, and n~ and ny are the components of the nor- 
mal vector n on boundaries in x- and y-directions. 
Integrating the second term in Eq.(38) on a triangle 
element yields 

finite element method is how to achieve the upwind 
effect in numerical flux calculations in which the flux 
is represented by both the primary and the weighted 
functions. Wu and Cai, first, divided the NND scheme 
into two parts: the central difference part  and the 
modified upwind one, 

3 

(Fnx  + Eny)dl  : E ( F k n ~  + Ekny)dlk (39) 
k = l  

To obtain a second-order scheme, the key fact is how 
to calculate flux vectors F and E on element bound- 
aries. Taking it as a Reimann problem and consider- 
ing the principal of the Gadunov scheme, Fk  on the 
boundaries can be calculated with the linear interpo- 

lation. 

Fk  = 17+ § F ~  (40) 

behind shock waves 

At  +n 
u2+~ = us  2-K-(Fj+~ - F?'A)+ 

A t  2(~Xx)2 (F?;1 - 3 F ;  ~ + 3 F ? : ~  - r ] : ~ )  

(42a) 

ahead of shock waves 

At n - n  

u'~ +1 = us  2Wx (r;41 - Fj_I)+ 

OF + ; O F ] +  
F ;  = + sxi  + \ oy , syi  + . .  

(41a) 

OF - l o F t +  

(41b) 

where 

OF + 

(-0-x-x) = m i n m o d [ ( ~ - ) ~ ,  (Ox-x)j]0F+ 

= minmodk\  Oy ]i ' \ Oy ] j  J 

OF - OF - OF - 
(Ox-x) = m i n m ~  ' (Ox-x ) j ]  

- O F  - O F  - 
(~yF)  : m i n m o d [ ( ~ - y ) i  , ( ~ - y ) j ]  

where Axik  = xk--x i ,  Ayik = Yk --Yi, Ax jk  = xk --xj 
and Ayjk = Yk - Yj. The formula of flux vector E can 
be also defined in the same way. The equation for cal- 
culation can be obtained by applying the definitions in 
Eq.(39) and completing the integral. Numerical tests 
showed the extension works well and shock waves can 
be captured with satisfactory accuracy. 

7.2 The Finite  Element  Scheme 

The NND finite element scheme on unstructured 
grid was proposed by Wu and Cai by combining the 
central difference and upwind scheme [17] . Difficulty 
for applying the dispersion-controlled principle to the 

At  
2(Ax)2 (Fj-+~ - 3Fj+~ + 3F-f r~ - Fj-_'~I) 

(42b) 

The second-order upwind scheme in the above equa- 
tions will be reduced to the first-order one in shock 
wave computation. The NND finite element scheme 
can be written as, 
behind shock waves 

f 03F+. n 
A t  I ( A x j ) 2 ~ N k  d~2 (43a) 

GE + ~ J a oxj  

ahead of shock waves 

At  f 2 03F~i n 
GE + ~ -  J (Ax j )  --~-x~ Nkdf2  (43b) 

with 

GEZ(s N, Nkd ;d , 
e e 

where -Nk are the primary functions, N j  are the 
weighted functions, and F ~  is the upwind flux split- 
ting. The central difference part,  denoted by GE, 
is easy to be realized as done in the conventional fi- 
nite element method, but the upwind part needs to 
be treated with a special care. To achieve the upwind 
effect, Wu and Cai suggested to specify an upwind 
coefficient for each element according to ratio of the 
element area to the total area of all the elements sur- 
rounding the presently-calculated mesh point. When 
one calculate F at a given mesh point assuming linear 
interpolation, its element equation can be given as 

feeGNjdJ? = fe ~ x  NjdF2 (45) 
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where F = FiNi, G = GiNi and G = OF/Ox. If 

one denotes bi = OG/Ox, the equation can be written 

a s  

Gi~NiNjd$2=FifOo@Njd[2 

= biFi f~ Njd[2 (46) 

For a given element, choosing different weight func- 

tions will induce controllable upwind effects. If the 

weighted functions are taken as the same as the pri- 

mary functions, the central element scheme, as ex- 

pressed by Eq.(44), can be achieved. Numerical ex- 

periments were carried out with the NND finite el- 

ement scheme and predicted results indicated that  

the shock wave reflection agrees with the common un- 

derstanding. It is important to be pointed out that  

the upwind difference expressions, adopted in Eq.(42), 

have to be calculated in a similar way as in the finite 

difference method. 

2004 

8 S C H E M E  V A L I D A T I O N  A N D  S O L U -  

T I O N  V E R I F I C A T I O N  

Dispersion-controlled dissipative schemes have 

been widely applied, especially in China, for more 

than ten years. Many numerical results have been 

published in journals or conference proceedings dur- 

ing the period, with which the reliability and accuracy 

of the schemes were well demonstrated. A number 

of selected results are presented here to show scheme 

verification and solution validation. 

8.1 S h o c k  W a v e  R e f l e c t i o n  

For validation of two-dimensional numerical so- 

lutions of the Euler equations, the case with exact so- 

lution is not available. Therefore, the direct compari- 

son with experiments is recommended for validation, 

from which confidence on CFD solutions could be 

gained. Such a comparison was reported by Takayama 

and Jiang and cited here in Fig.6 as reference [ls] . This 

is a shock wave propagating at Mach number of 2 and 

reflecting from a wedge with a 49 ~ angle. The angle 

is close to the critical angle at which the regular re- 

flection will transfer to the Mach reflection. Their 

report is a summary of a benchmark test called by 

Shock Waves Journal in 1995, and three sets of exper- 

imental images and more than ten numerical results, 

calculated with various schemes under the required 

computational conditions, were submitted. From the 

summary, it is observable that some schemes are fail- 

ure to capture the short Math stem correctly, and the 

Fig.6 Shock wave reflecting over wedge 
of 49 ~ angle for M~ = 2.0: (a) 
Numerical result; (b) Experimental 
interferogram [19] 

Mach stem even disappeared in a few of numerical re- 

sults. If examining the numerical result in Fig.6(a), 

it is obvious that  the March stem and the shock re- 

flection simulated with the DCD scheme are in good 

agreement with the experimental image in Fig.6(b). 

The DCD scheme has demonstrated its superior per- 

formance. 

8.2 S h o c k  W a v e  Di f f rac t ion  

The comparison of an axisymmetric case was 

provided by Jiang and Takayama in 1999 [19]. The 

case is a shock wave discharging from the open end 

of a shock tube at a Mach number of Mi = 1.6. The 

numerical result is presented in Fig.7(a) and the ex- 

perimental interferogram in Fig.7(b). It can be seen 

from the comparison that the agreement between the 

numerical result and the experimental interferogram 

is excellent. This is not only because the number of 

fringes is identical but the distribution of the indi- 

vidual fringes matches well with each other with only 

minor exceptions. In fact, the largest deviation in 

fringe positions is less than half of the fringe distance. 

This case is more useful since there are many fringes 

that can be utilized in validation. 
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by the measurement  stations. These important  flow 
phenomena are reflected well bo th  in the experimental  

data  and the numerical results. Only notable discrep- 

ancy is the overpressure value tha t  was over-estimated 

in the numerical simulation. I t  is believed that  the 

discrepancy is due to viscosity and turbulence tha t  
are not considered in numerical simulations. 

A lot of numerical simulations have been 

reported by many authors since the NND 

scheme was proposed, including three-dimensional 
problems [19'2~ , chemically reacting gas flows [~1], 

magneto-hydrodynamic flowfield [~], rarefield transi- 
tion to continuum [23], and others [~3'25]. These works 

will be not cited here due to length l imitation of the 

Fig.7 Shock wave diffracting at the open 
end of a shock tube: (a) Nu- 
merical result; (b) Experimental 
interferogram [~~ 

8.3 High-speed Train/Tunnel Problem 
Another interesting result for axisymmetric 

cases was reported by Jiang et al. in 2002 and 

the t ra in / tunnel  problem was investigated in their 
work [24] . Figures 8 and 9 show one pair of their results 

where numerical pressure variations recorded at three 

measurement  stations were compared with the experi- 

mental  data  for a train speed of 360 km/h .  The exper- 

iment was conducted in a scaled t ra in / tunnel  simula- 

tor in the Inst i tute  of Fluid Science, Tohoku Univer- 

sity, Japan,  and the numerical simulation was carried 
out by solving the Euler equations with a second-order 

DCD scheme in the computat ional  domain similar to 

the scaled t ra in / tunnel  simulator. From the two fig- 

ures, it is clearly observable that  the pressure jump 

at the beginning is induced by the arrival of a weak 

shock wave due to the abrupt-entering of high-speed 
trains into the entrance of railway tunnels; the grad- 

ually decreasing pressure is related to the flow state  

t ransformation from the abrupt-entering state to the 
one created by an infinitely long train moving in a 

railway tunnel; the faster decreasing pressure is due to 

catching up of the expansion waves generated by the 

abrupt-entering of the tail of high-speed trains into 

the entrance of railway tunnels; the unform pressure 

is considered to be created by an infinitely long train 

moving in a railway tunnel; finally, the sudden pres- 

sure decrease comes when the high-speed train passes 
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Fig.8 Numerical results showing pressure 
histories recorded at three measure- 
ment stations for a train speed of 
360 km/h [24I 
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further investigating into its mechanism in dispersion 

control. The extension of the dispersion-controlled 

principle to unstructured grid appears in progress and 

the proposed methods need to be improved for engi- 

neering applications. 
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Fig.9 Experimental data showing pres- 

sure histories measured at three 
measurement stations for a train 
speed of 360 km/h [s4] 
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9 C O N C L U D I N G  R E M A R K S  

The dispersion condition implemented with 

Warming's stability condition works well in construct- 

ing the shock-capturing scheme with no oscillations, 

no free parameters and no need of artificial viscos- 

ity. It indicates that  the two conditions are able to 

serve as fundamental principals for checking shock- 

capturing schemes. The DCD schemes based on 

the dispersion conditions are distinct from the con- 

ventional dissipation-based schemes, therefore, the 

difference should be emphasized to understand the 

schemes. The DCD schemes may be proved to have 

certain features similar to some well-known schemes, 

but this just implies that  all the well-designed schemes 

have to satisfy certain physical principals. The DCD 

schemes have been well verified and validated during 

more than ten years'applications, from which confi- 

dence in the schemes to a certain degree has been 

gained. This brief review was prepared only from au- 

thor 's viewpoint, but it can serve as a useful refer- 

ence to aid people in better understanding the DCD 

schemes and promote future relevant research. 
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R E F E R E N C E S  

paper, however, reliability and accuracy of the 

dispersion-controlled dissipation schemes have been 

well demonstrated by these scheme verifications and 

solution validations. 

The progress in dispersion-controlled dissipation 

schemes is remarkable, but there are still something 

important to be investigated in future. For exam- 

ple, the DCD scheme may result in the steepness of 

the flow phenomena being of high gradient because of 

its phrase shift nature. The effect may be negligible 

for most of the physical phenomena, but needs to be 

cleared. More attention should be paid to the devel- 

opment of high-order DCD schemes to meet require- 

ments in simulation of high Reynolds number turbu- 

lent flows. Some promising progresses in the aspect 

have been achieved, but more work is still required for 
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