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Abstract

Thermocapillary motion of a drop in a uniform temperature gradient is investigated numerically. The three-dimensional
incompressible Navier–Stokes and energy equations are solved by the 4nite-element method. The front tracking technique is
employed to describe the drop interface. To simplify the calculation, the drop shape is assumed to be a sphere. It has been
veri4ed that the assumption is reasonable under the microgravity environment. Some calculations have been performed to
deal with the thermocapillary motion for the drops of di6erent sizes. It has been veri4ed that the calculated results are in
good agreement with available experimental and numerical results.
c© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The motion of drops and bubbles in a 9uid medium,
in which a temperature gradient is imposed, is of fun-
damental importance in the processing of materials
in the reduced gravity environment and other appli-
cations. The motion of liquid drops and gas bubbles
driven by the temperature gradient is called thermo-
capillary migration or Marangoni migration. Since the
pioneering work of Young et al. [1], who derived the
mathematical formula for the migration velocity of a
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spherical drop in a constant temperature gradient
at small Reynolds and Peclet numbers by omitting
the inertia force and convective energy transport,
some succeeding work in this 4eld has been per-
formed experimentally, theoretically and numerically
[2–10].
The drop Marangoni migration process in the

ground-based experiments is usually coupled with
the drop buoyant migration, and the pure Marangoni
migration process can only be performed in the mi-
crogravity environment. It has been found that the
experimental results of the drop Marangoni migration
agree well with the YGB model only for very small
diameter drops, e.g., the drop diameter of 11±1:5 �m
[2]. However, the migration velocities for the large
diameter drops, e.g., 0.69–2:38 mm [3], proved to be
smaller than those predicted by the YGB model. Re-
cently, Xie et al. [4] also performed an experimental
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study of a drop Marangoni migration at intermediate
Reynolds numbers in the microgravity environment.
They found that the drop Marangoni migration ve-
locity depends on the temperature gradient and the
drop diameter, and is obviously smaller than that
calculated by the YGB linear model. More exper-
iments, in which the migration velocity of drop is
a6ected by both gravity and thermocapillary e6ects,
have been performed on the ground. It was found
that Marangoni and gravity e6ects could be expressed
separately rather than being coupled with each other,
so far as both the size of the drop and temperature
gradient were small [5,6].
Theoretical analyses have been taken to investigate

the problem of steady migration of a drop in a medium
subjected to a temperature gradient. In the limiting
case of a gas bubble, which was analyzed by Balasub-
ramaniam et al. [7], the thermal conductivity of the
gas in the bubble is considered to be negligible. Subra-
manian [8,9] investigated the motion of a gas bubble,
taking the e6ect of convective transport of energy as
a small perturbation, and extended the analysis to the
case of a 9uid drop, which accounted for the transport
process in both phases. Recently Balasubramaniam
et al. [10] furthered their theoretical work to the
migration of a drop in a uniform temperature gradient
at large Marangoni numbers.
Some numerical simulations for the migration of

drops and bubbles have also been performed. Szym-
czyk et al. [11,12] calculated the steady migration
of a gas bubble, but only solved the exterior 9ow
outside the gas bubble. Balasubramaniam et al. [13]
performed numerical simulation for higher Reynolds
number and found that the migration velocity was
mainly in9uenced by the Marangoni number rather
than the Reynolds number. Interestingly, Geng et al.
[14] investigated numerically the asymmetric drop
Marangoni migration at larger Reynolds numbers
and found that the trajectory of the drop oscillated
periodically due to the vortex shedding in the near
wake. Comprehensive numerical simulations of the
thermocapillary motion of deformable drop have
been taken by Haj-Hariri et al. [15,16] and Nas [17].
Haj-Hariri et al. [16] calculated the three-dimensional
thermocapillary motion of deformable drops at 4nite
Reynolds and Marangoni numbers. Nas [17] per-
formed two- and three-dimensional calculations for
both single drop and multiple drops. Some qualitative

di6erences between the results of Haj-Hariri et al.
[16] and Nas [17] were indicated by Ma et al. [18] in
their axisymmetric drop migration calculations.
In this paper, thermocapillary migration of a

drop in a uniform temperature gradient under mi-
crogravity environment has been investigated nu-
merically. The three-dimensional incompressible
Naiver–Stokes equations and the energy equation
are solved by use of a Galerkin 4nite-element
method [19]. To deal with the drop interface, the
front tracking technique [20,21] is employed to
smooth the discontinuity at the interface into a
continuous distribution within a few meshes. To
authors knowledge, it is the 4rst time to employ
the 4nite-element method combined with the front
tracking technique to deal with the thermocapillary
migration of a drop in a temperature gradient. In
the present study, we developed a reasonable and
eKcient code to calculate the thermocapillary migra-
tion of a drop driven by the temperature gradient.
Some typical cases, investigated experimentally by
Xie et al. [4] and Hahnel et al. [5], are calculated
and compared with those experimental results, which
con4rms the reliability of the present approach.

2. Governing equations

Three-dimensional incompressible Navier–Stokes
and energy equations are used to investigate the ther-
mocapillary motion of a drop in a uniform temperature
gradient, which read

∇ · ũ = 0; (1)

@̃u
@t

+ ũ · ∇ũ = −1
�

∇p + 	∇2ũ; (2)

@T
@t

+ ũ · ∇T = �∇2T; (3)

where � (=constant),p and T are the density, pressure
and temperature, respectively, ũ represents the veloc-
ity vector, 	 and � denote, respectively, the kinematic
viscosity and thermo-di6usivity.
In this paper, we use the subscripts 1 and 2 to repre-

sent the 9uids external and internal to the drop inter-
face, respectively. A reference velocity for the motion
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of the drop is usually adopted as

U =
∣∣∣∣ ddT

∣∣∣∣ · |∇T |a=�2; (4)

where  denotes the surface tension, �2 is the dy-
namic viscosity of the 9uid inside the drop, and a rep-
resents the radius of the drop. By using the velocity
U , the drop radius a, MT = |∇T∞|a, �2, �2 and �2 as
reference quantities to non-dimensionalize equations
(1)–(3), the non-dimensional equations are given as

∇ · ũ = 0; (5)

@̃u
@t

+ ũ · ∇ũ = −1
�

∇p + �
1
Re

∇2ũ; (6)

@T
@t

+ ũ · ∇T = �
1

Ma
∇2T; (7)

where Re represents the Reynolds number de4ned as
Re=Ua=�2,Ma denotes theMarangoni number de4ned
as Ma=Re Pr=Ua=�2. For convenience, the symbols
ũ, �, p, T , � and � in Eqs. (5)–(7) are still used as the
corresponding non-dimensional ones.
The initial conditions in a laboratory reference

frame (as shown in Fig. 1) are given as

u|t=0 = v|t=0 = w|t=0 = 0; (8)

T |t=0 = T0 + z|∇T∞|; (9)

where u; v; w represent the velocity components in
x; y; z directions, respectively, and T0 is a reference
temperature (here, taken to be the temperature at the
center of drop at the initial time, i.e., x = y = z = 0,
t = 0), which is set to zero in the present calculation.
In this calculation, we assume that the drop keeps

its spherical shape all the way during the thermo-
capillary motion. As is well known that this assump-
tion works perfectly in the microgravity environment
and enables the calculation to be much simpli4ed. In
order to be compatible with this assumption, we im-
pose the boundary conditions at the interface as

ũ 1 = ũ 2; T1 = T2; k1
@T1

@n
= k2

@T2

@n
; (10a)

�kil

[
�1

(
@u1i
@xj

+
@u1j
@xi

)
− �2

(
@u2i
@xj

+
@u2j
@xi

)]
njnl

=∇S; (10b)
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Fig. 1. Schematic of drop migration in a uniform temperature
gradient.

where ∇S is the gradient of surface tension, which
is a vector tangential to the interface. The boundary
condition for the normal stress on the interface is
dropped here so as to meet the requirement of the
no deformation assumption of spherical drop. Here,
to meet the physical meaning clear, all quantities in
the expressions of boundary condition at interface
(10) are rewritten in the dimensional form and k is
the thermo-conductivity. The boundary conditions at
in4nity are

ũ 1 = 0 and T∞ = T0 + z|∇T∞|: (11)

3. Numerical method

In the present calculation, the 4nite-element method
is used to discretize the spatial derivatives in Eqs.
(5)–(7). The velocity correction method is employed
for the time advancing. The front-tracking technique
[20,21] has been applied for the treatment of inter-
face between 9uid 1 and 2 in combination with the
assumption of spherical con4guration for the liquid
drop. The advantages of this approach lie in that the
computational grid system can be generated once for
all by using the instantaneous inertial frame of refer-
ence and the 9ow 4eld both external and internal to the
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spherical drop can be calculated by solving the uni-
4ed governing equations without interface boundary.
The so-called “instantaneous inertial frame” is a frame
4xed to the undisturbed 4eld at in4nity, but change its
location with time such that its origin is always located
at the center of the moving drop. To perform the cal-
culation in the instantaneous inertial frame, the time
derivatives in the Naiver–Stokes equations should be
calculated in such a way that

@
@t

=
(

@
@t

)
g
− Ṽ b · ∇; (12)

where (@=@t)g is the time di6erentiation at a 4xed grid
point and Ṽ b is the velocity of the moving drop as a
whole.
In the front-tracking calculation, the interface is re-

placed by a transitional narrow zone, whose thick-
ness is of the same order of magnitude as that of the
mesh size. Across this narrow zone, the quantities vary
smoothly by using the smooth approach suggested by
Unverdi and Tryggvason [20]. In the present study,
we simply use the following expressions to smooth
the discontinuities at the interface. For example, the
density � and kinematic viscosity � may be expressed
by continuous functions like

� =
�1 − 1

2
sin

($s
�

)
+

�1 + 1
2

; (13a)

� =
�1 − 1

2
sin

($s
�

)
+

�1 + 1
2

: (13b)

Here, we set a spherical transitional zone of 4nite
thickness � at the instantaneous location of the drop
interface, with the interface at the mid-way of the
spherical zone. s (−�=26 s6 �=2) is the radial dis-
placement from the mid-way of the spherical zone. At
the same time, the surface tension exerting of the in-
terface is equivalently replaced by a volume force, f̃v,
distributed continuously in the transitional zone [20].
To solve Eqs. (5)–(7), the velocity correction

method proposed by Kovacs et al. [19] is used. Note
that a volume force, f̃v, used to model the surface
tension exerting on the interface based on the above
analysis, must be added to the right-hand side of
Eq. (6). Then the computational loop in the present
study is described as follows:

Step 1: Calculation of the ‘intermediate-velocity’
4eld by using the explicit 4rst-order Euler scheme for
Eq. (6)

˜̃u= ũ n −Mt
[
− �

1
Re

∇2ũ n+ (̃u n · ∇)̃u n − f̃v

]
:

(14)

Step 2: Solving the pressure Poisson equation in the
form of

∇2pn+1 = �
1
Mt

∇ · ˜̃u (15)

to meet the constraint of incompressible 9ow.
Step 3: Correction of the ‘intermediate-velocity’

4eld by adding the pressure terms missing in Eq. (14)
to ˜̃u,

ũ n+1 = ˜̃u − Mt
1
�

∇pn+1: (16)

Step 4: Calculation of the temperature 4eld by the
time-advancing scheme for Eq. (7)

Tn+1 = Tn − Mt
(
ũ · ∇Tn − �

1
Ma

∇2Tn
)

; (17)

where the superscript n indicates the number of the
time-step, and Mt is the time-step increment.
The 4nite-element discretization of Eqs. (14)–(17)

is taken using the Galerkin weighted residual method
via the following expansions in the piecewise polyno-
mial basis functions:

ũ(x; y; z; t) =
N∑

i=1

ũ i(t)’i(x; y; z); (18a)

p(x; y; z; t) =
N∑

i=1

pi(t)’i(x; y; z); (18b)

T (x; y; z; t) =
N∑

i=1

Ti(t)’i(x; y; z); (18c)

where N represents the node number for the velocity
and pressure. The weak solution form of Eqs. (14)–
(17) permits ’i to be discontinuous in the 4rst deriva-
tive and employs natural boundary conditions. Thus,
’i(x; y; z) is chosen to be a C0 piecewise bilinear basis
function de4ned in the isoparametric rectangular ele-
ments. Substituting (18) into the weak solution form
of (14)–(17), we can reach the discretized system of
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equations to be numerically solved. The details were
described in our previous work for the viscous 9ow
past a rigid sphere [22].

4. Results and discussion

Thermocapillary migration of drop in an unbounded
immiscible liquid due to the presence of a temperature
gradient in the z direction under microgravity envi-
ronment, as shown schematically in Fig. 1, has been
investigated numerically by using the 4nite-element
method coupled with front-tracking technique. In this
study, the grid number is 80 × 80 × 160 in the x, y,
and z directions (see Fig. 1), respectively, and the time
step is 0.0002. Stretched transformations in the three
directions are imposed to increase the grid resolution
near the interface. A sketch of the grid generation is
shown in Fig. 2.
Some results with di6erent grid numbers and time

steps are given below to show that our calculated re-
sults are independent of the grid number and time step.
In one of our work [22], quantitative comparison has
been performed to validate the present code. In addi-
tion, some typical cases which have been studied ex-
perimentally are calculated in the present calculation,
and the physical parameters of the liquids used are
the same as those in the experiments [4,5]. As an

X Y

Z

Fig. 2. Sketch of grid generation.

Table 1
Physical parameters of liquids used in experiment [4]

Temperature (◦C) 15

Drop liquid Dynamic viscosity (dyn s=cm2) 0.0509
Thermal di6usivity (mW=m K) 112
Density (g=cm3) 0.919
Thermal expansion coe6. (1/K) 0.00118

Mother liquid Dynamic viscosity (dyn s=cm2) 0.922
Thermal di6usivity (mW=m K) 176
Density (g=cm3) 0.919
Thermal expansion coe6. (1/K) 0.00081
Interfacial tension (dyn/cm) 1.51
d=dT (dyn=cm K) −0.0339

example, the physical parameters of liquid used by Xie
et al. in their experiment [4] are listed in Table 1. The
temperature gradient |∇T∞| chosen in this calcula-
tion is 32◦C=cm, following Xie et al. experiment [4],
and 9:3◦C=cm, following Hahnel et al. experiment
[5]. Several drop sizes are listed in Table 2. Then the
reference velocity in Eq. (4) can be determined based
on the physical parameters of liquid, the temperature
gradient and the drop size. Some comparisons be-
tween the calculated and experimental results to ver-
ify quantitatively the present calculation are taken as
follows.
To depict the thermocapillary migration of the drop,

the variations of the migration velocity with time for
di6erent drop diameters are shown in Fig. 3, where
the velocity and time have been transformed to the
dimensional values for comparing with experimental
data [4]. At the beginning, the drop is accelerated from
rest. Then the migration velocity approaches asymp-
totically to a constant value and the drop motion tends
to a steady state. This behavior is consistent with
the experimental observation [4]. It can be seen that
the drop diameter is bigger, the migration velocity is
larger. To examine the e6ect of the grid number and
time step on the calculated results, the results calcu-
lated by the grid number 160×160×320 and the time
step 0.0001 (Condition-2) are also shown in Fig. 3.
The curves of migration velocity versus time, cor-

responding to the cases investigated experimentally
by Hahnel et al. [5], are shown in Fig. 4, where the
temperature gradient is smaller than that used in [4]
and the sizes of drop are greater than those in [4].
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Table 2
Comparison between the present calculated results and experimental data for the drop migration velocity

∇T (◦C=cm) a(mm) V exp(mm=s) Vnum(mm=s) |Vnum − Vexp|=Vexp(%)

Drop shaft experiment [4] 32 3.77 0.77 0.833 8.18
3.26 0.61 0.644 5.57
2.59 0.45 0.426 5.33

Sounding rocket experiment [5] 9.3 2.38 4:12 × 10−2 4:41 × 10−2 7.04
2.12 3:42 × 10−2 3:67 × 10−2 7.31
1.98 3:36 × 10−2 3:30 × 10−2 1.79
1.82 2:83 × 10−2 2:84 × 10−2 0.35
1.74 2:50 × 10−2 2:65 × 10−2 6.00

t (s)

V
m

(c
m

/s
)

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

a=0.377cm (condition-1)
a=0.326cm (condition-1)
a=0.259cm (condition-1)
a=0.377cm (condition-2)
a=0.326cm (condition-2)
a=0.259cm (condition-2)

Fig. 3. Migration velocity evolution versus time for the experimen-
tal cases in Xie et al. [4]. Condition-1: grid number 80×80×160
and time step 0.0002; Condition-2: grid number 160× 160× 320
and time step 0.0001.

The variations of the migration velocity (asymp-
totic value) with the drop diameter are given in
Figs. 5 and 6. It can be seen that as the drop diameter
increases, corresponding to increasing the Reynolds
and Marangoni numbers, the migration velocity in-
creases too. The experimental data [4,5] are also
plotted in Figs. 5 and 6 to examine the present cal-
culations. It is found that our calculated results are in
good agreement with the experimental data. In addi-
tion, the comparisons between the present results and
experimental values [4,5] con4rm that the assump-
tion of the spherical drop shape under microgravity
environment is reasonable. The asymptotic velocity
of drop migration calculated by Geng et al. [14] using
the two-dimensional 9ow equations is also plotted in

t (s)

V
m

(c
m

/s
)

0 0.5 1 1.5
0

0.001

0.002

0.003

0.004

0.005

a=0.238cm
a=0.212cm
a=0.198cm
a=0.182cm
a=0.174cm

Fig. 4. Migration velocity evolution versus time for the experi-
mental cases in Hahnel et al. [5].

Fig. 5, which proves to be much larger than that of the
spherical drops at the same size. This phenomenon
can be explained as follows. Under the asymptotic
steady 9ow state, the thermocapillary force caused
by the surface tension in a temperature gradient is
balanced by the viscous drag force. We can estimate
the viscous drag force approximately by the Stokes
formulae, which are D = 6$�Ru and D = 1:5$�Ru
for the sphere and circular cylinder, respectively
[23], here R representing the radius of the sphere and
cylinder. This means that the resistance of the drop
migration due to the 9uid viscosity is much smaller
for the circular cylinder of unit length than that for
the sphere of the same size. On the other hand, the
Marangoni driving force exerting on the sphere can
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Fig. 5. Comparison among experimental data, numerical results,
YGB linear theory and the present results for the asymptotic
migration velocity.
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Fig. 6. Comparison among experimental data, YGB linear theory
and the present results for the asymptotic migration velocity.

be estimated to be only slightly greater than that ex-
erting on a cylinder of equal size. So, to balance the
surface tension, the cylinder must move at a larger
speed than that for a sphere of the same size. The
curve of migration velocity predicted by the YGB
linear model is also plotted in Figs. 5 and 6, which

is even higher than those obtained by the calculations
of Geng et al. [14]. Such discrepancy has been found
in the previous work [3–6,14–18]. To quantitatively
compare the calculated results and experimental data
[4,5], the values of the migration velocity are listed
in Table 2 for di6erent drop diameters.
Although our calculation is a fully three-dimensional

one, the calculated results prove to be axially sym-
metrical. So, we can express the 9ow 4eld by the 9ow
patterns in any meridian plane. The isotherms in the
x − z plane are shown in Fig. 7 for the three di6erent
drop diameters. The isotherms drawn in the 4gure are
all equally spaced with dimensionless temperature
increment of 0.2. Within the drop, the 9uid near the
front part of the drop is cooled by the heat convec-
tion. From the patterns for di6erent drop diameters,
it is found that the enhanced convection of heat with
the increase of drop diameter results in the wrapping
of the isotherms around the front of the drop. The
surface temperature distributions are shown in Fig. 8.
To enable the comparison between the temperature
distributions for di6erent drop diameters, the surface
temperature shown in Fig. 8 are adjusted such that
a zero value is set to the aft stagnation point of the
drop. The surface temperature distributions indicate
the decrease in the front part of the drop with increas-
ing the drop diameter or increasing the Reynolds and
Marangoni numbers. This behavior is consistent with
the experimental and previous computational results
[5,16,18].
The streamlines in the x − z meridian plane, corre-

sponding to the cases shown in Fig. 7, are illustrated
in Fig. 9. Note that the drop diameters shown in Fig. 9
and in the following 4gures have been normalized to
be of unit radius. Relative to the moving drop, the 9ow
pattern within the drop exhibits recirculation bubble
that is similar to the Hill’s spherical vortex. Combin-
ing Figs. 9 and 7, we can see that the isotherms and the
streamlines depict the thermal and 9uid motion struc-
tures within and outside the drop, which is in good
agreement with the calculated results of Haj-Hariri
et al. [16] and Ma et al. [18]. The streamline patterns
in an inertial laboratory reference frame are shown in
Fig. 10. It is illustrated that those streamline patterns
in Figs. 9 and 10 are very similar for di6erent drop di-
ameters, although obvious di6erence in isotherm pat-
tern appears in Fig. 7. The corresponding velocity vec-
tors in both the reference frame moving with the drop



332 Y. Wang et al. / Acta Astronautica 54 (2004) 325–335

(a) 

(b) 

(c) 

Fig. 7. Isotherms with a non-dimensional temperature increment
0.2 in the x−z meridian plane for the drop radius (a) a=0:259 cm,
(b) a = 0:326 cm and (c) a = 0:377 cm.

θ (radian)

T

0 1 2 3
0

0.4

0.8

1.2

1.6

2

a=0.259cm
a=0.326cm
a=0.377cm

Fig. 8. Surface temperature distributions at di6erent drop diameters.

and the inertial laboratory reference frame are shown
in Figs. 11 and 12. To clearly exhibit the vectors,
the patterns in Figs. 11 and 12 are drawn in selected
coarse mesh points. It is seen that the vector magni-
tudes increase with the increase of the drop diameter,
which is consistent with the results shown in Figs. 3
and 5.

5. Concluding remarks

Thermocapillary migration of a drop in a tem-
perature gradient has been investigated numerically.
The three-dimensional incompressible Naiver–Stokes
equations and the energy equation are solved by use of
a Galerkin 4nite-element method. The front tracking
technique is employed to simulate the interface dis-
continuity. To simplify the present calculation, it is as-
sumed that the drop keeps its spherical shape when the
drop moves toward the high temperature region. This
assumption is reasonable under the microgravity envi-
ronment. Some typical cases, which have been investi-
gated experimentally, are calculated using the present
method. The calculated results are in good agreement
with the experimental data, and demonstrate that the
present method and code are capable of predicting
the drop migration in a temperature gradient under
the microgravity environment. From the comparison
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(a) (b) (c)

Fig. 9. Streamlines in a reference frame moving with the drop in the x − z meridian plane for the drop radius (a) a = 0:259 cm,
(b) a = 0:326 cm and (c) a = 0:377 cm.

Fig. 10. Streamlines in an inertial laboratory reference frame in the x − z meridian plane for the drop radius (a) a = 0:259 cm,
(b) a = 0:326 cm and (c) a = 0:377 cm.

between the present results and that calculated by
Geng et al. [14] using the two-dimensional 9ow
equations, we can see that the two-dimensional 9ow
assumption leads to the over-estimate of migration
velocity signi4cantly. This method can be extended to
treat the three-dimensional 9ow with drop deforma-
tion, which is currently in the course of processing.
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