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Abstract In the present paper, we endeavor to accomplish
a diagram, which demarcates the validity ranges for interfa-
cial wave theories in a two-layer system, to meet the needs
of design in ocean engineering. On the basis of the avail-
able solutions of periodic and solitary waves, we propose a
guideline as principle to identify the validity regions of the
interfacial wave theories in terms of wave period T , wave
height H , upper layer thickness d1, and lower layer thick-
ness d2, instead of only one parameter–water depth d as in
the water surface wave circumstance. The diagram proposed
here happens to be Le Méhauté’s plot for free surface waves
if water depth ratio r = d1/d2 approaches to infinity and
the upper layer water density ρ1 to zero. On the contrary, the
diagram for water surface waves can be used for two-layer
interfacial waves if gravity acceleration g in it is replaced by
the reduced gravity defined in this study under the condition
of σ = (ρ2 − ρ1)/ρ2 → 1.0 and r > 1.0. In the end, sev-
eral figures of the validity ranges for various interfacial wave
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1 Introduction

The ocean is not homogeneous in both temperature and
salinity. The phenomenon ultimately leads to the density
stratification in the ocean, among which the two-layer system
represents the most typical one with intense density variation.
The study of internal waves is of primarily importance in the
ocean acoustics, marine ecology and physical oceanography.
Internal waves traveling in the interior of the ocean water
body tend to carry enormous energy, which may seriously
do harm to ocean structures, such as deep-sea drilling rigs,
drillers and vertical pipes [1]. For the sake of safety consider-
ations, those ocean structures are required to withstand huge
wave forces and moments that exerted by large amplitude
internal waves [2]. As for hazard internal wave performance,
there are two events in record. The first is in 1980, a working
drilling machine in the Andaman Sea was apparently spun
through 90◦ and carried 100 feet away by internal solitary
waves [3]. The other happened in the northern South China
Sea, a fixed oil tank swayed 110◦ in less than 5 min when
a group of internal waves passing by [4]. These incidents
imply that the internal wave factors are important in ocean
engineering.

While designing deep ocean structures, engineers should
know in advance the characteristics and details of the flow
field induced by the internal waves. Since the instantaneous
wave force differs tremendously under different ocean wave
climate conditions. At present time, there are at least seven
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wave theories available for the internal waves in a two-layer
system, such as linear theory, the second to the fifth order
internal Stokes wave theories, internal solitary wave and
cnoidal wave theories. Therefore, it is a chanllenge for us to
choose the suitable internal wave theories when calculating
wave force.

Up to now, the issue for the surface wave theories has
been fully resolved. Traditionally, there are three categories
of surface waves, namely, the small amplitude waves, the
finite amplitude waves and the long waves or shallow water
waves, which transport different amounts of energy and exert
different wave forces on ocean structures. Le Méhauté [5]
has worked out a diagram for “limits of validity for various
surface wave theories” providing the criteria of the validity
ranges for various water surface waves. The chart has been
proved to fit well by the tests of Yuen [6] and Chakrabarti [7]
in laboratory experiments. And then, Iwagaki [8] presented
his study, only indicating the applicability ranges of the linear
theory, the third order Stokes theory and the cnoidal theory.
As for internal waves, so far we still have no similar diagram
serving as the guidelines to be used in engineering design. As
a matter of fact, the free surface wave can also be regarded as a
two-layer system with a large apparent density difference. In
contrast, the oceanic interfacial waves in the ocean interior
usually propagate on the thermocline with a small density
difference (around 0.1%, thus minor disturbances can result
in billow). Furthermore, besides wave height H and period
T , the depth ratio r of the upper and lower layers becomes an
additional parameter in demarcating different validity ranges.

It is helpful to survey the recent development of internal
wave theories, on which our validity range study is based,
during the last three decades. Generally speaking, the propa-
gation of internal solitary waves is described by K dV equa-
tion, whereas we need a revised form for the critical situation
as the upper and lower layer depths are close. If the density
variation occurs merely in the upper layer, we may use the
intermediate long wave theory, which turns into the so-called
Benjamin-Ono equation if the lower depth becomes infinity.
In the meantime, the two-dimensional weak solitary wave is
formulated by KP (Kadomtsev–Patviashivilli) equation. By
extending Fenton’s Stokes wave theory, Cheng and Li [9]
obtained the fifth order interfacial wave results with the help
of Mathematica based on the stream function formulation.
Lamb [10] studied the limiting forms of extreme internal
solitary waves in the ocean by using the two-layer model
evolution equations. For highly nonlinear internal solitary
waves, Helfrich and Melville [11] showed that the limiting
flat-crested wave for a Boussinesq fluid has the same ampli-
tude as that found by Miyata–Choi–Camassa [12,13], and
the solitary waves are nearly indistinguishable from the fully
nonlinear theory over a wide range of relative layer depths
[14]. Grue [15] studied the breaking and broadening of the
internal solitary waves in a two-layer system, finding that the

nondimensional fluid velocity u/c increases almost linearly
with the wave amplitude and when H/dthin = 0.855 (dthin

is the less of d1 and d2), the fluid velocity at the wave peak
is equal to the phase speed. For periodic breaking waves,
Fringer and Street [16] performed numerical simulations to
study the extreme amplitude of interfacial waves by imposing
a source term in the horizontal momentum equation. They are
able to get a greater steepness than usual value of k H = 0.74
(where k = 2π/L is the wavenumber) before it breaks by in-
creasing the interface thickness. This steepness is asymptotic
to the inviscid limit of k H = 1.1 [17] or 1.05 if the effect of
background shear is considered [16].

The purpose of the present study are: (1) to determine the
validity ranges for various two-layer internal waves; (2) to
find the bordering lines between these theories; (3) to discuss
the effects of the water depth ratio and densities; and (4) to
find the correlations between the surface waves and the two-
layer interfacial waves.

2 Wave equations and their solutions

Now we are considering the traveling periodic waves in a
two-layer fluid on a horizontal impermeable bed, which can
be regarded as a steady flow if the coordinate system moves
at the same speed as the wave. The water is assumed incom-
pressible and bounded by two rigid walls at the upper and
lower boundaries. Although the natural oceans are actually
open, if the upper layer thickness is deep enough as compared
to the amplitude of interfacial wave, the rigid lid approxi-
mation seems to be reasonable. The experimental evidence
reported by Kao et al. [18] supports the rigid-lid approxi-
mation. It was also verified and applied by Benney [19] and
Pelinovskiy [20] in their theoretical study of internal waves.
However, there are surface waves in the open area. The wave–
current or wave (surface)–wave (internal) interaction should
be considered when the water depth ratio is small enough
[21,22]. Then, the origin is set on the plane of water sur-
face, with x as the horizontal coordinate and z as the vertical
coordinate (Fig. 1).

Fig. 1 The coordinate system of two-layer fluid interfacial waves, the
origin is located at the water surface, the densities of the two layers are
ρ1 and ρ2 and the depths are d1 and d2
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Validity ranges of interfacial wave theories in a two-layer fluid system 599

To facilitate the solution of the problem, we prefer the
stream function formulation such that velocity components
(u1, v1) and (u2, v2) are given by u1 = ∂ψ1/∂z, v1 =
−∂ψ1/∂x , and u2 = ∂ψ2/∂z, v2 = −∂ψ2/∂x if the motion
is irrotational, the stream functions ψ1 and ψ2 satisfy the
Laplace equation throughout the two fluids. Thus

∂2ψ1

∂x2 + ∂2ψ1

∂z2 = 0, (1)

∂2ψ2

∂x2 + ∂2ψ2

∂z2 = 0. (2)

The upper boundary condition is

ψ1(x, 0) = 0. (3)

The bottom boundary conditions is

ψ2(x,−d1 − d2) = 0. (4)

On the free interface z = η(x), the kinematics boundary
condition is

ψ2[x,−d1 + η(x)] = −Q, (5)

where Q is a positive constant, denoting the total volume rate
of flow underneath the stationary wave per unit length normal
to the (x , z) plane; and the condition requiring pressure on
the free surface to be constant, combined with Bernoulli’s
equation, that is

1

2
[(∂xψ2)

2 + (∂zψ2)
2] + g[−d1 + η(x)]

− R − (1 − σ)

{
1

2

[
(∂xψ1)

2 + (∂zψ1)
2
]

+ g[−d1 + η(x)] − R

}
= 0, (6)

where g is the gravitional acceleration, R is a positive con-
stant, and σ = (ρ2 − ρ1)/ρ2 is the water density difference
ratio.

The following expansion for ψ1 and ψ2 are assumed

kψ1

ū
= −k(z + d1 + d2)

+
∞∑

i=1

i∑
j=1

εi F1i j sinh( jkz) cos( jkx), (7)

kψ2

ū
= −k(z + d1 + d2)

+
∞∑

i=1

i∑
j=1

εi F2i j sinh( jkz) cos( jkx), (8)

kη(x) =
∞∑

i=1

i∑
j=1

Bi jε
i cos( jkx), (9)

in which ū is the mean fluid speed for any constant value of
z, and k = 2π/L is the wavenumber.

Now, the perturbation expansion in terms of ε = k H/2
can be assumed for the quantities in these equations, in which
the undisturbed state is a uniform flow of d1, d2, and speed
c0(g/k)1/2

ū

(
k

g

)1/2

= c0 +
∞∑

i=1

ciε
i , (10)

Q

√
k3

g
= ū

√
k3

g
d2 +

∞∑
i=1

Diε
i , (11)

Rk

g
= 1

2
c0 − kd1 +

∞∑
i=1

Eiε
i . (12)

The coefficients in these equations (F1i j , F2i j , Bi j , c0, ci ,
Di , Ei ) are all dimensionless.

The dispersion relation of the steady internal waves in the
two-layer fluid can be obtained as

ω√
gk

= c0 + εc1 + ε2c2 + ε3c3 + ε4c4, (13)

in which ω = 2π/T is the angular velocity.

3 Validity ranges for two-layer fluid interfacial periodic
waves

The elevation profile for the two-layer interfacial waves is
expressed as

kη(x) = ε cos(kx)+ ε2 B22 cos(2kx)

+ ε3 B33[cos(3kx)− cos(kx)]
+ ε4[B42 cos(2kx)+ B44 cos(4kx)]
+ ε5[−(B53 + B55) cos(kx)+ B53 cos(3kx)

+ B55 cos(5kx)] + 0(ε6), (14)

where η(x), k, ε are the wave displacement, the wavenumber
and the perturbation parameter, respectively, B22, B33 and
B42, etc., are functions of σ , kd1 (or depth ratio r) and kd2,
which are lengthy and intricate expressions. For instance,
B22 can be expressed in the form of d2 and r as

B22 = (c2
0(σ cosh(kd2(2 − 3r))

+ (3σ − 4) cosh(kd2(r − 2))+ 4 cosh(rkd2)

− 8σ cosh(rkd2)+ 4 cosh(3rkd2)

− 6 cosh(kd2(r + 2))+ 5σ cosh(kd2(r + 2))

+ 2 cosh(kd2(3r + 2))

− σ cosh(kd2(3r + 2))coth(kd2)csch(rkd2))

(4(σ cosh(2kd2(r − 1))− σ cosh(2kd2(r + 1))

+ 2c2
0(σ sinh(2kd2(r − 1))

− (σ − 2) sinh(2kd2(r + 1))))), (15)
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Fig. 2 The maximum
amplitude for various periodic
waves when r = 1.0, 5.0, 10.0,
50.0, 100.0 and ∞. a–d Are the
linear theory, second to fourth
order theories accordingly, and
the Le Méhauté’s criterion
corresponds to r → ∞. The
maximum amplitude lines are
cut off by Ur = 78 (dashed)

where c0 is the phase speed and can be written as

c0 =
√

σ tanh(kd2) · tanh(rkd2)

tanh(rkd2)+ (1 − σ) · tanh(kd2)
. (16)

Equation (14) shows that the actual wave elevation contains
the higher order harmonic components and results in steeper
wave crest and flatter wave trough. For linear theory with the
small amplitude, it seems possible to ignore the second term
in the expression of the wave profile, when the absolute value
of the amplitude of the second term is, say, less than 1.0%
of the first term, (when B22 > 0, +1.0% is taken; when
B22 < 0, −1.0% is taken and when B22 → 0, the higher
order item becomes more important)

ε|B22| ≤ 0.01. (17)

3.1 Le Méhauté criterion of maximal periodic wave
amplitude

By introducing B22 into Eq. (17) with r ≥ 1.0 and σ → 0,
we find that k H should satisfy the following expression for
linear theory no matter what value r is

k H ≤ 0.04 · tanh(kd2). (18)

For the second order waves, we obtain the approximate
expression of wave profile as

kη(x) = ε cos(kx)+ ε2 B22 cos(2kx)

+ ε3 B33(cos(3kx)− cos(kx))+ 0(ε4). (19)

In the same way, when the absolute value of the third order
term in the expression of Eq. (19) is small enough compared
with the first term, say, less than 1.0%, we get for all r ≥ 1.0

k H ≤ 0.366 · tanh(kd2). (20)

It should be pointed out that the present amplitude of the
second item in Eq. (9) is not 0.01 times of the first term any
longer; it plays a more important role than the third one to
make wave steeper or flatter. In the same way, we can also
get the maximal wave steepness of the third order waves as

k H ≤ 0.6215 · tanh(kd2). (21)

And for the fourth order

k H ≤ 0.837 · tanh(kd2). (22)

When r ≥1.0, those curves are shown in Fig. 2. The dash-
dot lines are drawn according to Eqs. (18) and (20)–(22),
which are the same as Le Méhauté’s criterion for surface
waves (here we call it the Le Méhauté’s criterion). We notice
that it is a logarithmic coordinate, which amplifies the differ-
ence of those lines of small kd2; the dash-dot lines actually
are rather close to the solid and long dash-doted lines, which
represent the maximal wave slope of different r . It means
that Le Méhauté’s criterion is true for all r ≥ 1.0.

When r < 1.0, the values of B22, B33 etc. are sometimes
negative, which may lead to the results that the wave becomes
down-ward steeper and up-ward flatter and we call it “the
wave polarity changes” just like the internal solitary waves
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Validity ranges of interfacial wave theories in a two-layer fluid system 601

Fig. 3 The maximal amplitude (solid lines) for linear periodic wave
theory when r = 0.05, 0.1, 0.2 and 0.5. The dashed lines indicate
Eq. (24) which are approximate solutions to the solid lines. The dashdot-
lines show that the maximum wave heights can not exceed the upper-
layer thickness (Using the linear theory as an example)

do. So, the absolute sign in Eq. (17) plays its role. Those
parameters “Bs” are functions of kd2. When they approach to
0, the higher order harmonic waves in the wave elevation are
unnegligible. Thus, the higher order theory is an appropriate
choice, e.g., in Eq. (19), when B22 → 0, B33 then becomes
dominant. Figure 3 shows that for all r < 1.0, Eqs. (18) and
(20–22) are also kept valid. Therefore, Le Méhauté’s criterion
is a rather loose criterion to meet all depth ratio r .

3.2 A more precise criterion

Although the difference between the lines in Figs. 2 and 3
is actually very small, there still exist more precise ways to
replace Le Méhauté’s criterion. When r ≥1.0, B22 is positive,
for the linear theory, Eq. (17) can be simplified as Eq. (23)
to replace Eq. (18). The difference between Eq. (18) and
Eq. (23) is that the first wave slope is irrelevant to r and
the second is the function of both r and kd2, for a given
two-layer fluid, Eq. (23) seems to satisfy the maximal wave
slope definition better. For the higher order waves, we can
use ετ |Bii | ≤ 0.01 to replace Eqs. (18) and (20–22), where
τ = 1, 2, 3 and 4 and i i = 11, 22, 33 and 44 for the first
to the fourth order periodic wave theories, respectively (see

Fig. 2a–d). In the same way, when r → ∞, Le Méhauté’s
criterion will be resumed

k H ≤ 0.02/B22. (23)

When r < 1.0, the value of B22 may become negative, which
implies the wave polarity changes, and when B22 → 0, the
higher order term in Eq. (14) is more important. For lin-
ear wave, we have k H ≤ 0.02/|B22|. Now, let Eq. (24) re-
place Eqs. (18) and (20–22), by changing the values of α
and β, we can get a series of smooth lines to approach to the
actual, rugged lines of maximal wave slope k H (see Fig. 3,
the dashed lines, Eq. (24) is also used in Fig. 8),

k H ≤ (k H)max · tanhα(βkd2). (24)

We found that when r = 0.01, 0.02, 0.03, 0.05, 0.1, 0.2 and
0.5, and β takes the values listed in Table 1, all α = 3.0 (see
Fig. 3, the dashed lines).

3.3 A reduced coefficient method

For a long time, people have thought the surface waves are
actually one kind of interfacial waves in an air-water system
with ρ1 → 0, and ρ2 being the water density. The differences
between them are their gravity acceleration and larger upper
layer thickness. Therefore, we may probably find some rela-
tion between them. For surface wave situation, the Boussi-
nesq parameter γs = (ρ2 − ρ1)/(ρ2 + ρ1) → 1.0. The
dispersion relation for linear surface waves is

ω2 = gk tanh(kd). (25)

Supposing that the thickness of the air on top of the free
surface is r times of the water depth d, and let f (kd) =
tanh(kd)/ tanh(rkd), we have

ω2 = ρ2 − ρ1

ρ2 + f (kd) · ρ1
gk · tanh(kd), (26)

which is nothing but the same dispersion relation as the
linear interfacial waves’ [see Eq. (28)]; we define a non-
dimensional reduced gravity acceleration as

g′ = ρ2 − ρ1

ρ2 + f (kd) · ρ1
g = δg. (27)

With the help of Eqs. (26) and (27), the surface wave
dispersion relation can be used for the two-layer interfacial
waves. Of course, the way is approximate in some degree for

Table 1 Values of
non-dimensional parameter β in
Eq. (24) for different waves

Wave theory r = 0.01 r = 0.02 r = 0.03 r = 0.05 r = 0.1 r = 0.2 r = 0.5

1st Order 0.05 0.08 0.1 0.14 0.22 0.40 1.00

2nd Order 0.05 0.08 0.11 0.15 0.24 0.41 1.10

3rd Order 0.05 0.09 0.12 0.17 0.28 0.45 1.20

4th Order 0.06 0.1 0.13 0.19 0.30 0.50 1.30
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Fig. 4 Curves for f (kd2) = tanh(kd2)/ tanh(rkd2) versus kd2

the higher order waves. From Fig. 4, one can see that when
r < 1.0, f (kd) > 1.0 and decreases monotonously with
kd2, while for r > 1.0, 0 < f (kd) < 1.0. As for r = 1.0,
the reduced density happens to be the Boussinesq parameter
appearing in many articles [23,24].

3.4 Validity ranges of periodic wave theories

Now we are able to determine the validity ranges for various
two-layer interfacial waves by using the above three criteria.
The dispersion relation of the linear theory and the second
order steady waves turns out,

ω2 = gkσ · tanh(kd2) tanh(kd1)

tanh(kd1)+ (1 − σ) tanh(kd2)

= gk · F(kd1, kd2, σ ). (28)

We can get two co-correlative formulas as

H

T 2 = g

4π2 · k H · F(kd1, kd2, σ ), (29)

d2

T 2 = g

4π2 · kd2 · F(kd1, kd2, σ ). (30)

One important result of the second order theory is that the lin-
ear dispersion relation continues to hold. This considerably
simplifies the application of the theory since the wave celer-
ity and wavelength remain independent of the wave height.
For the third order Stokes waves, the dispersion relation is

1

T 2 = g

4π2 · k · (c0 + εc1 + ε2c2)
2, (31)

where c0 is expressed as Eq. (16) and c1 = 0, c2 is a function
of ρ1, ρ2, d1, d2, k, etc. For the fourth order wave, Eq. (31)
also keeps valid, so does the dispersion relation Eq. (13) for
the fifth order. Now, the values of d2/T 2 and H/T 2 corre-
sponding to the given values of r and kd2 may be determined

by the direct computation. Just bearing in mind that the co-
efficient B22, B33, etc. are known functions of kd2 and r , and
then the solutions can be completed.

The current investigation comprises a systematic evalu-
ation of the boundary condition fits for a number of wave
theories over wave condition ranges of engineering signifi-
cance. The parameters, H , T , d2, and r uniquely define the
characteristics of the period wave system propagating at the
interface between two fluids of the given densities. The four
parameters can be reduced into three independent dimen-
sionless parameters, i.e., H/gT 2, d2/gT 2 and r . It is more
convenient and common to omit the gravitational term, re-
sulting in the three parameters H/T 2, d2/T 2 and r to define
the characteristics of interfacial wave theories. The values
of d2/T 2 range from 5×10−6 m/s2 to 4×10−3 m/s2, which
covers the most of engineering conditions of interest.

4 Validity ranges of cnoidal and solitary waves

4.1 Validity ranges of cnoidal waves

The function f (x) = A cos x + B cos 2x with |B/A| being
0.25 has a zero curvature point right at the wave trough or
peak. For example, in the surface wave model, the wave pro-
file formula of the second order Stokes waves can be written
as

η= H

2
cos θ+ H

8

(
πH

L

)
cosh(kd)

sinh3(kd)
[2+cosh(2kd)] cos θ.

(32)

According to the previous argument, zero curvature may
occur at the wave trough when the magnitude ratio of the
second term to the first one equals to 0.25 [25]. That is

H

L
= 1

π

tanh3(kd)

3 − tanh2(kd)
. (33)

If it is in shallow water, 3 tanh2(kd) and tanh3(kd)will tends
to 3.0 and (kd)3, respectively, therefore,

Ur = 8

3
π2 ≈ 26, (34)

where Ur is defined as H L2/d3. For the two-layer internal
waves, the wave profile formula of the second order is

kη(x) = ε cos(kx)+ ε2 B22 cos(2kx)+ 0(ε3). (35)

The zero curvature point also exists if the absolute value of
the amplitude ratio of the second term to the first one is 0.25,
namely, εB22 = 1/4. We have

k H = 1

2|B22| , (36)
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Validity ranges of interfacial wave theories in a two-layer fluid system 603

Fig. 5 Two lines of Ur = 26 and Ur = 78 which correspond to the
surface waves and interfacial waves (r = 1.0), respectively. The figure
indicates that the two lines are nearly parallel in the range of d/L < 0.5

which can be shown by the dashed line parallel to Ur = 26
in Fig. 5. If we move the former by multiplying d/L , then
both of them may overlap. By try and error, we finally find
that 1.44 is the right number we are looking for. Therefore,
we have

H

L
= 1

π

tanh3(1.44 · kd2)

3 − tanh2(1.44 · kd2)
. (37)

In this way, we get

Ur = 1.443 H L2

(d2)3
≈ 78. (38)

Consequently, the borderline of the cnoidal waves and the
steady Stokes waves is Ur = 78 for r = 1.0 and 250 for r =
10.0. In the logarithm coordinate system of d2/T 2 − H/T 2,
the three curves of Ur = 78, 250 and Ur = 26 are very close
to each other (see Fig. 6a) and so the validity range of vari-
ous wave theories can be approximately regarded identical to
some degree. Therefore, the curve of Ur = 78 can approx-
imately serve as the borderline separating the two ranges of
the internal Stokes and the cnoidal wave theories for r > 1.0.

4.2 Validity ranges of solitary wave theories

In determining the borderlines between the solitary waves
and the cnoidal waves, the stream function theory can be used
to separate the periodic waves and the non-periodic waves
[21]. It is found that when the amplitude exceeds a certain
limit, the periodic waves are no longer possible to depict
the properties of the wave with huge wavelength and large
period. Here we employ the same method in the study of the
two-layer interfacial waves based on the solution obtained in
Sect. 2, we get Ursell numbers of 0.006, 0.2, 1.0, 80, 200 and
500 for r = 0.01, 0.05, 0.1, 0.5, 1.0, 10.0, respectively, see
Fig. 6b.

According to the assumption of no wave breaking, Holyer
[17] and Saffman and Yue [26] performed extensive compu-
tation of the limiting configuration of the interfacial waves,
demonstrating that when the interface profile is vertical at
some point, the horizontal velocity at this point is equal to
the phase speed. Tsugi and Nagta [27] assumed that before
the limiting fluid velocity (which is larger than the phase
speed) is reached, shear instability rather than convective
instability for large amplitude internal waves might occur.
This phenomenon was proved by Grue and Jensen [14] in
experiments.

The horizontal component of fluid velocity for two-layer
internal waves can be expressed as [10]

u1 = c0η0/d1, (39)

u2 = −c0η0/d2, (40)

the phase speed of the interfacial solitary wave is

c = c0 + αη0/3, (41)

and

α = 3c0

2d1d2

(
d2

1 − (1 − σ)d2
2

d1 + (1 − σ)d2

)
,

c0 =
[

gσd1d2

d1 + (1 − σ)d2

]1/2

,

Fig. 6 The Ursell numbers
used as the borderlines for
various wave theories.
a Borderlines between periodic
wave theory and cnoidal theory.
b Borderlines between solitary
wave theory and cnoidal theory
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if let u1 = c and η0 = H (suppose downward to be positive)
when r < 1.0,
[

1

2d2

(
d2

1 − (1 − σ)d2
2

d1 + (1 − σ)d2

)]
·
(

H

d1

)2

− H

d1
+ 1 = 0. (42)

From Eq. (42) for 1.0 > r ≥ 0.01, the maximal value of
H/d1 we get is 0.67 < (H/d1)max < 0.95, it only has a
little relation with the water depth ratio r .

If let u2 = c and η0 = −H when r > 1.0, we get
[

1

2d1

(
d2

1 − (1 − σ)d2
2

d1 + (1 − σ)d2

)]
·
(

H

d2

)
+ H

d2
− 1 = 0. (43)

The maximal value of H/d2 we get from the equation for all
100.0 > r > 1.0 is 0.67 < (H/d2)max < 0.99.

For exploring the limiting steady waves, Grue and Jensen
[14] studied the internal solitary waves propagating horizon-
tally in a stratified two-layer fluid system. The fluid has a
shallow layer with linear stratification while the densities of
the upper and lower layers are kept constant. Their depths
are defined as d1 and d2, and dthin represents the thinner one
of them. Grue and Jensen carried out both experiments and
numerical simulation. It is found that when a/dthin = 0.855,
the fluid velocity at the interface is equal to the wave speed,
and also the maximal horizontal fluid velocity is independent
of r in the range of d1/d2 = 0.5–4.13. Grue’s result is rather
close to our computation 0.67 < (H/dthin)max < 0.99, and
is also similar to the conclusion by Long [28]. Considering
Grue’s result is based on the experiments, the steady maximal
amplitude of two-layer internal solitary waves is 0.855. It is
very close to the result of surface waves when the upper-layer
is infinite deep.

The K dV equation we use arises from an assumption that
weak nonlinearity, scaled by (H ′/ l)2 = O(a/H ′) 	 1.
Here a is a measure of the wave amplitude, H ′ is an intrin-
sic vertical scale, and l is a measure of wavelength. For the
observed highly nonlinear waves [29], using the K dV the-
ory may induce that fluid velocity umax exceeds the phase
speed c. Their validity is determined by the criterion ηmax =
(d1 − d2)/2. This criterion is pertaining to the MCC theory
and the fully nonlinear theory.

5 Other borderlines

5.1 The curves of Ur = const

The curves of Ur = const as an indication of the balance
between the nonlinearity and the dispersion separate the
ranges of all kinds of waves into sub-regions. Obviously,
Ur is always less than 78 (r = 1.0) for the Stokes waves and
larger than 500 (r = 1.0) for the solitary waves. According

to the definition of Ursell number, we have

lg(H/T 2)− lg(d2/T 2) = lg Ur + 2 lg(kd2/2π). (44)

And from the Eq. (30), we can get the value of d2/T 2. In
this way, the curves for Ur = const can be drawn in the
d2/T 2 − H/T 2 coordinates system. They turn out approxi-
mate straight lines.

5.2 The curves of d2/L = const

According to the expression of the interfacial wave dispersion
relation, we may find that the values of d2/T 2 and d2/L are
corresponding to each other one by one. Therefore, the curves
d2/L = const are all straight lines parallel to H/T 2 axis.

5.3 The curves of H/d2 = const

H/d2 = const, can be put in the form:

H/T 2

d2/T 2 = const. (45)

Therefore, we have

lg

(
H

T 2

)
= lg

(
d2

T 2

)
+ lg(const), (46)

which shows that these curves are straight lines with slope
being 1.0 in the logarithm coordinate system.

6 Discussion and conclusions

We have worked out a series of diagrams in Fig. 7, show-
ing the validity ranges of various interfacial wave theories
according to the wave parameters such as wave amplitude H ,
wavelength L , water depths d1 and d2 rather than a unique
depth in the surface wave theory. Instead of appearing indi-
vidually, all these wave parameters are combined together in
the form of H/T 2 and d2/T 2 (equivalently relative depth
d2/L). A particular wave steepness H/d2 and Ur = const
are also used to play supplementary roles. As r > 1.0 in
the domain of d2/L ≥ 0.5, it belongs to the deep-water
range. The periodic wave theories are more appropriate in
this circumstance, namely, the linear wave, the second to the
fifth order wave theories can be correctly selected depending
on a given wave steepness. The maximal values of H/T 2

for the five theories are 1.5×10−5, 1.5×10−4, 2.5×10−4,
3.7×10−4 and 5.5×10−4, respectively. However, the linear
theory is bonded by Ur = 20 and H/d2 = 0.02; the sec-
ond order finite amplitude theory is limited by Ur = 78
and H/d2 = 0.2; the third order wave between the lines
of Ur = 78, H/d2 = 0.2 and H/d2 = 0.4; the fourth is
between H/d2 = 0.4 and H/d2 = 0.6; the rest of the range
is valid for the fifth or higher order waves (r = 1.0) in the
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Fig. 7 The range of validity for
various interfacial wave theories
of two-layer fluid. From (a) to
(f), the water depth ratio r is
equal to 0.01, 0.05, 0.1, 0.5, 1.0,
and 10.0, respectively

intermediate water depth cases. We find that the higher or-
der wave theory, the narrower the validity range. When the
value of d2/L becomes smaller, it corresponds to shallow
water range. Then the finite amplitude long waves of per-
manent form are better described by the interfacial cnoidal
and solitary wave theories. In Fig. 7 for r = 1.0, the validity
ranges are bonded by Ur = 78 and Ur = 500. The two lim-
iting cases are the solitary waves on one end of steep waves
and the second order finite amplitude wave on the other end.
As the wavelength becomes infinite, the solitary waves are
approached, whereas the short wavelength yields the periodic
wave theories in the limit.

Since wave breaking is usually not permitted for us, all
the validity ranges should also be bounded by wave steepness
lines. For example, K dV theory is bonded by Grue’s breaking
limit H/dthin = 0.855, which means that the maximal fluid

velocity umax is equal to the wave phase speed c. When the
wave amplitude approximately exceeds the limit, Grue [14]
has observed in experiments that wave breaking may take
place with the wave speed umax exceeding the phase speed c.
As for the Stokes wave of various orders, the wave-breaking
limit is that the steepness of the wave should be bounded by
Hoyer’s limit.

Let’s examine the influences of the depth ratio r on the
validity ranges. With the fixed wave amplitude and lower
layer depth, the depth ratio indirectly affects the validity
range by changing period. According to Eqs. (27) and (28),
we find that for deep water, f (kd) approaches to 1 and the
effects of depth ratio r can be neglected. The results from
all our computation are shown in Fig. 7, which shows that
the curves in each of the charts are almost consistent to each
other (r ≥ 1.0). The figures exhibit a quite marked trend, and
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Fig. 8 The maximum
amplitude of several internal
steady waves at different σ .
a–d Correspond to linear wave
theory, the second to fourth
order wave theories and σ are
0.001, 0.003, 0.006 and 0.01,
respectively

the rough agreement between the ranges we get for different
water depth ratios r ≥ 1.0. However, we should consider the
effect of depth ratio when the lower layer is not deep enough
and f (kd) deviates from 1.0.

Let’s go on considering the fluid density effects on the
validity ranges now. Just take the diagram for r = 1.0 as
an example. As a matter of fact, different density ratios lead
to different buoyancies, and then different gravity effects.
As a result, the change in the relation between d2/L and
d2/T 2 may change the whole validity range. Consequently,
the water density ratio of the two layer fluids exerts non-
negligible effect on the ranges of validity even when the
density difference ratio alters just from 0.003 to 0.006 (see
Fig. 8). With the increase of σ , the density changes may re-
sult in the decreasing of wave periods and wavelength. So the
changes of H/T 2 and d2/T 2 are large in the right horizon-
tal coordinate comparable with the previous results. We may
conclude that when σ → 1.0, these lines of the interfacial
waves will be consistent with the free surface limits. Accord-
ingly, the values of Ursell numbers and H/d2 will change
with the increase of the density difference. The validity of
the surface wave theories are obtained when σ → 1.0 and
r → ∞, as shown in Fig. 9 (only the first four orders).

Since usual water surface wave can also be regarded as a
two-layer system with upper atmosphere over lower water.
Under this circumstance, the depth and the density ratio turn
out infinity and 1.0, respectively. Therefore, the present the-
ory is proposed in the current paper with foregoing parame-

Fig. 9 The validity ranges of surface wave theories when σ → 1.0
and r → ∞, and using the English unit to compare with Le Méhauté’s
results

ters, we should resume the results for the water surface wave.
That is, the diagram will be identical to the Le Méhauté’s.
On the other hand, the Le Méhauté’s diagram can be used for
the interfacial wave theories if the reduced gravity replaces
the conventional gravity (r ≥ 1.0).

We have provided a diagram of the validity range for the
interfacial wave theories, which may facilitate engineers and
scientists to select an appropriate wave theory for the flow
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field and the wave loading calculation. In addition, if r is
small enough, the free surface effect can never be neglected,
which should be paid attention to the future research.

References

1. Cai, S.Q., Long, X.M., Gan, Z.J.: A numerical study of the gen-
eration and propagation of internal solitary waves in the Luzon
Strait. Oceanol. Acta 25, 51–60 (2002)

2. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolu-
tion Equations and Inverse Scattering. Cambridge University
Press, Cambridge (1991)

3. Osbourne, A.R., Burch, T.I.: Internal solitons in the Andaman
Sea. Science 208(4443), 451–460 (1980)

4. Ebbesmeyer, C.C., Coomes, C.A., Hamilton, R.C. et al.: New
observation on internal wave in the South China Sea using an
acoustic Doppler current profiler. In: New Orleans: Marine Tech-
nology Society 91 Proceedings, pp. 165–175 (1991)

5. Le Méhauté, B.: An Introduction to Hydrodynamics and Water
Waves, pp. 204–205. Springer, New York (1976)

6. Yuen, H.C., Lake, B.M.: Nonlinear Deep Water Waves: a Physical
Testing Ground for Solitons and Recurrence, Significance of Non-
linearity in Natural Science, pp. 67–96. Plenum Press, New York
(1977)

7. Chakrabarti, S.K.: Laboratory generated waves and wave theo-
ries. J. Waterway Port Coastal Ocean Division 106(3), 349–368
(1980)

8. Iwagaki, Y.: New coastal engineering, pp. 54–55. Morikita–
Shuppan (1987)

9. Cheng, Y.L., Li, J.C.: An LS. Stokes 5th order internal wave
and its action on cylindrical piles. In: Proceeding of 16th ISPE,
pp. 459–466. Los Angles, CA (2006)

10. Lamb, K.G., Wan, B.: Conjugate flows and flat solitary waves for
a continuously stratified fluid. Phys. Fluid 10, 2061–2079 (1998)

11. Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves.
Annu. Rev. Fluid Mech. 38, 395–425 (2006)

12. Miyata, M.: Long internal waves of large amplitude. In: Horikawa,
H., Maruo, H. (eds.) Proceedings of the IUTAM Symposium on
Nonlinear Water Waves, pp. 399–400. Tokyo, Japan (1988)

13. Choi, W., Camassa, R.: Fully nonlinear internal waves in a two–
fluid system. J. Fluid Mech. 396, 1–36 (1999)

14. Michallet, H., Barthelemy, E.: Experimental study of interfacial
solitary waves. J. Fluid Mech. 366, 159–177 (1998)

15. Grue, J., Jensen, A., Rusaas, P.O., Sveen, J.K.: Breaking and broad-
ening of internal solitary waves. J. Fluid Mech. 413, 181–217
(2000)

16. Fringer, O.B., Street, R.L.: The dynamics of breaking progressive
interfacial waves. J. Fluid Mech. 494, 319–353 (2003)

17. Holyer, J.Y.: Large amplitude progressive interfacial waves.
J. Fluid Mech. 93, 433–434 (1979)

18. Kao, T.W., et al.: Internal solitons on the pycnocline: genera-
tion, propagation, and shoaling on breaking over a slope. J. Fluid
Mech. 159, 19–53 (1985)

19. Benney, D.J.: Long non-linear waves in fluid flows. J. Math.
Phys. 45, 52–63 (1966)

20. Pelinovskiy, E.N., Talipova, T.G.: Scaling effects in the model-
ing of internal waves in basin covered by surfactant films. Atmos.
Oceanic Phys. 31(5), 672–675 (English Translation) (1996)

21. Sarpkaya T. (1981) Mechanics of Wave Forces on Offshore Struc-
tures, pp. 215–218. van Nostrand Reinhold Co., New York

22. Magdi, H.R., Denny, R.S.K.: Interaction between small-scale sur-
face waves and large scale internal waves. Phys. Fluid 21(11),
1900–1907 (1978)

23. Gear, J.A, Grimshaw, R.H.: A second-order theory for solitary
waves in shallow fluids. Phys. Fluid 26(1), 14–26 (1983)

24. Lighthill J. (1978) Waves in Fluids, pp. 284–432. Cambridge Uni-
versity Press, Cambridge

25. Clauss, G., Lehmann, E., Ostergaard, C.: Offshore Structures,
vol. 1, pp. 164–165, pp. 189–190, Springer, New York (1992)

26. Saffman, P.G., Yuen, H.C.: Finite-amplitude interfacial waves in
the presence of a current. J. Fluid Mech. 123, 459–476 (1982)

27. Tsugi, Y., Nagata, Y.: Stokes’ expansion of internal deep-water
waves to the fifth order. J. Oceanogr. Soc. Japan 29, 61–69 (1973)

28. Long, R.R.: Solitary waves in one and two-fluid systems. Tellus
8, 460–471 (1956)

29. Duda, T.F., Lynch, J.F., Irish, J.D., et al.: Internal tide and nonlinear
wave behavior in the continental slope in the northern South China
Sea. IEEE J. Ocean Eng. 29, 1105–1131 (2004)

123


	Validity ranges of interfacial wave theories in a two-layerfluid system
	Abstract 
	Introduction
	Wave equations and their solutions
	Validity ranges for two-layer fluid interfacial periodic waves
	Le Méhauté criterion of maximal periodic wave amplitude
	A more precise criterion
	A reduced coefficient method
	Validity ranges of periodic wave theories
	Validity ranges of cnoidal and solitary waves
	Validity ranges of cnoidal waves
	Validity ranges of solitary wave theories
	Other borderlines
	The curves of  Ur =const
	The curves of d 2/L=const
	The curves of H/d2=const
	Discussion and conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


