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Abstract
A theoretical model is presented to investigate the size-dependent bending
elastic properties of a nanobeam with the influence of the surface relaxation
and the surface tension taken into consideration. The surface layer and its
thickness of a nanostructure are defined unambiguously. A three-dimensional
(3D) crystal model for a nanofilm with n layers of relaxed atoms is
investigated. The four nonzero elastic constants of the nanofilm are derived,
and then the Young’s modulus for simple tension is obtained. Using the
relation of energy equilibrium, the size-dependent effective elastic modulus
and effective flexural rigidity of a nanobeam with two kinds of cross sections
are derived, and their dependence on the surface relaxation and the surface
tension is analysed.

1. Introduction

The Young’s modulus E and the flexural rigidity E I are
fundamental mechanical properties of structures, which are
defined in the theory of continuum mechanics. Generally
speaking, the Young’s modulus of macroscopic materials
related both with tension and bending is independent of the
size of the structures. When the size of a structure comes
down to nanoscale, however, it had been shown in many
experiments [1–7], atomic simulation [8–13] and theoretical
research [14–17] that the Young’s modulus is size-dependent.
The size dependence of the elastic moduli have been studied
extensively, but with somewhat debatable results. At present,
there were two opposite experimental results [1–7] about the
size-dependent elastic modulus of nanostructures even for the
same material [3, 5]. Some experiments [1–4] showed that
elastic modulus increased with the decrease of characteristic
dimension of the nanostructure, while others [5–7] showed that
the reverse was true. Theoretical investigations also reached
the two opposite conclusions. Until now, there was not yet
a widely accepted theoretical model, which could explain the
phenomena appropriately.
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The size dependence of the elastic moduli is generally
attributed to surface effects, which are so insignificant for
macroscopic materials that they can be neglected. But
for nanostructures, because of the very large surface-to-
volume ratio, the surface effects can play important roles
and can no longer be neglected. Thus the surface effects,
including surface energy, surface tension, surface relaxation,
surface reconstruction, etc, should be taken into consideration
when the overall elastic properties of nanostructures are
investigated. Villain et al [8] revealed a strong decrease
of the Young’s modulus by the atomistic simulation with
the surface tension taken into consideration. Employing
a molecular statics approach based on the embedded-atom-
method interatomic potential, Wolf [9] and Liang [10] showed
that elastic modulus could either increase or decrease at the
nanoscale. The similar results were also obtained by Zhou
and Huang [11] using a combination of molecular statics
and ab initio calculations. Miller and Shenoy [12, 13]
constructed a model taking account of surface tension to
predict the size-dependent elastic properties of nanoscale
plates and beams, and reached a conclusion that the effective
stiffness is closely related to the values of surface elastic
constants. Cammarata and Sieradzki [14] analysed the effects
of surface energy on the elastic properties of nanomaterials and
predicted the enhancement of elastic modulus of nanofilms.
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Table 1. The values of parameters in the calculation.

Symbol Value Symbol Value

a [17] 1.74 × 10−10 m L 100 nm
α1 [17] 2.02 N m−1 b 50 nm
α2 [17] 1.10 N m−1 ν 0.28
γ [18] 0.562 N m−1 n 4

Dingreville et al [15] developed a framework to incorporate
the surface energy into the continuum theory of mechanics and
demonstrated that the overall elastic modulus of nanostructures
could either increase or decrease. The present authors [17]
also presented a 3D model with a layer of relaxed atoms taken
into consideration to investigate the size-dependent elastic
constants of nanofilm, and showed in theory that the elastic
moduli of the nanofilm could enhance and reduce with the
reduced thickness of the nanofilm, which was dependent on
the surface relaxation coefficients.

In many experimental approaches applied to determine the
Young’s modulus of nanostructures, a popular and effective
one is by the measurements of deflections [1–3, 6] or the
resonant frequencies [4, 5] of a nanobeam to acquire the
Young’s modulus. With that method, a bending theory for
nanobeams is necessary. But in the present bending theory,
there is not a model that takes the several surface effects
into consideration simultaneously. Based on our previous
work [17], the bending elastic properties of a nanobeam with
the influence of the surface relaxation and the surface tension
are studied in the present research. Compared with our
previous work [17], there were mainly two improvements in
the present work. In the first place, there was only a relaxed
atomic layer taken into consideration in [17], while there are
more relaxed atomic layers in the present study. Secondly,
we consider the influence of both the surface relaxation and
the surface tension on the elastic properties of the nanobeams
in the present study, while only the influence of the surface
relaxation was considered in our previous work [17].

2. The elastic moduli of the nanofilm with surface
relaxation

In the section, we investigate the dependence of elastic moduli
on the surface relaxation when more relaxed atomic layers are
taken into consideration. In the first place, the concept of
surface layer will be defined. It is a transition region between
the uniform bulk material and the vacuum outside, where the
rearrangement (e.g. surface relaxation, surface reconstruction)
of atoms occurs. In the surface layer, the properties of the
material are significantly different from those in the bulk
material due to surface effects. Since the emphasis of this
section is to discuss the influence of surface relaxation on the
elastic properties, we may assume that there exists only surface
relaxation in the surface layer. The influence of the surface
tension will be studied in the next section.

The side-view schematic of a 3D nanofilm crystal model
is shown in figure 1. There are n layers of relaxed atoms
in the surface layer. A surface relaxation coefficient ki is
introduced [16]. It is known that the termination of the lattice
periodicity in the normal direction of a surface will lead to
imperfection of the coordination numbers (CNs) of a surface

Figure 1. The side-view schematic of the nanofilm crystal model.

Figure 2. Two kinds of cross sections of the nanobeam.

atom, which will, in turn, relax the remaining bonds of lower-
coordinated surface atoms. The CN-imperfection-induced
bond relaxation can be defined as ai = ki a, (i = 1, 2, . . . , n),
where a denotes the bulk value of bond length, subscript i is
the i th atomic layer and ki is the relaxation coefficient. The
relaxation may be contractive (ki < 1) or expansive (ki >

1) [16]. In addition, the degree of the relaxation decays along
the inner-normal direction of the free surface and there will be
no CN reduction for i > n. Strictly speaking, the relaxation
coefficient ki for each atomic layer is different, but for the sake
of simplification, an average value can be used: k = 1

n

∑n
i ki .

So the thickness of surface layer can be defined as ts = nka.
It is assumed that there are N layers of unrelaxed atoms in the
bulk of nanobeam. So the thickness of the nanobeam (as shown
in figure 2) is

H = t0 + 2ts = (N + 2nk)a. (1)

Similar to the discussion in [17] for a relaxed atomic layer, we
can derive the strain energy density of nanobeam with n layers
of relaxed atoms in the surface layer as follows:

f = 1

2 (N + 2nk) a
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(2)

where α1 and α2 denote the spring constants of the nearest
neighbours and the next-nearest neighbours between the
unrelaxed atoms, respectively; α3 and α4 are those of the
nearest neighbours and the next-nearest neighbours between
the relaxed atoms, respectively. We have α3 = α1/k and
α4 = α2/k.
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Figure 3. The variations of Young’s modulus in the simple tension
state with the decrease of atomic layer number for various relaxation
coefficients.

Substitute equation (2) into the expression Ci j = ∂2 f /

∂ε2
i j , which relates strain energy density, stress and strain,

and then four independent nonzero elastic constants can be
obtained as:

C11 = (N + 2n)α1 + (2N + 2n − 1)α2 + 4nα4
1+k2

(N + 2nk)a
, (3)

C12 = (N + 2n)α2

(N + 2nk)a
, (4)

C13 = (N − 1)α2 + 4nk2α4
1+k2

(N + 2nk)a
, (5)

C33 = (N − 1)(α1 + 2α2) + 2nk2α3 + 8nk4α4
1+k2

(N + 2nk)a
. (6)

Similar to the process in [17], a simple tension analysis
can be performed. Then the Young’s modulus of the nanobeam
in the simple tension state can be derived with the surface
relaxation taken into consideration:

Er = (C11 − C12)(C11C33 + C12C33 − 2C2
13)

C11C33 − C2
13

. (7)

The variations of the Young’s modulus in the simple
tension state with the decrease of atomic layer numbers are
shown in figure 3. It can be seen that the size effect of the
Young’s modulus depends on the relaxation coefficient. When
the atomic layer numbers are less than about 100, the Young’s
modulus varies with the decrease of the atomic layer numbers.
It varies sharply as the atomic layer numbers are less than
50. More specifically, the Young’s modulus increases with the
decrease of the atomic layer number if relaxation coefficient
k < 1; on the other hand, the Young’s modulus decreases if
relaxation coefficient k > 1.

3. The bending elastic properties of the nanobeam
with the effects of surface relaxation and surface
tension

In the section above, the elastic moduli of the nanofilm were
obtained when the surface relaxation effects were taken into

consideration. As a matter of fact, in addition to the surface
relaxation, the surface energy and surface tension also play
important roles in the size-dependent mechanical properties
of nanostructures. Surface energy and surface tension of the
solids are two different concepts, which are often not well
understood [18–20]. The surface energy is the reversible
work per unit area needed to create a new surface. On the
other hand, the surface tension is the reversible work per
unit area needed to elastically stretch/compress a preexisting
surface [18, 20]. The surface energy is usually positive, while
the surface tension can be positive or negative [18]. For a beam,
the surface tension dominates the surface deformation when
the beam is bent. As a result, the work needed to vary the area
of surface dS should be γ dS, where γ is the surface tension. In
this section, the bending elastic properties of a nanobeam will
be investigated when the influence of both surface relaxation
and the surface tension are taken into consideration.

The assumption of small deflection is applied, as the
magnitude of the deflection of the nanofilm is small compared
to its characteristic geometric size. The total bending strain
energy can be expressed as:

Utot =
∫ L

0

Eeff I

2

(
w′′(x)

)2
dx, (8)

where L is the length of the nanobeam, Eeff the effective
elastic modulus of nanostructures with the effects of surface
relaxation and surface tension, I the moment of inertia, and
w(x) the deflection of the beam, and w′(x) = dw(x)/dx .

The total energy of the system can be expressed as the sum
of the bending deformation energy with the influence of the
surface relaxation and the surface deformation energy (see the
appendix) resulted from the beam extension with the influence
of the surface tension:

Utot =
∫ L

0

Er I

2

(
w′′(x)

)2
dx + γ ��L(1 − ν), (9)

where Er is the elastic modulus of the nanobeam in the simple
tension state with the surface relaxation effects taken into
consideration, which is derived by equation (7), � the contour
length of its cross section, �L its length variation and ν the
Poisson’s ratio. For a slight bending, the extension of the
bending beam is given by:

�L = 1
2

∫ L

0

(
w′(x)

)2
dx . (10)

By the energy balance, we have:
∫ L

0

Eeff I

2

(
w′′(x)

)2
dx =

∫ L

0

Er I

2

(
w′′(x)

)2
dx

+ γ �(1 − ν)

2

∫ L

0

(
w′(x)

)2
dx, (11)

and then the effective flexural rigidity 	eff and the effective
elastic modulus Eeff of the bending beam can be obtained as:

	eff = Eeff I = Er I + γ �(1 − ν)

∫ L
0

(
w′(x)

)2
dx

∫ L
0 (w′′(x))2 dx

, (12)

Eeff = Er + γ �(1 − ν)

I

∫ L
0

(
w′(x)

)2
dx

∫ L
0 (w′′(x))2 dx

. (13)
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Equations (12) and (13) can be applied to the nanobeams
with arbitrary sectional profiles as well as arbitrary loads and
support forms.

There are usually two kinds of cross sections (shown in
figure 2) for a nanobeam, which are extensively used in most
research. For convenience, we call the beam with quadrate
section as a nanofilm, and the one with circular section as
a nanowire. The contour length of cross section � and
the moment of inertia I of a nanofilm and a nanowire can
be obtained as follows, respectively. For the nanofilm with
thickness H = (N + 2nk)a and width b, we have:

�f = 2 [b + (N + 2nk)a] , (14)

If = (N + 2nk)3a3b

12
, (15)

and

�f

If
= 24

(N + 2nk)3 a3

[

1 +
(

(N + 2nk)a

b

)]

, (16)

where the subscript f denotes the nanofilm. For a nanowire
with diameter D = d + 2ts = (N + 2nk)a, we have

�w = π(N + 2nk)a, (17)

Iw = π(N + 2nk)4a4

64
. (18)

Thus,
�w

Iw
= 64

(N + 2nk)3 a3
, (19)

where the subscript w denotes the nanowire.
In the experiments [1–3], to measure the effective elastic

modulus of a nanobeam, the atomic force microscope (AFM)
is used with a force acting on the span of the beam. The force
is usually considered as a concentrated force applied to the
mid-point of the beam [1–3]. However, since the diameter of
the AFM tip in the experiments is about 10 nm, it may bring
forth some error when the force of the AFM is considered as
a concentrated force [1–3], which will be shown in the next
section. Furthermore the acting point is not always at the mid-
point of the beam. So a more general case will be considered
in this paper. The beam is both-end clamped, and a uniform
distributed load q is applied to its span (as shown in figure 4).
The deflection of the beam is:

w(x) = 1

2E I

(

−Mx2 − Q

3
x3 + H(x − λ1)

q

12
(x − λ1)

4

− H(x − λ2)
q

12
(x − λ2)

4

)

, (20)

where

M = q

12L2

[
(L − λ2)

3 (L + 3λ2) − (L − λ1)
3 (L + 3λ1)

]
,

(21)

Q = q

2L3

[
(L − λ1)

3 (L + λ1) − (L − λ2)
3 (L + λ2)

]
,

(22)
and λ1, λ2 is the distance from two ends of the acting points
of the uniform distributed load to the origin, respectively, as

Figure 4. The schematic of the bending beam model.

shown in figure 4. H(x − λ) is the Heaviside function, which
is defined as:

H (x − λ) =
{

0, x < λ

1, x � λ.
(23)

Substituting equation (20) into equations (12) and (13), the
effective flexural rigidity 	eff and the effective elastic modulus
Eeff of the bending beam can be obtained, respectively. As
a special example, the beam with a uniform distributed load
applied to its middle span is discussed. The diameter of the
AFM tip is specified as R, and it is assumed that R = L/12.
Thus we have λ1 = (L − R)/2 and λ2 = (L + R)/2.
Substituting λ1, λ2 and R into equations (20)–(23), we obtain:

∫ L
0 (w′(x))2 dx

∫ L
0 (w′′(x))2 dx

= L2

64
. (24)

Substituting equations (14)–(19) and (24) into equa-
tions (12) and (13), the analytical expressions of the effective
flexural rigidity 	eff and the effective elastic modulus Eeff of
the nanofilm and the nanowire can be obtained, respectively, as

	f
eff = (N + 2nk)3a3b

12
Er + [b + (N + 2nk)a] (1 − ν)L2

32
γ,

(25)

	w
eff = π(N + 2nk)a

64

[
(N + 2nk)3 a3 Er + (1 − ν)L2γ

]
,

(26)

E f
eff = Er + 3γ L2(1 − ν)

8(N + 2nk)3a3

[

1 +
(

(N + 2nk)a

b

)]

, (27)

Ew
eff = Er + γ L2(1 − ν)

(N + 2nk)3 a3
. (28)

4. Discussion

It can be seen from equations (27) and (28) that the effective
elastic modulus of a nanobeam is a function of the surface
relaxation coefficient k and the surface tension γ . The values
of the relaxation coefficient k and the surface tension γ

determine the size effects of the effective elastic modulus.
The values of parameters in the calculation are listed in
table 1. Figures 5 and 6 show the variations of the effective
elastic moduli of a nanofilm and a nanowire with atomic layer
numbers. It can be seen from these figures that the effective
elastic modulus varies when the atomic layer numbers are
less than about 100, and it varies sharply as the atomic layer
numbers are reduced further to less than 50. In addition,
the sign of the surface tension dominates the direction of the
variation, i.e. the elastic modulus is enhanced for a positive
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Figure 5. The size-dependent effective elastic modulus of the
nanofilm.

Figure 6. The size-dependent effective elastic modulus of the
nanowire.

surface tension, which is qualitatively consistent with the
experimental results of [1–4], and it is weakened for a negative
surface tension, which is qualitatively consistent with the
experimental results of [5–7]. On the other hand, the surface
relaxation coefficient k also influences the effective bending
elastic modulus. In fact, when the surface relaxation coefficient
k is equal to unity, i.e. k = 1, equation (28) becomes:

Ew
eff = E + γ L2(1 − ν)

D3
, (29)

which is similar to the result, Ew
eff = E + 8

5
γ L2(1−ν)

D3 , in [3],
where the load of AFM was approximately considered as a
concentrated force. Let δEw

eff = Ew
eff − E , we show the

error caused by the approximation in figure 7. It can be seen
that the difference is large when the characteristic size of the
nanostructure is small enough, i.e. the atomic layer numbers
are less than 50.

It can also be seen from figures 5 and 6 that the curves with
the relaxation coefficient k < 1 and k > 1 are, respectively,
above and below the curves with the relaxation coefficient
k = 1. That is to say, the surface relaxation can make the

Figure 7. The difference between the uniform distributed load and
the concentrated force approximation.

Figure 8. The effective flexural rigidity of the nanobeam for two
kinds of cross section.

(This figure is in colour only in the electronic version)

surface stiffer when the surface relaxes into the plane (k < 1),
and softer when the surface relaxes out of the plane (k > 1).
So one can conclude that the size effects of the effective elastic
modulus of nanobeam depend on the surface tension γ and
the relaxation coefficient k. How and how much it depends
on them is determined by the interaction between the surface
relaxation and surface tension.

Figure 8 shows the variations of the effective flexural
rigidity of the nanofilm and the nanowire with the atomic
layer numbers. It can be seen that the curves coincide for the
surface tension with opposite sign and relaxation coefficients
with different value, which shows that the influence of the
surface relaxation and surface tension on the effective flexural
rigidity is negligible. It is because that, with the moment of
inertia being multiplied, the effective flexural rigidity becomes
not sensitive to the difference between the macroscopic bulk
and the nanostructures due to the decrease of scale.

5. Conclusion

A more generalized 3D crystal model for the elastic properties
of the nanofilm is established with the consideration of n layers
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of relaxed atoms. Four nonzero elastic constants of the model
are derived, and the Young’s modulus of the nanofilm in the
simple tension state is obtained. The size effects of the Young’s
modulus are dependent on the relaxation coefficient. It does
not vary obviously with the atomic layer number until the
atomic layer numbers are less than about 100. Moreover the
elastic modulus varies sharply as the atomic layer numbers are
less than 50. More specifically, the value of Young’s modulus
increases with the decrease of the atomic layer number if
relaxation coefficient k < 1; it is the other way round if
relaxation coefficient k > 1.

When the effects of both the surface relaxation and the
surface tension are taken into consideration, the effective
flexural rigidity and effective elastic modulus of a bending
beam are derived by energy equilibrium. The size effects of the
effective elastic modulus of a nanobeam are dependent on the
relaxation coefficient k and the surface tension γ . How much
it depends on them is determined by the interaction between
the surface relaxation and surface tension. The influences of
the surface relaxation and the surface tension on the effective
flexural rigidity are so negligible that they can be neglected
even at the nanoscale.
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Appendix

The surface area of a nanobeam with length L and contour �

before the deformation is

S = L�. (A.1)

The surface area of the nanobeam after the deformation is

S ′ = L

(

1 + �L

L

)(

1 − �L

L
ν

)

�, (A.2)

where �L is the extension of the nanobeam. Due to the small
deformation assumption, the deformed surface area can be

written approximately as:

S ′ ≈ L�

[

1 + �L

L
(1 − ν)

]

= L� + ��L(1 − ν). (A.3)

Thus the variation of surface area of the nanobeam is

�S = S ′ − S = ��L(1 − ν), (A.4)

and then the surface deformation energy resulting from beam
extension with the effects of surface tension (γ ) can be
obtained as

Ust = γ ��L(1 − ν). (A.5)
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