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ABSTRACT Based on the sub-region generalized variational principle, a sub-region mixed ver-
sion of the newly-developed semi-analytical ‘finite element method of lines’ (FEMOL) is pro-
posed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of
two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as
the complementary energy region in which a number of leading terms of singular solutions for
stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the
arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain
approximate displacements. A mixed system of ordinary differential equations (ODEs) and al-
gebraic equations is derived via the sub-region generalized variational principle. A singularity
removal technique that eliminates the stress parameters from the mixed equation system even-
tually yields a standard FEMOL ODE system, the solution of which is no longer singular and
is simply and efficiently obtained using a standard general-purpose ODE solver. A number of
numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are
given to show the generally excellent performance of the proposed method.

KEY WORDS stress intensity factors, finite element method of lines, sub-region generalized vari-
ational principle, ordinary differential equation solver

I. INTRODUCTION
Stress analysis in engineering applications inevitably encounters stress singularities caused by sudden

changes in geometry, e.g. around re-entrant corners (notches) or, more severely, around crack tips. Their
presence causes great difficulty in obtaining the numerical solutions, which have to be invoked when
analytical solutions are not available. A numerical recipe for accurate and efficient computation of stress
singularity factors (SIFs) usually consists of two major ingredients, namely, a powerful numerical method
for general stress analysis and a novel approach to obtaining the desired SIFs which may involve special
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treatment of various singularities. Instead of giving an extensive review of various existing numerical
approaches, our discussion is confined to a brief introduction to the major ingredients adopted in the
present paper.

The underlying numerical method employed in this paper is the finite element method of lines
(FEMOL)[1–4], which is a newly-developed, general-purpose, semi-analytical one. In this method, a
partial differential equation defined in an arbitrary domain is semi-discretized, by finite element tech-
niques via energy theorems or variational principles, into a system of ordinary differential equations
(ODEs) defined on straight or curved mesh lines. At present, the resulting ODE system is directly
and efficiently solved by a state-of-the-art ODE solver, e.g. COLSYS[5,6] is exclusively adopted in the
present paper. Such solvers have built-in self-adaptivity features such that the accuracy of the ODE
solutions satisfies the user pre-specified error tolerances. With these solvers, FEMOL has proved itself a
remarkable numerical method with efficient automatically built-in adaptivity in the mesh line directions,
so that its inherent semi-analytical characteristics are well preserved. Its power and versatility have
been demonstrated by a series of theoretical analyses and computational applications to various linear
and nonlinear problems. A general-purpose computer code FEMOL92[7] capable of static and vibratory
analysis of various linear elastic structures has been developed. For a more detailed and systematic
description of FEMOL see Ref.[4].

FEMOL could be directly applied to notch/crack problems[3,4]. The success in establishing ‘trian-
gular’ elements[8] by degenerating an element end-side to a point allows the use of the optimum radial
line meshes, i.e., mesh lines emanate from crack tips. With no special treatment, except for judicious
use of radial line meshes with sufficiently high polynomial degree p used in the element displacement
shape functions, FEMOL is able to produce remarkably accurate solutions even when very few elements
are used[4]. However, such successful computation has a price because the ODE solver employed, which
is responsible for the singularity solutions on these radially arranged mesh lines, needs heavy computa-
tional effort with respect to adaptivity to capture the local singularity behavior. For instance, the code
COLSYS, which uses a spline collocation algorithm at Gaussian points, would progressively impose
far more collocation points near the singular end-point than it does for regular problems. Moreover,
even a moderately stringent tolerance for the ODE solutions may cause the computer resources to be
exhausted.

While direct FEMOL analysis of singular problems avoids using any analytical singular solutions near
crack tips, additional computational effort is required to extract the desired SIFs from the computed
numerical solutions and hence, for most existing extraction methods, knowledge of the analytical singular
solutions has to be used, usually in an eigen-function expansion form. Xu and Yuan et al.[9–14] presented
some effective methods for accurate and reliable computation of complete real or complex eigen-solutions
in two-dimensional notch/crack singularities with multiple materials, arbitrary opening angles and
various surface conditions. The resulting algorithm is robust and may be employed by any numerical
methods that make use of singular solutions.

In order to take full advantage of the power ofFEMOLand the usefulness of the local singular solutions,
the sub-region generalized variational principle is utilized in this paper to lay a theoretical foundation
for the proposed implementation and to facilitate the integration of the two solution components. This
variational principle was first presented by Long[15] and was extended by Long et al.[16]. It soon found
successful applications in the finite element (FE) analysis of singularity problems, especially in SIF
computations[17–19]. A major problem in standard FE implementation is the uncertainty in choosing
the size of the singular region and hence the sensitivity of the computed results to the size of the singular
region. This is mainly due to a lack of the adaptivity feature in standard FE implementation.

The present paper presents a natural extension of the application of the sub-region generalized
variational principle to the newly-developed FEMOL for accurate and efficient SIF computations. In
the proposed method, a circular singular region which contains the notch/crack tip as a sector, see ΩC

in Fig.1(b), is taken as the complementary energy region in which a number of leading terms of singular
solutions for stresses are used, with the sought SIFs being part of the unknown coefficients. The rest
of the arbitrary domain, i.e., ΩP in Fig.1(b), is taken as the potential energy region in which FEMOL
is applied to obtain highly accurate displacements. By applying the sub-region generalized variational
principle, a mixed system of ODEs and algebraic equations is derived, which cannot be solved by a
standard ODE solver directly. A singularity removing technique is proposed to eliminate the singularity
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coefficients from the mixed equation system and hence yields a standard FEMOL ODE system, which
can be directly and efficiently solved by COLSYS. A subsequent back substitution immediately gives
the solution for the singularity coefficients, which can be converted into SIFs by simple calculations.
Because of the semi-analytical nature of FEMOL, the computed results are more accurate and less
sensitive to the size of the singular region than the FEM solutions.

The anti-plane strain and plane stress/strain problems are considered in this paper. In both cases,
without losing generality, body forces are not considered and only homogeneous displacement boundary
conditions are taken into account. For the plane elasticity problem, only the plane stress case is discussed
below and the two cases are simply called the anti-plane and plane stress cases in this paper. A number
of illustrative numerical examples, including bi-material notches/cracks, are given to show the generally
excellent performance of the proposed method.

II. SUB-REGION MIXED ENERGY FUNCTIONAL
Consider an arbitrary two-dimensional domain Ω containing a notch in N different materials, as

shown in Fig.1(a). It is partitioned into two sub-regions ΩC and ΩP , of which the former is a singular
region and is judiciously chosen to be circular with the notch/crack tip at its centre, and the latter
is the remaining regular region, see Fig.1(b). The stresses in ΩC and the displacements in ΩP are
chosen as the basic unknowns. Accordingly, the total complementary energy ΠC in ΩC (excluding the
interface ΓPC), the total potential energy ΠP in ΩP (also excluding the interface ΓPC) and the work
HPC done on the interface ΓPC by the stresses in ΩC on the displacements in ΩP will be dealt with.
When emphasis is on the different energy functionals, the regions ΩC and ΩP will be called the C- and
P -regions, respectively.

Fig. 1. N-material notch problem

The sub-regionFEMOL formulation is based on the sub-region generalized variational principle[15,16],
which states that for the true solution the following sub-region mixed energy functional has a stationary
value

Π = ΠP −ΠC +HPC (1)
For the anti-plane case, the three terms in Eq.(1) can be respectively expressed as

ΠP =
∑ Gn

2

∫ ∫
ΩP n

[(
∂w

∂x

)2

+
(
∂w

∂y

)2
]
dxdy −

∫
ΓS

wq̄zds (2a)

ΠC =
∑ 1

2Gn

∫ ∫
ΩCn

(
τ2
rz + τ2

θz

)
rdrdθ (2b)

HPC =
∑∫

ΓP Cn

τrzwds (2c)

where xyz is a right-hand Cartesian axis system, the summation is over each material n, Gn is the shear
modulus of material n, w is the displacement in the P -region, ΓS is the boundary section on which
traction force q̄z is prescribed and, τrz and τθz are stress components in the C-region.
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For the plane stress case, the three terms in Eq.(1) can be expressed in matrix form as

ΠP =
∑ 1

2

∫ ∫
ΩP n

{ε}T [D] {ε} dxdy −
∫
ΓS

{q̄}T {u}ds (3a)

ΠC =
∑ 1

2

∫ ∫
ΩCn

{σ}T [D]−1 {σ}rdrdθ (3b)

HPC =
∑∫

ΓPCn

(σrur + τrθuθ) ds (3c)

where

{σ} =

⎧⎨
⎩
σr
σθ
τrθ

⎫⎬
⎭ , {ε} =

⎧⎨
⎩
εx
εy
γxy

⎫⎬
⎭ , [D] =

E

1− ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
1− ν

2

⎤
⎥⎦ , {u} =

{
ux
uy

}
, {q̄} =

{
q̄x
q̄y

}

(4)
and the symbols have their usual meanings.

III. THE COMPLEMENTARY ENERGY REGION
In the complementary energy region, the stresses are assumed to be of the form of the Williams

eigen-function expansion. The required eigen-values i.e., the λi’s, may be complex in the plane stress
case and are found by using the embedding algorithm[9], which reliably gives numerically exact results.
3.1. The Anti-plane Case

In the polar coordinates shown in Fig.1(a), the singular solution of the Williams type expansion in
the C-region takes the following general form in each material domain

wn =
∞∑
i=1

αi r
λifni (θ), fni (θ) = ani cos (λi θ) + bni sin (λi θ) , 1 ≤ n ≤ N (5)

From the stress-free condition for the notch/crack surfaces and the compatibility conditions for interfaces
between different materials, all of the coefficients ani and bni for the different materials (1 ≤ n ≤ N)
can be expressed in terms of a single coefficient, namely, αi. Therefore a k term singular solution can
be written in matrix form as follows:

wn =
∑k

i=1
αi r

λifni (θ) = {Sn}T {α} , {α}T = {α1 α2 . . . αk}
which after differentiation provides a natural and ideal representation of the admissible stresses in the
C-region as

τnrz = Gn
∂wn
∂r

= Gn {Snr }T {α} , τnθz =
Gn

r

∂wn
∂θ

= Gn {Snθ }T {α} , 1 ≤ n ≤ N (6)

where
Snr i = λir

λi−1fni (θ) , Snθ i = rλi−1fni
′
(θ)

Inserting Eq.(6) into Eq.(2b) gives the total complementary energy in the C-region, which can be
expressed in terms of the singularity coefficients {α} as

ΠC =
1
2
{α}T [R] {α} (7)

Here
[R] =

∑N

n=1
Gn

∫∫
ΩCn

(
[Snr ]T [Snr ] + [Snθ ]T [Snθ ]

)
rdrdθ (8)

Since the C-region is chosen to be circular, the double integrals can be evaluated separately. Owing
to the orthogonal property of the terms in the Williams expansion, the matrix [R], the inverse of which
will be used later, turns out to be a diagonal matrix for which all of the diagonal elements can be
integrated easily to give the simple closed form solution

Rii =
∑N

n=1

Gnλi |θn+1 − θn|
2

r2λi

[
(ani )2 + (bni )2

]
(9)

This neat result justifies the earlier choice of the C-region as being circular.
The first variation of Eq.(7), which will be used later, is simply

δΠC = {δα}T [R] {α} (10)
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3.2. The Plane Stress Case

It is well known that the complex stress function in each material for plane elasticity can be expressed
in the Williams expansion form

Un =
∞∑
i=1

αi r
λi+1Fn

i (θ)

Fn
i (θ) = Ani sin[(λi + 1) θ] +Bn

i cos[(λi + 1) θ] + Cn
i sin[(λi − 1) θ] +Dn

i cos[(λi − 1) θ]
, 1 ≤ n ≤ N

(11)
Like the anti-plane case, using the surface conditions and the material interface conditions enables all
of the coefficients Ani , Bn

i , Cn
i and Dn

i in the different materials to be expressed in terms of a single
coefficient, namely, αi. For brevity, the superscript n is omitted from Fn

i below. The corresponding
stress vector in the C-region can then be written⎧⎨

⎩
σri
σθi
τrθi

⎫⎬
⎭ = αi r

λi−1

⎧⎨
⎩
F ′′i + (λi + 1)Fi
λi (λi + 1)Fi
−λiF ′i

⎫⎬
⎭ (12)

If the i-th term of a stress component is denoted by αiTi, then in the case of complex λi there must be
another term ᾱiT̄i that corresponds to λ̄i, where the overbar denotes complex conjugate. Combining
each pair of such terms yields the two real terms

αiTi + ᾱiT̄i = 2TRiαRi − 2TIiαI i (13)

where the subscripts R and I indicate the real and imaginary parts, respectively.
Using this property and rearranging the expansion series enables a k term singular solution for plane

problems to be written in the matrix form

{σ} = [F ] {α} (14)

Inserting Eq.(14) into Eq.(3b) yields the total complementary energy as Eq.(7) with

[R] =
∫
ΩC

[F ]T [C] [F ] rdrdθ (15)

Again, the double integrals can be evaluated separately, with the integral with respect to r being
obtained in a closed form and the integral with respect to θ being obtained by a suitable numerical
integration. Unlike the anti-plane case, the matrix [R] is no longer a diagonal matrix, but it is still a
positive definite one. The first variation of the total complementary energy for the plane stress case is
again given by Eq.(10).

IV. THE POTENTIAL ENERGY REGION
In the potential energy region, the displacement-method-based FEMOL is employed, which will be

briefly illustrated for the anti-plane case and directly applied to the plane stress case without detailed
derivation. For complete information, see Ref.[3, 4].
4.1. Element Mapping

Figure 1(b) shows a typical FEMOL mesh used in this study. The element mapping is common
to both the anti-plane and plane stress cases. Let p̃ denote the polynomial degree used for element
mapping. Figure 2 shows a typical quadratic element mapping (p̃ = 2) in FEMOL from the local (ξ, η)
space to the global (x, y) space, where Li (i = 1, 2, · · · , p̃+ 1) indicates the i-th nodal line, Sj (j = 1, 2)
indicates the j-th end-side and accordingly the intersection of Li and Sj is denoted by node ij. Although
in the present study only straight mesh lines are used, in general curved lines are equally applicable
when needed. The most-commonly-used element mapping is the parametric mapping

x =
p̃+1∑
i=1

Ni (ξ) xi (η) , y =
p̃+1∑
i=1

Ni (ξ) yi (η) (16)
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Fig. 2. Quadratic FEMOL element mapping.

Here Ni (ξ) is a Lagrange interpolation polynomial of degree p̃ defined in standard interval [−1, 1].
(xi(η), yi(η)) defines parametrically the i-th nodal line curve which in the present study is simply a
straight line.

The above mapping maps an element end-side to a parametric polynomial curve of degree p̃ while
geometrically not conforming with the circular boundary of the C-region when the element end-side is
connected to the C-region. To remove the error introduced by this, blending function interpolation is
used to construct a conforming element mapping{

x
y

}
=

p̃+1∑
i=1

Ñi (ξ)
{
x̃i (η)
ỹi (η)

}
+

p̂+1∑
j=1

N̂j (η)
{
x̂j (ξ)
ŷj (ξ)

}
−

p̃+1∑
i=1

p̂+1∑
j=1

Ñi (ξ) N̂j (η)
{
xij
yij

}
(17)

Here, Ñi (ξ) and N̂j (η) are respectively Lagrange interpolation polynomials in the ξ- and η-directions,
(x̃i (η) , ỹi (η)) denotes the i-th nodal line curve, (x̂j (ξ) , ŷj (ξ)) denotes the j-th end-side curve and
(xij , yij) denotes the coordinates of node ij. Note that the above mapping is exact even for the linear
interpolation p̃ = p̂ = 1, which is exclusively used in this paper. For an end-side curve that is required
to be a circular arc, the representation used is

x̂i = xc +R cos(φ1 ξ + φ2), ŷi = yc +R sin(φ1 ξ + φ2)

where xc and yc are the coordinates of the centre of the arc, R is the radius of the arc and φ1 and φ2

are appropriate coefficients locating the arc segment.
For convenience and clarity, the mapping defined by Eq.(16) is called parametric mapping and that

defined by Eq.(17) exact mapping. The exact mapping enables a seamless connection between the P -
and C-regions and hence is preferable. With the element mapping defined, the Jacobians of the element
area, nodal line segment and end-side segment can be evaluated respectively as

J = xξyη − xηyξ, JL =
√

(xη)
2 + (yη)

2
, JS =

√
(xξ)

2 + (yξ)
2 (18)

where ( )ξ = ∂ ( )/∂ξ, ( )η = ∂ ( )/∂η.
4.2. Element Displacement Functions

The element displacement trial functions can be expressed in a unified matrix form for both anti-plane
and plane cases as

{u} = [N ] {d}e (19)
Here {u} is the element displacement vector

{u} = w for the anti-plane case; {u} = {ux uy}T for the plane stress case

[N ] is the element shape function matrix

[N ] =
[

[N ]1 [N ]2 , . . . , [N ]p+1

]
[N ] i = Ni (ξ) for the anti-plane case
[N ] i = Ni (ξ) [I]2×2 for the plane stress case , i = 1, 2, . . . , p+ 1



Vol. 20, No. 2 Yuan Si et al.: Computation of Stress Intensity Factors · 155 ·

and {d}e is the element nodal line displacement vector

{d}e =
{
{d}T1 {d}T2 . . . {d}Tp+1

}T

{d}Ti = wi for the anti-plane case
{d}Ti =

{
uxi (η) uy i (η)

}T for the plane stress case
, i = 1, 2, . . . , p+ 1

Note that the polynomial degree p used for the element displacement is allowed to be different from
the p̃ and p̂ used for the element geometric mapping.
4.3. Strains and Stresses

For the anti-plane case, the shear strains are the derivatives with respect to x and y which can be
expressed as ⎧⎪⎨

⎪⎩
∂ w

∂ x
∂ w

∂ y

⎫⎪⎬
⎪⎭ =

1
J

[
yη −yξ
−xη xξ

]{
wξ
wη

}
(20)

with
wξ =

∂ w

∂ ξ
= [N ′] {d}e , wη =

∂ w

∂ η
= [N ] {d′}e (21)

where the primes represent derivatives with respect to ξ or η, respectively.
For the plane stress case, by using the strain-displacement relationship and some matrix manipulation,

the strain vector can be expressed in the matrix form

{ε} = [E1] {d}e + [E2] {d′}e (22)

Using the stress-strain relation yields the stress vector in the form

{σ} = [S1] {d}e + [S2] {d′}e

4.4. Total Potential Energy Functional

First consider the anti-plane case. By inserting Eqs.(20) and (21) into Eq.(2a), the element total
potential energy functional can be obtained as the following form

Πe
P =

1
2

∫ 1

−1

(
{d′}eT [A]e {d′}e + 2 {d′}eT [B]e {d}e + {d}eT [C]e {d}e

)
dη −

2∑
j=1

{d}eT {P}ej (23)

where

[A]e =
∫ 1

−1

a (ξ, η) [N ]T [N ] dξ, a (ξ, η) =
x2
ξ + y2

ξ

J

[B]e =
∫ 1

−1

b (ξ, η) [N ]T [N ′] dξ, b (ξ, η) = −xξxη + yξyη
J

[C]e =
∫ 1

−1

c (ξ, η) [N ′]T [N ′] dξ, c (ξ, η) =
x2
η + y2

η

J

{Pj}e =
∫ 1

−1

[N ]T q̄SjJSj dξ, q̄Sj ≡ q̄z|Sj
, η = ηj , j = 1, 2

The first variation of the element functional (23) with integration by parts yields

δΠe
P = −

∫ 1

−1

{δd}eT ([A]e {d′′}e + [G]e {d′}e + [H ]e {d}e)dη +
2∑

j=1

ηj {δd(ηj)}eT
(
{Qj}e − ηj {P}ej

)
(24)

where
[G]e = [A′]e + [B]e − [B]eT , [H ]e = [B′]e − [C]e

{Qj}e = [A]e {d′} + [B]e {d}e , η = ηj , j = 1, 2

[A′]e =
∫ 1

−1

∂a

∂ η
[N ]T [N ] dξ, [B′]e =

∫ 1

−1

∂ b

∂ η
[N ]T [N ′] dξ
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For the plane stress case, although the coefficient matrices have different components, the element
functional and its first variation can be expressed in exactly the form of Eqs.(23) and (24), respectively.

Standard element assembly procedures lead to the global functional, which takes exactly the same
form as the element one Eq.(23) except that the superscript e is removed. Similarly, the first variation
of the global functional also takes the same form as that in Eq.(24) except that the superscript e is
removed.

V. RESULTING EQUATION SYSTEM
The interface term HPC can be written in terms of {d} and {α} as

HPC = {α}T [W ] {d} (25)

where

[W ] =
N∑
n=1

Gn

∫
ΓP Cn

{Snr } [N ] rdθ for the anti-plane case

[W ] =
N∑
n=1

∫
ΓPC n

{F}T [T ] [N ] rdθ for the plane stress case

where [T ] is an appropriate coordinate transformation matrix. The first variation of Eq.(25) is

δHPC = {δα}T [W ] {d}+ {δd}T [W ]T {α} (26)

Equations (10), (24) and (26) sum to the first variation of the total mixed energy functional δΠ
(see Eq.(1)) and the corresponding stationary condition yields a mixed equation system that consists
of ODEs, the associated boundary conditions (BCs) and a set of algebraic equations (AEs) as follows

ODEs: − 1 < η < 1, [A] {d′′}+ [G] {d′}+ [H ] {d} + {F} = {0} (27a)
BCs: η = ηj , j = 1, 2, dm = d̄m or Qjm = ηjPjm, ηj /∈ ΓPC (27b)

BCs: η = ηj , j = 1, 2, Qjm = ηj [W ]T {α} , ηj ∈ ΓPC (27c)
AEs : [R] {α} = [W ] {d} , ηj ∈ ΓPC (27d)

Note that Eq.(27b) expresses the standard FEMOL BCs and that Eq.(27c) is coupled with the system
of AEs in Eq.(27d). Also note that the stress parameters in {α} are closely related to the SIFs and will
be given directly as part of the solution. This mixed equation system is not in the standard ODE form
which standard ODE solvers such as COLSYS can accept. The singularity removal technique (SRT) is
now proposed to overcome this difficulty.

From Eq.(27d) the stress parameter vector can be solved as

{α} = [R]−1 [W ]T {d} (28)

This step presents no difficulty and is computationally easy since [R] is a simple diagonal matrix in
the anti-plane case and a small-sized positive-definite matrix in the plane stress case. Eliminating {α}
from Eq.(27c) by using Eq.(28) changes Eq.(27c) into the standard BC expression

Qjm = ηj {Pj} (29a)

{Pj} = [W ]T [R]−1 [W ] {d(ηj)} , ηj ∈ ΓPC (29b)

As a result, the final equation system requiring solution is the standardized ODE system formed by
Eqs.(27a), (27b) and (29a), which can be solved directly and efficiently by COLSYS.

Compared with the standard FEMOL formulation, the only difference is in the load vector {Pj} on
the right-hand side of Eq.(29a). This is derived from the given boundary traction forces in the standard
formulation but is now given by Eq.(29b) instead, which may well be viewed as a variationally equivalent
traction vector implicitly derived from the action of the singular stresses in ΩC on the regular region
ΩP . In addition to the standardization of the ODE system, a more significant effect of eliminating the
AEs in Eq.(27d) is that the standardized ODE system renders a smooth solution {d} defined on the
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regular region ΩP with the singular region ΩC effectively removed, see Fig.1(c). In other words, the
problem which was once singular has now become a standard and regular FEMOL problem with the
singular region, along with the singular stresses residing in it, removed from the solution domain. To
obtain the desired SIFs after solving the standardized ODE system, it is simply necessary to insert {d}
back into Eq.(28).

Compared with the sub-region FEM, the replacement of FEM by FEMOL overcomes, to a great
extent, the crucial FEM difficulty of how large the singular regionΩC should be. For instance, whenΩC

is small a few singular terms are sufficient for stresses, but the solution on ΩP tends to become singular.
Hence sophisticated mesh refinement is needed around ΩC when using FEM, especially in the radial
direction. This problem is not expected to be so crucial when using FEMOL plus the singularity removal
technique when a favorable choice of radial line meshes is made. The self-adaptivity capability built
into the solver COLSYS will capture any possible badly behaved solution in the radial line direction.
On the other hand, in the circular direction the solution is relatively smooth and hence demands less
adaptivity, so that it can be effectively approximated by the polynomial shape functions assumed in
FEMOL elements. By adapting itself to produce an ODE solution satisfying the user-specified error
tolerance, FEMOL provides not only improved accuracy but also greater credibility for the computed
results and greater ease for both the analyst and the computer itself.

VI. NUMERICAL EXAMPLES
A number of numerical examples are now given to evaluate the performance of the proposed method

using the following notation: r0 — radius of the singular region; k — number of leading terms used in
the singular solution; p — polynomial degree used for element displacements; p̃ — polynomial degree
used for element geometry mapping; Tol — tolerance specified for ODE solutions; E,G, ν — Young’s
modulus, shear modulus and the Poisson’s ratio; KI,KII,KIII — stress intensity factors.

For the anti-plane case the tolerances for the solver COLSYS are imposed on both displacements and
their derivatives, whereas for the plane stress case the tolerances are only imposed on displacements.
All examples were computed on a Pentium 100 MHz computer.

Example 1. L-shaped Laplace problem
As the first example, the Laplace equation defined on the L-shaped domain shown in Fig.3 is

considered. The requirement was to compute the important factors α1 and α2 in Eq.(5). Two leading
terms (k = 2) were taken in the singular region (the term corresponding to α0 does not produce any
complementary energy) and six FEMOL elements were used.

Table 1 lists the computed results for: different radii of the singular region; different polynomial
degrees of element displacements; and both standard mapping and exact mapping on ΓPC . It can be seen
that for linear elements the exact mapping improved the results substantially, whereas for higher-order
elements the two mapping techniques gave similar accuracy. It can also be seen that the results depend
very little on the radius of the singular region, even in the very small and very large cases, i.e. r0 = 0.1

Fig. 3. L-shaped Laplace problem.
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Table 1. Computed results (k = 2, Tol = 0.01%)

p = 1 p = 2 p = 3
ΓPC r0 α1 α2 α1 α2 α1 α2

0.1 0.151558 0.022525 0.154867 0.025059 0.154564 0.025142
1.0 0.151385 0.022680 0.154658 0.025079 0.154596 0.025135
2.0 0.150956 0.022847 0.154626 0.025088 0.154597 0.025135

p̃ = p 3.0 0.150495 0.023007 0.154611 0.025091 0.154597 0.025135
4.0 0.149874 0.023209 0.154604 0.025092 0.154587 0.025136
4.5 0.149402 0.023358 0.154556 0.025103 0.154540 0.025146
0.1 0.153726 0.023118 0.154762 0.025029 0.154556 0.025140
1.0 0.154604 0.023630 0.154672 0.025072 0.154589 0.025133

exact 2.0 0.154942 0.024055 0.154654 0.025087 0.154591 0.025133
mapping 3.0 0.154967 0.024406 0.154653 0.025098 0.154591 0.025133

4.0 0.154549 0.024748 0.154659 0.025106 0.154581 0.025134
4.5 0.154078 0.024965 0.154617 0.025122 0.154534 0.025143

best known[4] 0.1546 0.02513 0.1546 0.02513 0.1546 0.02513

and 4.5, respectively. Including more terms was found to be unnecessary, whereas using higher- order
elements was beneficial.

Example 2. Bimaterial anti-plane disk with a notch[20]

This example is anti-plane deformation of a disk with a notch, see Fig.4. For convenience, the non-
dimensional radius of the disk is taken as R = 10 and other related data are α = 90◦, G1 : G2 = 1 : 10,
and θ1 = θ2. The displacement in the disk used only three terms of Eq.(5). The coefficients a1

i and b1i
in the first material were determined by:

For |cos (λiθ1)| ≤ |sin (λiθ1)|, then b1i = 1, a1
i = cos (λiθ1)/sin (λiθ1), whereas otherwise a1

i = 1,
b1i = sin (λiθ1)/cos (λiθ1) and the coefficients a2

i and b2i were calculated from the interface conditions.
To complete the assigned data, the following two alternative sets of three factors were assumed

case 1 : α1 = 1.0, α2 = 0.1, α3 = 0.01, case 2 : α1 = 0.01, α2 = 0.1, α3 = 1.0

Fig. 4. Bimaterial anti-plane disk with notch.

Table 2. Computed results for case 1

r0 α1 α2 α3

0.5 0.9999986 0.1000037 0.0100029
1.0 1.0000005 0.1000035 0.0100031
2.0 1.0000005 0.1000035 0.0100033
4.0 1.0000003 0.1000036 0.0100035
6.0 1.0000006 0.1000036 0.0100036
8.0 1.0000006 0.1000036 0.0100037
9.0 1.0000006 0.1000036 0.0100037

exact 1.0 0.1 0.01
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Table 3. Computed results for case 2

r0 α1 α2 α3

0.5 0.00999945 0.1000095 1.0002909
1.0 0.00999999 0.1000037 1.0003112
2.0 0.00999999 0.1000036 1.0003315
4.0 0.01000000 0.1000036 1.0003517
6.0 0.01000001 0.1000036 1.0003629
8.0 0.01000001 0.1000036 1.0003693
9.0 0.01000001 0.1000036 1.0003710

exact 0.01 0.1 1.0

The displacement on the outer boundary was determined accordingly and was used as the boundary
condition for this example. In computation, four FEMOL elements with p = 4 and exact mapping were
used, see Fig.4(b) and the tolerance for COLSYS was set as Tol= 0.001%. The computed results are
listed in Tables 2 and 3 respectively, from which satisfactory accuracy is evident.

Example 3. Plane disk with a mixed-mode crack
This example is similar to example 2 except that the present example is for a single material crack

and in plane stress. For convenience, the non-dimensional data were taken as E = 1.0, ν = 0.25,
R = 10.0 and α = 0. In the disk, three terms of the Williams expansion (11) were taken, from which
the displacements on the outer boundary were determined and used as the boundary condition for
this example. The first three eigenvalues are 0.5, 0.5 and 1.0 respectively, and the corresponding
eigenfunctions are given by replacing the coefficients {Ai, Bi, Ci, Di} in Eq.(11) with {0, 1/3, 0, 1},
{−1, 0, 1, 0} and {0, −1, 0, 1}, respectively. It is worth mentioning that the fourth eigenvalue is also
1.0, with eigenfunction coefficients {0, 0, 1, 0}, but was not selected because it does not contribute
any stress. To complete the given data, two sets of factors were assumed, namely,

case 1 : α1 = 20.0, α2 = 10.0, α3 = 20.0, case 2 : α1 = 10.0, α2 = 20.0, α3 = 40.0

Fig. 5. Plane disk with crack.

Table 4. Computed results for case 1

r0 α1 α2 α3

0.001 19.987415 9.998942 20.074443
0.01 19.979297 10.000717 20.062736
1.0 19.999574 10.000018 19.999892
3.0 19.999167 9.9999990 19.999928
5.0 19.999058 10.000021 19.999954
7.0 19.998657 10.000026 19.999964
9.0 19.998177 10.000030 19.999970

exact 20 10 20
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Table 5. Computed results for case 2

r0 α1 α2 α3

0.001 9.999399 19.999941 39.998788
0.01 9.999432 19.999917 39.999581
1.0 9.999293 20.000035 39.999860
3.0 9.998547 19.999998 39.999893
5.0 9.997920 20.000043 39.999925
7.0 9.997076 20.000052 39.999946
9.0 9.996082 20.000060 39.999963

exact 10 20 40

In computation, eight FEMOL elements with p = 4 and p̃ = 2 were used, see Fig.5(b), and the
tolerance for COLSYS was set as Tol= 0.1%. The computed results are listed in Tables 4 and 5 and
once again the accuracy is satisfactory. It is worth noting that even for an extremely small singular
region, e.g. r0 = 0.001, the results are still quite acceptable.

Example 4. Mixed-mode crack in plane stress
The problem and FEMOL mesh used are shown in Fig.6, and the non-dimensional data wereE = 1.0,

ν = 0.25, w = 7 and τ0 = 1.0. Like the previous example, the first six eigenvalues λ1, λ2, . . . are 0.5,
0.5, 1.0, 1.0, 1.5 and 1.5. Arguments identical to those given in the previous example allowed omission
of the fourth term (i.e. one of the two with eigenvalue 1.0), so that k = 2, 3, 5 implies respectively:
the two terms for λ1 = λ2 = 0.5; the three terms for λ1 = λ2 = 0.5 and λ3 = 1.0; and the five terms
for λ1 = λ2 = 0.5, λ3 = 1.0 and λ4 = λ5 = 0.5. Furthermore, the SIFs are defined as follows:

KI =
√

2π lim
r→0

r
1
2σθ |θ=0 , KII =

√
2π lim

r→0
r

1
2σrθ |θ=0

In computation, eight FEMOL elements with p = 4 and p̃ = 2 were used, see Fig.6(b), and the tolerance
for COLSYS was taken as Tol = 0.01% . The computed results are listed in Table 6, from which it can
be seen that the five-term solution produces very considerably better results for relatively large singular
regions.

Example 5. V-notch specimen

Fig. 6. Mixed mode crack.

Table 6. Computed results for KI and KII

r0 k = 2 k = 3 k = 5

0.001 34.001, 4.542 33.940, 4.541 33.926, 4.541
0.01 34.033, 4.537 33.927, 4.537 33.940, 4.539
0.1 33.629, 4.509 33.393, 4.509 33.885, 4.536
0.5 31.160, 4.403 31.030, 4.402 33.274, 4.534
1.0 27.997, 4.293 28.116, 4.293 32.103, 4.521
2.0 22.354, 4.172 22.647, 4.169 28.568, 4.384

Ref.[21] 33.20 ≤ KI ≤ 34.25, 4.50 ≤ KII ≤ 4.79
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Fig. 7. V-notch specimen in tension.

Table 7. Computed results for KI

r0/w p k = 1 k = 2 k = 3

3 3.7346 3.7362 3.7354
0.001 4 3.7580 3.7472 3.7611

5 3.7539 3.7492 3.7598
3 3.7341 3.7339 3.7403

0.01 4 3.7440 3.7482 3.7572
5 3.7484 3.7515 3.7601
3 3.5723 3.5722 3.7467

0.1 4 3.5789 3.5788 3.7561
5 3.5794 3.5791 3.7562

Ref.[22]: KI = 3.766 Ref.[23]: KI = 3.754

Figure 7(a) defines the problem and the non-dimensional data are h/w = 1.0, a/w = 0.4, w = 1.0,
α = 240◦,E = 1.0, ν = 0.3 andσ = 1.0. The FEMOL mesh used is shown in Fig.7(b). Exactmapping was
used and the tolerance for COLSYS was taken as Tol = 0.01% . Table 7 shows the results computed for
different k’, p’ and r0’s. These results agree very well with the solutions from the literature shown[21,22].

VII. CONCLUDING REMARKS
The sub-region mixed finite element method of lines (FEMOL) has been successfully applied to stress

intensity factor (SIF) computations for two-dimensional notch/crack problems. Numerical examples
presented in the preceding section have shown that the proposed method is capable of producing highly
accurate and reliable solutions with relatively few singular terms and FEMOL elements used. In this new
implementation, replacing fully discrete FEM with semi-analytical FEMOL in the original sub-region
mixed FEM is a major advance and has led to the following remarkable advantages.

1. The new implementation is still a general method for SIF computation, i.e. it is applicable to two-
dimensional crack/notch problems with arbitrary domains, arbitrary opening angles, arbitrary multiple
materials.

2. The proposed method does not rely on any special means, e.g. a special ordinary differential
equation (ODE) solver, because the ODE system derived from FEMOL with the singularity removal
technique is a standard linear ODE problem and hence any standard ODE solver can equally be used
to obtain accurate and reliable solutions.

3. The semi-analytical feature inherent in FEMOL leads to more accurate solutions in the potential
energy region which implies that, on the one hand, the number of FEMOL elements may be decreased
for moderate accuracy and, on the other, the solution credibility is increased.

4. Because the solutions in the potential region are no longer singular, the p-strategy (i.e. increasing
the polynomial degree p in each element with the element mesh fixed) is usually more beneficial and
efficient.
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5. Using the favorable radial line mesh makes the solution automatically self-adaptive in radial
directions and hence makes the solution much less sensitive to the size of the singular region. Numerical
examples have confirmed that roughly the same accuracy is given throughout the range from extremely
small to medium-sized singular regions.

6. Another small but important choice is to use circular singular regions which, on the one hand,
simplifies the formulation in the singular region and, on the other, makes full use of the orthogonal
relationship between eigenfunctions for anti-plane problems. As a result, for anti-plane problems the
solutions are nearly independent of the radius of the singular region and of the number of leading terms
used in the singular solutions.
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