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ABSTRACT For an anti-plane problem, the differential operator is self-adjoint and the corre-
sponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigen-
functions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We
developed for the first time two sets of radius-independent orthogonal integrals for extraction of
stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solu-
tion of displacement (an analytic result or a numerical result). Many numerical examples based
on the finite element method of lines (FEMOL) show that the present method is very powerful
and efficient.

KEY WORDS anti-plane problem, Hilbert space, eigenvalue, eigenfunction, orthogonal relation-
ship, stress intensity factor, finite element method of lines

I. INTRODUCTION
The stress analysis in practical engineering applications inevitably encounters stress singularities

caused by sudden changes in geometry, e.g. around re-entrant corners (notches) or, more severely, around
crack tips. Their presence causes great difficulty to the numerical solutions that have to be invoked when
the analytical solutions are not available. From Williams[1−−3], who provided a general solution to the
two-dimensional stress and displacement fields for the case of the planar crack problem, interest was
mainly given to the eigenfunction expansion method. Hartranft and Sih[4] used eigenfunction expansions
in the general solution to three-dimensional crack problems, and Liu[5] gave eigenfunction expansions of
general displacements and general stresses in the Reissner plate with crack. Most interest was focused
on SIF calculation with the eigenfunction expansion method. In Refs.[6–10], the boundary collocation
technique is used to calculate the SIFs, while in Refs.[11,12], the advantage of boundary integral
method is taken to solve the problem of a bending beam with a notch. Stern et al.[13,14] exploited the
contour integral method based on Betti’s reciprocal work. Long[15] presented the sub-region generalized
variational principle, which was extended by Long et al.[16,17] to fracture problems. Most numerical
methods make direct or indirect use of the eigensolutions available in calculating SIFs for cracks/notches
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so that singularity can be treated in a more efficient, accurate and reliable way. Recently, Xu and Yuan
et al.[18−−23] have proposed some effective methods for accurate and reliable computation of completely
real or complex eigensolutions in two-dimensional notch/crack singularities with multiple materials,
arbitrary opening angles and various surface conditions. The resulting algorithm is robust and can
be employed by any numerical method that makes use of singular solutions. A numerical recipe for
accurate and efficient computation of stress singularity factors (SIFs) usually consists of two major
ingredients, namely, a powerful numerical method for general stress analysis and a novel approach to
obtaining the desired SIFs which may include a special treatment of various singularities. Instead of
giving an extensive review of various existing numerical approaches, the discussion is confined to a brief
introduction to the major ingredients adopted in the present papers.

From an anti-plane problem, the differential operator is self-adjoint and the corresponding eigen-
functions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between
the derivatives of eigenfunctions) of the anti-plane problem is exploited. According to the orthogonal
relationship, we developed for the first time two sets of radius-independent orthogonal integrals for
extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain
known solution to displacement (an analytic result or a numerical result). The background numerical
method employed in this paper is the finite element method of lines (FEMOL)[24−−27], which is a
general-purpose semi-analytical method. With this method, a partial differential equation defined in an
arbitrary domain is semi-discretized, by finite element techniques based on the energy theorems or vari-
ational principles, into a system of ordinary differential equations (ODEs) defined on straight or curved
mesh lines. It can be meshed easily with a group of lines radiating from the vertex of cracks/notches for
fracture problems, such as anti-plane cracks/notches of multi-materials, arbitrary opening angles and
different surface conditions. At present, the resulting ODE system is solved directly and efficiently by
a state-of-the-art ODE solver, e.g. COLSYS[28,29] is exclusively adopted in the present paper. These
solvers have built-in self-adaptability features so the accuracy of the ODE solutions satisfies the user
pre-specified error tolerances, and have no need for re-meshing. Using these solvers, FEMOL has been
proved to be a remarkable numerical method with efficient adaptability in the mesh line directions
automatically built in, so its inherent semi-analytical characteristics are well preserved. Its power and
versatility have been demonstrated by a series of theoretical analyses and computational applications to
various linear and nonlinear problems. A general-purpose computer code FEMOL92[30] that is capable
of static and vibration analysis of various linear elastic structures has been developed. A more detailed
and systematic descriptions of FEMOL see Ref.[31].

The anti-plane problem is considered in this paper, and without loss of generality, body forces are not
included and only homogeneous displacement boundary conditions are taken into account. A number of
illustrative numerical examples, including bi-material notches/cracks problem, are given in the paper to
show the generally excellent performance of the proposed SIFs computation method. Many numerical
examples based on the finite element method of lines (FEMOL) show that the method presented in
this paper is very powerful and efficient.

II. PRELIMINARY CONSIDERATION
Figure 1 shows an anti-plane notch with N different wedged materials around the notch tip. The

body forces are assumed to be negligible. Gn(n = 1, 2, . . . , N) are the shear module of the materials,
θ1 and θN+1 the two boundaries of the notch which can be either stress free (F) or displacement clamped
(C). θn(n = 2, . . . , N) are the interface of two materials. The differential equation can be expressed
by the stresses in the n-th wedged material.

∂ (rτrzn
)
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Fig. 1. N-material notch problem.

The equilibrium equation can be expressed by the displacement wn in the n-th wedge
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∂θ2
= 0, n = 1, 2, ..., N (3)

It is well known that the Williams expression of wn can be written as

wn = α rλfn (θ)

Substituting wn into Eq.(3) yields an eigenproblem in ordinary differential equations (ODEs) as

f ′′n + λ2fn = 0, n = 1, 2, ..., N (4)

The boundary conditions (BCs) of notch/crack can be written as

F: f ′1 (θ1) = 0, f ′N (θN+1) = 0; C: f1 (θ1) = 0, fN (θN+1) = 0 (5)

The displacement continuity and stress equilibrium conditions for the interface θ = θncan be given as

fn (θn+1) = fn+1 (θn+1) , Gnf ′n (θn+1) = Gn+1f
′

n+1 (θn+1) , n = 1, 2, . . . , N − 1 (6)

III. EIGENFUNCTION
To solve the eigenproblem defined by Eqs.(4)-(6), the well known explicit form of eigenfunction

fn (θ) can be employed, i.e.

fn (θ) = An cos (λθ) + Bn sin (λθ) , n = 1, 2, ..., N (7)

From Eq.(6) we have the relationship with respect to {An, Bn} between the two adjoining materials
as {

An+1

Bn+1

}
= [Δn]

{
An

Bn

}
, n = 1, 2, ..., N − 1 (8)

where

[Δn] =

[
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[
cos (λθn+1) sin (λθn+1)

− sin (λθn+1) cos (λθn+1)

]
(9)

The matrix [Δn] is not singularity, i.e. |Δn| = Gn/Gn+1 �= 0, which implies that any set of {An, Bn}
can be represented by other sets, namely, if we know one set of {An, Bn} in the n-th wedge, we can
calculate the others one by one from Eq.(9).

For any order eigenvalue, solving the corresponding eigenfunction fn (θ) (n = 1, 2, 3, . . . , N − 1) is
equivalent to computing the coefficients {An, Bn}. For example, when the boundary θ1 is stress free
(F), A1 and B1 are not all zero. If cos (λθ1) �= 0, then A1 �= 0, A1 is normalized and we have

A1 = 1, B1 =
sin (λθ1)

cos (λθ1)
(10)

If cos (λθ1) = 0, then A1 = 0, B1 is normalized and we have

A1 = 0, B1 = 1 (11)

Then we can uniquely calculate {An, Bn} from Eq.(9).
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IV. ORTHOGONAL PROPERTY OF THE EIGENFUNCTIONS
Denote

f (θ) = {fn (θ) | θn ≤ θ ≤ θn+1, n = 1, 2, . . . , N} (12)

and define the inner product of any functions f (θ) and g (θ) in C [θ1, θN+1] as

(f, g)
∗

=

N∑
n=1

∫ θn+1

θn

Gnfn (θ) gn (θ)dθ (13)

and the induced norm as

‖f‖
∗

2 =
√

(f, f)
∗

(14)

It is well known that
{
C [θ1, θN+1] , ‖ · ‖

∗

2

}
is bellowed to Hilbert space, denoted as L∗2 [θ1, θN+1].

Denoting the function setD(T ) in which all functions satisfy f (θ) ∈ L∗2 [θ1, θN+1], the corresponding
boundary conditions (BCs) of notch/crack (5) and the interface conditions (6), and introducing the
differential operator T which maps D(T ) to L∗2 [θ1, θN+1]. When f ∈ D(T )

Tf = −D2f (θ) = {−fn (θ) |θ ∈ (θn, θn+1) , n = 1, 2, ..., N} (15)

By using the part integral method, it is easy to prove that T is a self-adjoint and nonnegative operator.
According to Eq.(15), Eqs.(4)-(6) can be turned into solving the eigenvalue λ2 and the eigenfunction

f of the operator T
Tf − λ2f = 0 (16)

which represents a standard eigenproblem in ODEs. Denoting that the eigenspace is Mλ = Span{
f |Tf = λ2f, f �= 0

}
and the eigenvaule set is σp (T ) (which is called spectrum of T ).

According to the self-adjoining operator T in Hilbert space T , we have the following three lemmas
Lemma 1. All eigenvalues λ2 of T are nonnegative real number.
Lemma 2. There is orthogonal property between eigenfunctions corresponding to different eigenvalues.
Lemma 3. There is orthogonal property between the derivatives of the eigenfunction corresponding to
different eigenvalues.

The proof of the above lemmas can be found in many literatures, such as Ref.[32].

V. SOLUTIONS
According to the well known Williams expression, the displacement shown in Fig.1 can be written

as

w =

{
wn =

∞∑
i=0

αir
λifni

∣∣∣∣∣ θ ∈ (θn, θn+1) , 1 ≤ n ≤ N

}
(17)

Assuming fk be the eigenfunction of the corresponding eigenvalue λk,
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∗

(18)

The coefficient αk can be extracted from Eq.(18) as the following orthogonal integral equation

αk = r−λk
(w, fk)∗

(fk, fk)
∗

= r−λk

N∑
n=1

θn+1∫
θn

Gnwn fnk

(fk, fk)
∗

, k = 0, 1, 2, 3, ... (19)

αi can also be thought as the expanded coefficients of a general Fourier series.
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Moreover, we can get another set ofαk based on the expansion from the derivatives of the eigenfunction
as

αk = r−λk
(w,θ, fk,θ)

∗

(fk,θ , fk,θ )∗
= r−λk

N∑
n=1

θn+1∫
θn

Gnwn,θ fnk,θ

(fk,θ , fk,θ )∗
, k = 1, 2, 3, ... (20)

Difference between the above two orthogonal integral extraction equations (19) and (20) is that the
constant term (namely, the zero order coefficient) has been excluded at the latter case. For any order
eigenvalue, based on the displacement field calculated from a certain numerical method as the finite
element method of lines (FEMOL) used in this paper, the coefficient αk can be gotten from Eqs.(19)
and (20). Furthermore, the stress intensity factors can be obtained.

VI. NUMERICAL EXAMPLES
To assess the performance of the proposed method, several numerical examples based on the FEMOL

are given in this section. The following notations are used: r0—radius of the circle contour, p— polynomial
degree used for element displacements in FEMOL, Tol—tolerance specified for ODE solutions, E, G, v—
Young’s modulus, shear modulus, Poisson’s ratio.

In the subsequent examples, the singular mapping technique of FEMOL is available. Only one of
the two sets of orthogonal integral extraction equations, (19) and (20), is list, which means that the
numerical results are identical within the given number of digits. All of the examples are reckoned on
Pentium 586-100 computer.

Example 1. Single edge crack problem
In this example, a single edge crack anti-plane problem is studied. The boundary conditions and

the FEMOL meshes are shown in Fig.2. We take p = p̃ = 3 and Tol= 0.1%. The computed results of
coefficients α1 and α3 along different radii r0 are tabulated in Table 1.

Table 1. Computed results of α1 and α3

r0 α1 (λ1 = 0.5) α3 (λ3 = 1.5)

0.001 1.08087 0.33437
0.1 1.08105 0.33420
0.25 1.08108 0.33416
0.5 1.08111 0.33413

Ref.[33] 1.081

Fig. 2. Single edge crack anti-plane problem.

Fig. 3. L-shaped anti-plane problem.

Example 2. L-shaped anti-plane problem
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In this example, a L-shaped anti-plane problem with a notch of 90◦ open angle is studied. The
boundary conditions and the FEMOL meshes are shown in Fig.3. We take p = p̃ = 3 and Tol= 0.1%.
The well known Williams expression of displacement u in this example can be written as

u =
∑

i=1,3,5,···

αir
λi sin(λiθ) +

∑
j=0,2,4,···

αjr
λj cos(λjθ)

The first three lower order coefficients α0, α1 and α2 along different radii r0 are computed and tabulated
in Table 2.

Table 2. Computed result of L-shape anti-plane problem

r0 α0(λ0 = 0) α1(λ1 = 2/3) α2(λ2 = 4/3)

0.001 0.6666666667 0.15060 0.025665
0.01 0.6666666667 0.15143 0.025400
0.1 0.6666666669 0.15460 0.025142
1.0 0.6666666675 0.15459 0.025137
2.0 0.6666666672 0.15459 0.025135

Best known [31] 2/3 0.1546 0.02513

Example 3. Bi-material anti-plane disk with a notch
In this paper, a bi-material anti-plane disk with a right angle notch as shown in Fig.4(a) is considered.

The ratio of the shear moduli of materials is taken as G1 : G2 = 10, the open angle between two different
materials is θ1 = θ2 = 135◦, and the radius of the disk is taken as R = 10.

Fig. 4. Bi-material disk with a notch.

We firstly consider an infinite body with a notch shown in Fig.4(b), and the displacement is assumed
to be

w =

∞∑
i=1

αir
λifn

i (θ), fn
i (θ) = [an

i cos (λiθ) + bn
i sin (λiθ)] , 1 ≤ n ≤ 2

If |cos (λiθ1)| ≤ |sin (λiθ1)| , then bi
1 = 1, ai

1 = cos (λiθ1)/sin (λiθ1)

If |sin (λiθ1)| ≤ |cos (λiθ1)| , then ai
1 = 1, bi

1 = sin (λiθ1)/cos (λiθ1)

The other coefficients (ai
2, bi

2) can be calculated from the interface conditions. We take the first three
terms and let α1 = 0.01, α2 = 0.1, α3 = 1.0, then the displacement on the circle of r = 10 can be
determined and used as the boundary condition for the disk as shown in Fig.4(a). Both of the anti-plane
disk with a notch and the infinite body with a notch have the same coefficients α1, α2, α3.

We take four FEMOL elements and p = p̃ = 4 and Tol= 0.01%. The first three lower order coefficients
α1, α2 and α3 along different radii r0 are computed and tabulated in Table 3.
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Table 3. Computed results of α1, α2 and α3

r0 α1 α2 α3

0.001 0.00999996 0.100003 1.012677
0.01 0.00999996 0.100002 1.000452
1.0 0.00999996 0.100003 1.000290
4.0 0.00999996 0.100003 1.000331
8.0 0.00999996 0.100003 1.000352

exact results 0.01 0.1 1.0

VII. CONCLUSIONS
The following conclusions can be drawn:
(1) i-th order SIFs directly extraction: The orthogonal relationships between eigenfunctions are

exploited and two sets of orthogonal integral extraction algorithms for SIF calculations are developed.
It is crucial that any order characteristic coefficient or SIF can be extracted directly.

(2) Contour integral radius independence: The two sets of orthogonal integral extraction algorithms
show that the present methods are independent of the contour integral radius. A good proposal is that
the radius for contour integral can not be too small or too large, because most of the methods based
on stress analytical solution could not give a satisfied field in too small or too large radius domains.

(3) Self verification: The computed results can be verified by itself by the two orthogonal integral
extraction algorithms and the characteristic of the independent contour integral radius.

(4) Generality: The present algorithms are general SIFs computing method and are applicable to
anti-plane problem of the crack/notches with arbitrary opening angles, multiple materials and notch
boundary surface conditions.

(5) Accuracy: Since the present algorithms have not led to any error, so the accuracy of the final
results only relies on the based numerical methods. The FEMOL used in this paper is a semi-analytic
method and is based on the ODE solver COLSYS, in which the self-adaptability is automatically built,
and the accuracy is fully controlled by the user with a desired error tolerance specified to the solver.

(6) Reliability: Because of the two sets of orthogonal integral extraction relationship, the SIFs results
are almost independent of the radius.

(7) Efficiency: The present algorithms only need to be integrated along an arc, so it is better to
avoid too small radius or too large radius.
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