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Abstract

Material potential energy is well approximated by ‘‘pair-functional’’ potentials. During calculating potential energy, the
orientational and volumetric components have been derived from pair potentials and embedding energy, respectively. Slip
results in plastic deformation, and slip component has been proposed accordingly. Material is treated as a component
assembly, and its elastic, plastic and damage properties are reflected by different components respectively. Material con-
stitutive relations are formed by means of assembling these three kinds of components. Anisotropy has been incorporated
intrinsically via the concept of component. Theoretical and numerical results indicate that this method has the capacity of
reproducing some results satisfactorily, with the advantages of physical explicitness, etc.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Material made up of a large number of atoms can be regarded as a many-body system, and the binding
forces among atoms determine the material structures and its intrinsic mechanical and electromagnetic prop-
erties [1–4]. Microscopically, material properties are not unalterably determined by their average chemical
composition but they are to a large extent influenced by their microstructure. Material deforms under external
agencies, and its microstructures change accordingly. With external loads continually increasing, microdefects
such as microcracks and microvoids begin to nucleate and grow, and the mechanical properties of materials
degrade accordingly. The process of material degrading has been researched by damage mechanics [5–18].
Meantime, the other kind of microdefects, dislocations move, interact, proliferate and pileup, etc. Dislocations
and their interactions determine the material strength in the absence of other internal defects, and they tend to
self-organize in the form of patterns, resulting into a heterogeneous field of deformation at microscale
although the overall macroscopic field is thought to be homogeneous [19–37]. As the collective motion of large
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number of dislocations, plastic flow and hardening have been researched in plastic theories [29,38]. The dam-
age constitutive relation is difficult to derive and the corresponding formulations can be complex, if aniso-
tropic damage and dissipative potentials and internal variables are considered.

Component assembly model [39] has been derived from pair-function potentials [2,4,40–42]. Material
potential energy due to deformations has been written as the sum of pair-functional potentials. In which, pair
potentials has been grouped according to discrete directions which are determined by the interactions among
atoms, and each group has been represented by an orientational component, i.e., the sum of pair potentials in
material parallel to the direction is the energy of the corresponding orientational component and the stiffness
contribution of these atomic bonds is its stiffness. Meanwhile, the other kind of component – the volumetric
one has been proposed from embedding energy. As the main plastic deformation mechanism, slip has been
investigated in the presentation and slip component has been set up accordingly. Material has been treated
as a component assembly, and its constitutive relations have been formed by means of assembling the response
functions of these three kinds of components.

The remainder of this paper is organized as follows. In part 2, the component assembly model is reviewed
briefly. In which, the orientational and volumetric components are derived from pair potentials and embed-
ding energy respectively. Breaking of atomic bonds results in macroscopic damage and fracture and it changes
components’ property gradually, and this material degrading process is investigated in part 3. In part 4, the
third kind of component – the slip one is also introduced, and the elasto-plast-damage constitutive equations
have been formed by assembling these three kinds of components. In the last part, the differences between the
proposed model and continuum damage models, microplane theory [43–46], quasi-continuum (QC) model
[47,48], virtual internal bonds (VIB) model [49] and cohesive zone one [50] have been discussed briefly, and
a concise conclusion has also been given.
2. Introduction of the component assembly model

The principal view of pair-functional potentials is that the cohesive energy of an atom is determined by the
local electron density at the site into which that atom is placed [51–53]. The embedded atom method posits a
total energy of the form,
EexactðfRi; rngÞ ! Eapprox½qðrÞ; fRig� ¼
1

2

Xi 6¼j

ij

/ðRijÞ þ
X

i

F ðqiÞ; ð1Þ
where, the term /(Rij) describes a pairwise isotropic interatomic potential function which is essentially repulsive
and depends only on the atomic spacing Rij ¼ jRi � Rjj ¼ Rði;jÞ, (i 5 j), Ri is the position of the ith nuclear and
rn is the position vector of the nth electron. F(q) is referred to as the embedding energy (function), modeling the
attractive interaction as a function of the local electron density q into which the considered atom is placed. The
above equations may include various parameters and these parameters can be obtained by fitting equations to
intrinsic material parameters such as the elastic constants, crystal structure and cohesive energy, etc.

In practice, our interest is in excursions about the equilibrium positions, it is convenient to define zero of
energy at initial equilibrium positions. Expanding Eq. (1) by Taylor series, further progress can be made in
trimming down the first term oEtot

oR
� dR by recognizing that the expansion is built around the equilibrium con-

figuration, and the first term can be eliminated since we have oEtot

oR
� dR � 0 at equilibrium. Thus, potential

energy due to deformation (strain energy) can be expressed in the form (the third and higher derivatives
excluded):
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Here, it should be emphasized that in component assembly model pair potentials are grouped according
to discrete directions not to the quantities of interatomic potential in QC. Pair potentials are grouped accord-
ing to directions, and microstructures and their evolutions are embodied on energy changing in different
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directions. Furthermore, an orientational component has been set up to represent each group of atomic bonds.
In addition, considering the change of electronic density is the function of the volume change, another kind of
component, the volumetric one has also been proposed to represent the contribution of embedding energy.
Evidently, the orientational component works like a bar and the volumetric one responds only to volume
changes. Material is treated as a component assembly. By energy equivalence, and comparing with continuum
mechanics [38], yields the result:
Cijkl ¼
X

s

Hsms
i m

s
jm

s
kms

l þ Kdijdkl; ð3Þ
herein Hs denotes the elastic modulus of the sth orientational component, and K the bulk modulus of the vol-
umetric one. dij denotes the second-order identity. Due to simple deformation of the orientational and volu-
metric components, their response functions are much simpler than the constitutive in continuum mechanics,
and they can be expressed as follows:
rs ¼ rsðesÞ ¼ rs eijms
i m

s
j

� �
ð¼ HsesÞ; ð4Þ
and
rV ¼ rVðeVÞ ¼ rVðeiiÞð¼ KeiiÞ; ð5Þ

where rs and es denote the stress and the strain of the sth orientational component respectively, rV and eV the
(hydrostatic) stress and the (volumetric) strain of the volumetric one respectively. In addition, the elasticity
tensor in component assembly model satisfies the Voigt symmetry, Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij. Due to the vol-
umetric component, it gets rid of the constraint of the Cauchy relation, Cijkl ¼ Cikjl.

Once pair-functional potentials have been specified and the crystal structure is known, material properties
can be derived directly. Actually, materials are always inhomogeneous and anisotropic, but many materials
demonstrate macroscopic isotropy, such as most metals. In particular, for homogeneous material (the observ-
ing length is much larger than characteristic length), there is
Cijkl ¼
Z p

2

0

Z 2p

0

Hðh;uÞmiðh;uÞmjðh;uÞmkðh;uÞmlðh;uÞ sin hdhduþ Kdijdkl: ð6Þ
For changes of electronic density relate only to volumetric strain, and infinitesimal deformation is consid-
ered, the bulk modulus can be treated as a constant:
Kðh;uÞ � K: ð7Þ

Eq. (6) is the constitutive equation for homogeneous materials. In particular, for macroscopic homoge-

neous and isotropic materials, the orientational components have the same modulus:
Hðh;uÞ � H : ð8Þ

Integrating Eq. (6) on the up half a unit sphere, and yields:
Cijkl ¼
2p
15

H þ K
� 	

dijdkl þ
2p
15

Hðdikdjl þ dildjkÞ: ð9Þ
Comparing with traditional continuum mechanics, yields the result
H ¼ 15
2p l

K ¼ k� l



; ð10Þ
herein, k and l are Lame’s coefficients. Figs. 1 and 2 are the typical configurations of planar and spatial dis-
crete orientational components respectively.

For orthotropic material, it has nine independent material constants. The integral of Eq. (6) will be trans-
formed to discrete summation in numerical computing, and the selected directions turn into discrete orienta-
tional component’s directions, it has the same form as Eq. (3). Anisotropy is embodied intrinsically in the
different moduli of orientational components. Concretely, the component’s stiffness can be derived by means
of least square method,



Fig. 1. The configuration of planar discrete orientational components.

Fig. 2. The configuration of spatial discrete orientational components.
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from oW
oHt ¼ 0; t ¼ 1; 2; . . ., there is,
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In addition, for oW
oK ¼ 0, there is
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In the above three equations, ijkl may be equal to 1111, 1122, 1133, 2211, 2222, 2233, 3311, 3322, 3333,
2323, 3131 and 1212 for orthotropic materials. Consider the symmetry to all orientational components to
simplify the solution. Finally, the equations for components are written as
½A�
H

K


 �
¼ fbg: ð14Þ
In general, the coefficient matrix [A] is not a square one, and the above equations can be solved by means of
MINRES and its variants, e.g., GMRES [54,55].

3. Damage in the proposed model

Fracture of engineering structures [56–62] is often preceded by considerable changes in the microstructures
of the material they are made of. Accurate failure predictions can only be obtained if this microstructural dam-
age is taken into account in the fracture modeling. This requirement has led to the development of so-called
local or continuum approaches to fracture, in which fracture is regarded as the ultimate consequence of the
material degradation process [7,17,63]. In these methods, the degradation is often modeled using continuum
damage mechanics [5–14,63]. Continuum damage theories introduce a set of field variables (damage variables)
which explicitly describe the local loss of material integrity. A crack is represented by that part of the material
domain in which the damage has become critical, i.e., where the material cannot sustain stress anymore. Redis-
tribution of stresses results in the concentration of deformation and damage growth in a relatively small region
in front of crack tip. It is the growth of damage in this process zone which determines in which direction and at
which rate the crack will propagate. Crack initiation and growth thus follow naturally from the standard con-
tinuum theory, instead of from separate fracture criteria.

It is true that, microstructures changing and damage and fracture, they all are the changing and breaking of
atomic bonds. As an abstract of atomic bonds, when atomic debonding emerges, the corresponding orienta-
tional component changes its mechanical properties, e.g., stiffness. The more atomic debonding occurs and the
more stiffness changes:
D ¼ 1:0� H
H 0

; ð15Þ
where H0 and H denote the initial and instantaneous (damaged) secant stiffness of the component respectively,
D its damage factor. A scalar value is enough for a 1 � D component, it is a microscopic value (however, for
material, its constitutive is a typical fourth order tensor, as the following Eq. (26)). Meantime, as a typical
1 � D component, the orientational one has simple constitutive relation, it is expressed as follows:
rs ¼ ð1� DsÞHs
0e

s ¼ ð1� DsÞH s
0eijms

i m
s
j; ð140Þ
and its rate form is
_rs ¼ ð1� DsÞH 0ms
i m

s
j _eij � H 0ms

i m
s
jeij

_Ds: ð1400Þ
The stress contribution of single orientational component is written as
rij ¼ rsms
i m

s
j: ð16Þ
Meanwhile, the hypothesis that damage is never healed up has been adopted:
_D P 0: ð17Þ
The damage of the orientational component has been treated as a function of its deformation history eh

(the maximum/minimum strain in whole deformation process):
D ¼ DðehÞ: ð18Þ
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It admits the notation
dD
deh

� 
¼

dD
deh
; when e ¼ eh and e_e > 0;

0; other conditions:



ð19Þ
It follows that,
_Ds ¼ dD
deh

� s

_es ¼ dD
deh

� s

ms
i m

s
jeij: ð20Þ
From another point of view, since the orientational component is derived from pair potentials, its property
can be investigated directly by the interatomic potentials. For example, the Lennard-Jones potential [40,41]
has the following form
UðRijÞ ¼ a
b

Rij

� 	12

� 2
b

Rij

� 	6
" #

: ð21Þ
The stiffness of the orientational component has been gotten from Eq. (21), H / U 00 ¼
a
b2 156ð b

Rij
Þ14 � 84ð b

Rij
Þ8

h i
, Fig. 3 is the curve of the orientational component’s stiffness versus the length.

Embedding energy is essentially a kind of Coulomb potential. For the conservation of electric charge, there
is qV ¼ const, and it indicates _q ¼ � q

V
_V / ð�_eiiÞ. On the other hand, the attractive force between the atom

and electronic gas is proportional to q. Considering K an representative of the intensity of the force, there
are K / q and _K / ð�_eiiÞ, it implies ln K

K0
/ ð� ln V

V 0
Þð� �eiiÞ or ln K

K0
¼ �xeii, x is a material parameter.

Fig. 4 displays the linear relation between 1
x ln K

K0
and eii.

Furthermore, it can simply be expressed as
_K ¼ �xK _eii ¼ �xK _eV ; ð22Þ

Eq. (22) indicates that the damage factor of the volumetric component DV is
DV ¼ xeii ¼ xeV; ð23Þ

and its rate form
_DV ¼ x_eii; ð24Þ

Followed by Eq. (5), there is
rV ¼ ð1� DVÞK0eii; ð50Þ

where K0 denotes the initial bulk modulus. Its rate form is expressed as follows:
_rV ¼ ð1� DVÞK0 _eii � K0eii
_DV ¼ ð1� 2xeiiÞK0 _eii: ð500Þ
Fig. 3. The curve of H versus R.



Fig. 4. The curve of 1
x ln K

K0
versus eii.
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Eqs. (5 0), (500) and (22)–(24) imply that damage heals up as soon as deformation is removed. Certainly, it is
very easy to consider the hypothesis that damage is never healed up. It is also very easy to consider the quasi-
lateral condition in component assembly model, for this condition is embodied on each simple deformed com-
ponent. Finally, there yields the elasto-damage constitutive equations,
_rij ¼
XN

s¼1

ð1� DsÞH s
0 � Hs

0e
s dD

deh

� s� �
ms

i m
s
jm

s
kms

l þ ð1� 2xeiiÞK0dijdkl

( )
_ekl; ð25Þ
where N denotes the total number of the orientational components. The elasto-damage elasticity tensor is
given by
Ced
ijkl ¼

XN

s¼1

ð1� DsÞHs
0 � H s

0e
s dD
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� s� �
ms

i m
s
jm

s
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l þ ð1� 2xeiiÞK0dijdkl: ð26Þ
The orientational and volumetric components have been derived from pair functional theory, and they indi-
cate different deformation mechanisms. Material is treated as a component assembly, and it means that mate-
rial change its state so soon as any component changes its state. For simplicity, the bulk modulus of the
volumetric component can be treated as a constant, x � 0. Fig. 5 illustrates the construction of material dam-
age surface from component.

If the effective Poisson’s ratios are defined as
~v21 ¼
e2

e1

����
���� ð27Þ
and
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����
����; ð28Þ
where ei; i ¼ 1; 2; 3 is the principal strain. Under uniaxial tension, there is
r1=e1

0

0

8><
>:

9>=
>; ¼

XN

s¼1

ð1� DsÞHs
0

m4
1 m2

1m2
2 m2

1m2
3

m2
1m2

2 m4
2 m2

2m2
3

m2
1m2

3 m2
2m2

3 m4
3

2
64

3
75þ K

1 1 1

1 1 1

1 1 1

2
64

3
75

8><
>:

9>=
>;

1

�~v21

�~v31

8><
>:

9>=
>;; ð29Þ
and the effective Poisson’s ratios can be gotten by solving Eq. (29).
The wedge splitting test, shown in Fig. 6, is a recent experimental technique introduced in [64] to determine

some softening properties of a quasibrittle material. Displacement control is applied to concrete specimen



Fig. 5. The response function (a) and the damage surface (b) of the orientational component, and the material damage surface (c).
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through the downward movement of a wedge placed between rollers creating a splitting action. The wedge
splitting test results of experiments can be used for the parameter identification problem. Considering the com-
pression strength of concrete much larger than the tensile one, the response function of orientational compo-
nents is chosen in Figs. 7 and 8 is the corresponding damage factor versus strain curve. In addition, for
simplicity, the stiffness of volumetric component is treated as constant. The spatial discretization of orienta-
tional components is shown in Fig. 2. Fig. 9 shows that the numerical result comparing to experiment data



Fig. 8. The damage versus strain curve.

Fig. 7. The response function.

Fig. 6. The configuration of wedge splitting.
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Fig. 9. The load–displacement curve.
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[50]. For fitting the whole experiment data, the more sophisticated response function is needed, e.g. three-
branch piecewise linear one. Moreover, for fitting experiment data better, material failure criteria have been
needed, however, it is not included in this example.
4. Plasticity in the components assembly model

Due to not changing the length of bonds, atomic movement perpendicular to atomic bond can not be mod-
elled by simple pair-functional potentials, as dislocations, etc. The introduction of the concept of dislocations
in [20,22] and several others [23,24] marked the first decisive step in explaining the phenomenon of plastic
deformations. Dislocation slip is the main plastic deformation mechanism in most metals.

Slip is a typical two dimensional movement, it results in plastic deformation. As the basic research element,
and for embodying the concept of the component of plastic deformations, slip system can be called as the ‘‘slip
component’’. Its kinematic and kinetic variables are the slip quantity c and the resolved shear stress s, respec-
tively. During the gliding process, the critical resolved shear stress scr and the slip quantity c have the following
relation
_sðaÞ ¼ _sðaÞcr ¼
Xn

b¼1

hab _cb; for _cb > 0; ð30Þ
herein hab is the hardening modulus, a = b denotes the self-hardening and a 5 b the latent hardening. a and b
indicate the ath and the bth slip components respectively. b(a) and n(a) are the unit vectors in the referential slip
and normal directions of the ath slip component. A 2-order tensor is defined accordingly,
PðaÞ ¼ 1

2
nðaÞ � bðaÞ þ bðaÞ � nðaÞ
� �

: ð31Þ
For infinitesimal deformation, the resolved shear stress and stress field have the relation
sðaÞ ¼ P ðaÞij rij: ð32Þ
Similarly, the plastic strain can be expressed by these slip components
ep
ij ¼

Xn

a¼1

cðaÞP ðaÞij : ð33Þ
Finally, the relation between the plastic strain and the stress is given by
_ep
ij ¼ Sp

ijkl _rkl; ð34Þ
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where Sp is the material plastic compliance tensor. For infinitesimal deformation, it is expressed in the form
Sp
ijkl ¼

Xn

a¼1

Xn

b¼1

~habP ðaÞij P ðbÞkl ; ð35Þ
herein ~hab is the inversion of hab. The above equation is the sum of (continuous) slipping components. Sup-
posing the elastic property not changing during slipping, from Eq. (25), there is
_ee
ij ¼ Sed

ijkl _rkl: ð250Þ
where Sed is the elasto-damage compliance tensor, Sed ¼ ½Ced��1. Combining Eqs. (25 0) and (35), and consid-
ering the relation:
eij ¼ ee
ij þ ep

ij; ð36Þ
the elasto–plasto-damage constitutive equations are given by
_eij ¼ Sed
ijkl þ Sp

ijkl

� �
_rkl ¼ Sepd

ijkl _rkl; ð37Þ
herein Sepd denotes the elasto–plasto-damage compliance tensor. Fig. 10 illustrates the proposed method.
The material yield surface and its evolution can be predicted by these slip components. Material yield sur-

face and its evolution are constructed by means of intersecting these slip components’, and Fig. 11 illustrates
the constructing procedure for isotropic materials. s0

cr denotes the initial resolved shear stress. The Bauschinger
Effect, isotropic and kinematic hardening, etc., [29,35,38] can be recurred easily by this construction of yield
and loading surfaces, if slip components have different hardening properties. Moreover, for the strain of the
slip component always perpendicular to its yield or loading surfaces, and considering material yield and load-
ing surfaces are the internal enveloping surfaces of slip components’ surfaces, the Illiushin Hypothesis is
always sound. In addition, material loading surfaces can be independent or interdependent if the slip compo-
nents’ surfaces are independent or not.

The above derivations imply that the correlation between plasticity and damage is excluded. In this appli-
cation, the authors show the feasibility of the proposed work to metals. The constitutive model is demon-
strated here through the degradation of the material stiffness due to both the plastic deformation and
damage. The metal investigated here is the aluminum alloy 2024-T3 [8], and plane stress situation is assumed.
Orientational components bear elasto-damage deformation, and their discretization configuration is shown in
Fig. 1. Slip component discretization is set that one has per 150 in the whole plane. The response function of
the orientational component is two-branch law, and the damage threshold (elastic) and failure strains are set
as ee

0 ¼ 0:00727 and ee
c ¼ 0:0727, respectively. For simplicity, the latent hardening is excluded in this example,

and the self-hardening stiffness of all slip components is chosen as haa = 1500 (MPa), the initial critical
Fig. 10. The procedure of components assembly.



Fig. 11. The response function (a) and the yield surface (b) of the slip component, and the material yield surface (c).
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resolved shear stress is s0
cr = 171.28 (Mpa). The results are shown in Fig. 12. In which, the red line is the result

of the component assembly model.



Fig. 12. Uniaxial stress–strain curve for aluminum alloy 2024-T3 (comparison with experiment data [8]).
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5. Discussion

5.1. Comparing with classic anisotropic damage models

In the anisotropic damage models, the effective tensor �r is related to the stress tensor r by the following
linear transformation [16]:
�rij ¼ Mikjlrkl; ð38Þ

where M is a fourth-order linear transformation operator called the damage effect tensor. Depending on the
form used for M, it is very clear from the above equation that the effective stress tensor �r is generally not sym-
metric. Using a nonsymmetric effective stress tensor as given by Eq. (38) to formulate a constitutive model will
result in the introduction of the Cosserat and a micropolar continuum [65,66]. However, the use of such com-
plicated mechanics can be avoided if the proper fourth-order linear transformation tensor is formulated in
order to symmetrize the effective stress tensor. Such a linear transformation tensor called the damage effect
tensor is obtained in [15,18,67]:
Mikjl ¼ dik � /ikð Þ�
1
2 djl � /jl

� ��1
2; ð39Þ

Mikjl ¼
1

2
dik � /ikð Þ�1djl þ dik djl � /jl

� ��1
h i

; ð40Þ

Mikjl ¼ 2 ðdik � /ikÞdjl þ dikðdjl � /jlÞ
� ��1 ð41Þ
and
Mikjl ¼ ðI ikjl � wikjlÞ; ð42Þ
where Iijkl is the fourth-order identity tensor. However, it is very difficult to solve matrix inversion and square
root, e.g., ðdik � /ikÞ

�1
2. Alternatively, it is not easy to characterize physically the fourth-order damage tensor

wijkl as opposed to the second-order damage tensor /ij. On the contrary, the component assembly model has
the intrinsically symmetric elasto-damage stiffness, and the artificially symmetrical treatments in classic aniso-
tropic damage models are no longer needed.

In classic anisotropic damage models, the plastic and dissipative potentials and the internal variables have
been assumed at the representative volume element (RVE), and the choice of functions and variables is arti-
ficial to some extent. However, the basic research elements in component assembly model are three kinds of
components, their deformations are simple. In addition, the constitutive equations (response functions) can be
gotten physically especially in crystals, e.g., the response functions of the orientational and volumetric com-
ponents from interatomic potentials and the response function of the slip one from crystal plasticity.
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5.2. Comparing with microplane model

Just like microplane model [43–46], the basic research element is not RVE. The basic element in microplane
model is discrete microplanes, and the stress–strain relations are defined independently on planes of all pos-
sible orientations in the microstructure, no matter what elasticity, plasticity and damage. Moreover, the micro-
plane stresses or strains are constrained kinematically or statically to the macroscopic stress or strain tensors
in a weak sense.

There are three basic research elements in the component assembly model, and they are the orientational
component, the volumetric and slip ones, respectively. Actually, these components are re-divisions of RVE
according to different deformation mechanisms. In which, as a 1D bar, the orientational component only
bears the tensile or compressive loads. As a typical 2D component, the slip one can bear shear loads. The
3D volumetric component bears the hydrostatic stresses. Material is treated as a component assembly, and
its constitutive equations have been formulated by assembling all kinds of components’ response functions.
Anisotropy has been incorporated naturally via component concept. Meanwhile, material damage and yield
have been reflected via different components.

5.3. The relation between QC, VIB, cohesive zone and the proposed model

QC, VIB and the component assembly model have the same physical foundation, and they all are from
interatomic potentials. In QC, the atoms are grouped according to the quantities of interatomic potentials,
by means of combining with continuum mechanics (QC is used near crack tips or in slip bands and continuum
mechanics is used in other regions). In component assembly model, the atoms are grouped according to the
directions, and material is treated as a component assembly. VIB model is derived from pair potentials and has
simple form. In which, due to not considering the embedding energy, it is constrained by the Cauchy relation,
Cijkl ¼ Cikjl.

Cohesive zone model has been used to simulate fracture process extensively. Material fracture work is
expressed by cohesive zone models constitutive. Actually, material damage and fracture processes are atom-
istic bonds change and break continually, and the cohesive zone models constitutive can be gotten from inter-
atomic potentials. Certainly, cohesive zone models constitutive can be gotten from components response
functions by means of energy equivalence. Actually, material damage and its microstructure evolutions are
occurred in space not plane.

Theoretical analysis indicates that the proposed method has the capacity of re-expressing the generalized
Hooke’s Law (Eq. (3)) and reproducing some results satisfactorily [68,69], preliminary computations show
that component assembly model has the capacity of simulating material damage process, with the advantages
of great conceptual simplicity, physical explicitness and intrinsic induced anisotropy etc.
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