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Collisions of a particle pair induced by optical tweezers have been employed to study colloidal
stability. In order to deepen insights regarding the collision-sticking dynamics of a particle pair in
the optical trap that were observed in experimental approaches at the particle level, the authors carry
out a Brownian dynamics simulation. In the simulation, various contributing factors, including the
Derjaguin-Landau-Verwey-Overbeek interaction of particles, hydrodynamic interactions, optical
trapping forces on the two particles, and the Brownian motion, were all taken into account. The
simulation reproduces the tendencies of the accumulated sticking probability during the trapping
duration for the trapped particle pair described in our previous study and provides an explanation for
why the two entangled particles in the trap experience two different statuses. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2712183�

I. INTRODUCTION

A microscopic approach to evaluate the colloidal stabil-
ity by means of artificially induced particle collisions with
the aid of optical tweezers has been developed.1,2 In such a
method, after two particles are trapped by optical tweezers
for a short time �the trapping duration�, they are released to
monitor whether they will stick together or separate. Then,
all the trapped pairs n and the aggregated pairs nc are
counted to obtain the statistically averaged “accumulated
sticking probability” P�=nc /n� during the trapping duration
�. The key problem is how to achieve the commonly referred
“sticking probability” or “collision efficiency” p,3,4 namely,
the probability that a collision of two particles leads to per-
manent doublets, through the accumulated sticking probabil-
ity P���. To make the conversion from P��� to p possible, a
physical model has been proposed based on the experimental
observation of a particle pair trapped for a short time.1,2,5

Experiments show an exponential increase of the accu-
mulated sticking probability P with � following a rapid ini-
tial increase. The explanation for this special behavior as
described in Refs. 1 and 5 is that the two particles in optical
tweezers experience two different statuses: the “compact sta-
tus” at the beginning and the subsequent “relaxed status.” In
the compact status, the collision frequency of the two par-
ticles is much larger than that in the relaxed status. The stick-
ing probabilities p obtained by treating the experimental data
of P according to the above physical model are consistent
with those from the turbidity measurements.

However, it is difficult to disclose further information
about the real motion and interaction of the trapped particle
pair by direct observation, especially because the two par-
ticles are lined up in the z direction �the direction of the laser
beam� after being trapped by the optical tweezers. That is,
from the observer’s line of sight, one particle is hidden be-

hind the other and therefore becomes difficult to view. In this
case, computer simulation provides a possible alternative to
help understand the associated physical picture behind the
model of the two statuses. In order to do so, a complete
Brownian dynamics simulation considering both laser pro-
duced potential and interactions between particles �including
Derjaguin-Landau-Verwey-Overbeck �DLVO� interactions
and hydrodynamic interactions� is desirable.

The Brownian dynamics simulation of hydrodynami-
cally interacting particles has been discussed by Ermak and
McCammon.6 Therefore, the major difficulty in carrying out
the simulation is how to express the force of the optical field
exerted on two particles during the trapping process. This is
schematically shown in Fig. 1, where z is the beam propaga-
tion direction. Figures 1�a� and 1�b� show the relative posi-
tions of particles 1 and 2, respectively, before and after par-
ticle 2 is captured by optical tweezers. From Fig. 1�b� we can
see that when two particles are simultaneously held by the
optical tweezers, the laser beam reaches the upper particle
after passing through the lower one due to the two particles
lining up along the beam direction. Therefore, the trapping
potential should be very different from the case of a single
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FIG. 1. Schematic side view of the trapping process of two particles. z is the
propagation direction of the laser beam. �a� The second particle is not
trapped yet. �b� Both particles are trapped by optical tweezers.
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particle system. This problem becomes even more challeng-
ing due to the uncertainty of positions of two particles un-
dergoing the Brownian motion, especially during the transi-
tion from the state shown in Fig. 1�a� to the one in Fig. 1�b�,
because the position of each particle will affect the trapping
forces exerted on the other particle as well as on itself.

In this study, an interaction mode is proposed by taking
all of the above considerations into account and a Brownian
dynamics simulation is carried out based on the interaction
mode. The corresponding simulation has reproduced the rel-
evant feature of the P�� curve found in the previous
experiments.1 The simulation demonstrates that the assump-
tion of the two statuses proposed in Refs. 1 and 5 is likely to
be associated with the different interaction modes during the
transition from �a� and �b� in Fig. 1.

II. BROWNIAN DYNAMICS SIMULATION
OF HYDRODYNAMICALLY INTERACTING
PARTICLES

Physically, the solvent flow induced by one particle must
have an effect through frictional forces on others, which is
the reason for the hydrodynamic interactions between par-
ticles. This effect will retard the diffusion of particles when
particles are closer together and should be considered in the
Brownian dynamics simulation. The Langevin equation for
the system of N Brownian particles with hydrodynamic in-
teractions is

miv̇i = − �
j

�ijv j + Fi + �
j

�ij f j , �1�

where i and j represent components �1� = i , j� =3N�, and v
and m represent the velocity and mass of particles, respec-
tively. F is a systematic force due to the interaction potential
energy between particles plus any external force. � j�ij f j rep-
resents the randomly fluctuating force exerted on a particle
by the surrounding fluid resulting from random collisions of
solvent molecules with the particle. −� j�ijv j represents the
friction force due to systematic collisions with the solvent
molecules as the particle moves, which tends to decrease the
particle velocity. The coefficients �ij are the hydrodynamic
friction tensor. The f j have Gaussian distribution with the
mean and covariance

�f i� = 0,

�f i�t�f j�t�� = 2�ij��t − t�� , �2�

The coefficients �ij are related to the hydrodynamic fric-
tion tensor by

�ij =
1

kBT
�

l

�il� jl, �3�

where kB is the Boltzmann constant and T is the temperature.
Ermak and McCammon and Elimetech et al. have given

the equations for Brownian dynamics simulation of the po-
sitions of particles from the Langevin equation �1� as6,7

ri = ri
0 + �

j

�Dij
0

�rj
�t + �

j

Dij
0 Fj

0

kBT
�t + Ri��t� , �4�

where the superscript “0” indicates that the relevant variable
takes its value before each subsequent update of the simula-
tion. The displacement Ri��t� is a random displacement with
a Gaussian distribution function whose average value is zero
and variance-covariance is �Ri��t�Rj��t��=2Dij

0 �t. Here Dij

is the diffusion tensor related to �ij by

�
j

�ijDjl = �
j

Dij� jl = kBT�il. �5�

When the hydrodynamic interactions are ignored, the
diffusion tensor Dij is a constant matrix; otherwise, it will be
a configuration-dependent matrix. In this paper, we use the
Rotne-Prager diffusion tensor given by

Dij =
kBT

6��R
�ij i, j on the same particle,

Dij =
kBT

8��rij
	
I +

rijrij

rij
2 � +

2R2

rij
2 
1

3
I

−
rijrij

rij
2 �� i, j on different particles. �6�

Here � is the solvent viscosity, R is the sphere radius, �ij

is the Kronecker delta, rij is the vector from the center of
sphere i to the center of sphere j, and I is the unit tensor. As
the Rotne-Prager diffusion tensor has the property

�
j

�Dij

�rj
 0, �7�

this term can be dropped from Eq. �4�. The simulation equa-
tion becomes

rl = ri
0 + �

j

Dij
0 Fj

0

kBT
�t + Ri��t� . �8�

The time step �t is taken to be 10−6 s in this study.
In general, the Brownian dynamics simulation is time

consuming if the particle number N is large. This is due to
the calculation of the Brownian displacement Ri��t� from the
large variance-convariance matrix �Ri��t�Rj��t��=2Dij

0 �t. In
this paper, however, since only two particles are involved,
the determination of Ri��t� becomes much simpler.

III. EXTERNAL FORCES ON PARTICLES

A. DLVO interaction

For two particles caught by optical tweezers, the F in Eq.
�8� includes two parts the interaction force of the two par-
ticles and the forces exerted by the optical tweezers. In the
simulation, the DLVO potential7–9 is used to express interac-
tions between two trapped particles. In the DLVO theory, the
attraction potential between two particles of the same radius
due to the van der Waals attraction can be approximately
expressed as9
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UA = −
AR

12H
= −

A�

H
, �9�

where A�=−AR /12, A is the Hamaker constant, R is the par-
ticle radius, and H is the distance between the surfaces of the
two particles. The repulsive potential due to the electrical
double layer is usually expressed by the following equation:9

UR = B exp�− 	H� , �10�

where 	 is the Debye-Hückel parameter, which is related to
the ion concentration and the electrovalence of ions. B is a
parameter related to surface potential, 	, and the ion concen-
tration. Given the parameters A, B, and 	, the interaction
potential and the interaction force between particles can be
determined.

B. The force exerted by optical tweezers

For a single particle trapped by optical tweezers, the
trapping force, that is, the force that the optical tweezers
exert on the particle, has been extensively investigated. It is
known that the trapping force near the trapping position ap-
proximates a spring force.10 This approximation should work
reasonably well until the trapping force reaches its maxi-
mum. When the particle is further away from the position of
the maximum trapping force, the trapping force will begin to
decrease and finally vanish. A parameter named “tweezers
stiffness” is usually used to identify the spring force near the
trapping position. With a good approximation, the stiffness is
isotropic along the transverse directions �namely, to be per-
pendicular to the z direction, which is the longitudinal direc-
tion along the beam propagation of optical tweezers�, but not
along the z direction.10,11

However, for two particles trapped by optical tweezers,
the trapping forces are much more complicated than that for
one trapped particle. For single particle trapping, the trap-
ping force depends only on the position of the particle. For
trapping two particles, the position change of one particle
will result in a relevant change in the incident optical field on
the other particle. Therefore, the position of each particle not
only affects the force exerted on the particle itself but also
affects the force on the other particle. Xu et al.12 have cal-
culated the axial trapping forces for two particles based on
ray optics approximation. However, the calculation used in
the ray optics model is not suitable for the particles discussed
in this study. Furthermore, their discussion only considered
the particles moving along the z axis with no transverse dis-
placement.

Considering that two entangled particles trapped by an
optical tweezers can appear to influence one another simul-
taneously, we divide the force on each particle into two com-
ponents. The first component is just like the trapping forces
for a single trapped particle, so the forces can be considered
a spring force near the trapping position. The other compo-
nent is connected with the relative position of the two par-
ticles by considering that the position of each particle will
influence the forces exerted on the other.

Before the discussion of the trapping forces, the coordi-
nates should first be established. At the beginning of the
simulation, the first particle is assumed to be at its equilib-

rium trapping position, as shown in Fig. 1�a�. We set this
position to be the coordinate origin in the following discus-
sion. The x and z directions are shown in Fig. 1.

For the convenience of further discussion, some symbols
will be used to represent different quantities. In this paper,
the same symbol will always stand for the same quantity and
the subscript will identify which particle is being referred to.
For example, x ,y ,z are used to denote the instantaneous po-
sition of each particle, while xi ,yi ,zi are used to denote the
instantaneous position of particle i.

FIG. 2. Different types of DLVO interactions used in the simulation. �a�
A�=2
10−30 J m, B=4
10−20 J, 	=5
107 m−1. �b� A�=1
10−28 J m, B
=4
10−20 J, 	=5
107 m−1. �c� A�=5
10−28 J m, B=1
10−19 J, 	=5

107 m−1.
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To determine the first component of the trapping force
that is considered a spring force near the trapping position,
we need to determine the particles’ trapping positions where
this component of the optical trapping force on each particle
is equal to zero. Since the laser beam will be partially re-
fracted by the lower particle before it meets the upper par-
ticle, the lower particle will act somewhat as a convex lens.
This “convex lens,” in turn, converges the beam and causes
significant change in the optical field, making the z coordi-
nate of the trapping position of the upper particle larger than
0 �i.e., the original trapping position�. On the other hand, the
reflected beam from the upper particle will also influence the
optical field acting on the lower one, which may make the z
coordinate of the trapping position of the lower particle
smaller than 0.

The transverse distance Rxy =��x1−x2�2+ �y1−y2�2 is re-
lated to the portion of the beam refracted by the lower par-
ticle before hitting the upper particle and therefore related to
the degree of correlation between two particles by laser
beam. When Rxy is close to zero, a great portion of the laser
beam that hits the upper particle comes through the lower
particle and therefore causes the two particles to become
highly correlated. In this case, each of the particles has its
own equilibrium position. When Rxy is larger than some
value, the refraction of the beams will be assumed to have no
influence on the trapping positions, so that they should have
the same equilibrium position or trapping position. We as-
sume that the difference between the z coordinates of the
trapping positions of the two particles to be RI when Rxy =0,
and it becomes smaller than RI when Rxy is larger, so we
express the z coordinates of the trapping positions as the
following equation:

z0 = �0, Rxy � 0.5R

±�1 − �Rxy/�0.5R��2 � RI/2, Rxy � 0.5R .
� �11�

Because the laser beam is propagated along the z axis,
we assume that the x and y coordinates of the trapping posi-
tions �namely, x0 and y0� are not influenced by the refraction
of the beams by the lower particle, so that x0,1=x0,2 and
y0,1=y0,2. This assumption is also supported by our experi-
mental observation that the two particles distribute along the
z axis when both are trapped.

Following the experimental procedure described in Ref.
1, we begin the simulation with one particle in the trapping
position while the other is a distance away from the first
particle. The initial position of the second particle is set up to
be �2.2R ,0 ,0�, which is beyond the trapping range of the
optical tweezers. In the simulation, the optical tweezers are
moved, together with the first trapped particle, to approach
and catch the second particle. Without loss of generality, we
take the moving direction of the optical tweezers to be along
the x axis with a speed of vx=10 �m/s, which matches the
actual speed in experiment. After the second particle is
trapped, namely, the two particles enter a trapping status, the
optical tweezers cease to move and we set the trapping du-
ration � to be zero for this moment. Therefore, the values of
x0 and y0 in the simulation are

x0,1 = x0,2 = �nvx�t , � � 0

x0�� = 0� , � � 0,
�

y0,1 = y0,2 = 0, �12�

where n is the number of steps and �t is the time step in the
simulation.

For one particle trapped by optical tweezers, the trapping
force near the trapping position is approximately a spring
force10 and reaches maximum when the displacement of the
particle from the trapping position is approximately equal to
the particle radius R.13 Therefore, the first component of the
trapping force can be expressed as

Foptx = �− kxdxy��x − x0�/dxy� , dxy � R

− kx�2 � R − dxy���x − x0�/dxy� , R � dxy � 2R

0, dxy  2R ,
�

Fopty = �− kydxy��y − y0�/dxy� , dxy � R

− ky�2 � R − dxy���y − y0�/dxy� , R � dxy � 2R

0, dxy  2R ,
�

Foptz = �
− kz�z − z0� , �z − z0� � R

− kz�2 � R − �z − z0����z − z0�/�z − z0�� ,

R � �z − z0� � 2R

0, �z − z0�  2R ,
� �13�

where x0 ,y0 ,z0 is the trapping position, x ,y ,z is the instan-
taneous position of the particle, and dxy is the transverse
displacement which is equal to ��x−x0�2+ �y−y0�2. Foptx,
Fopty, and Foptz represent the first component of trapping
force along the x, y, and z directions, respectively. In Eq.
�13�, we assume that the transverse trapping force is zero
when the transverse displacement is larger than 2R, which is
the same for the longitudinal trapping force. The reason to
adopt the above expression is based on the theoretically cal-
culated force of optical tweezers for single particle
trapping.13,14

Similar to Ref. 10, we take kx equal to ky and the longi-
tudinal stiffness kz0=kx /5 when the particle is along the
beam axis, that is, dxy =0. However, when dxy is very large,
not only the transverse trapping force but also the longitudi-
nal force will become zero. Therefore, the kz will change
from zero to kz0 as dxy decreases from infinity to zero. As
indicated by Eq. �13�, the Foptx and Fopty become zero when
dxy 2R, and we assume that the Foptx also becomes zero in
this case. Therefore, to meet this requirement, kz can be ex-
pressed by the following equation:

kz = �kz0�1 − dxy/2R� , dxy � 2R

0, dxy � 2R .
� �14�

The other component of the trapping force depends on
the relative position of the two particles. We assume that
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when Rxy �2R, a part of light passing through the lower
particle may be reflected back and forth between the two
particles. These multiple reflections would induce a repulsion
force between the two particles due to the momentum change

of the laser beam. This force becomes larger when the par-
ticles are closer and vanishes when the particles’ distance is
greater than a certain value, say, Rl. Therefore, we express
this component of trapping forces �repulsive forces� as

Frx,i = �Ckx�Rl − R12� � �xi − xj�/R12, R12 � Rl

0, R12  Rl,
�

Fry,i = �Cky�Rl − R12� � �yi − yj�/R12, R12 � Rl

0, R12  Rl,
� i, j = 1,2, i � j ,

Frz,i = �Ckz0�Rl − R12� � �zi − zj�/R12, R12 � Rl

0, R12  Rl,
�

�15�

when Rxy �2R. Here R12 is the center-to-center distance be-
tween the two particles, and C is a constant to determine the
intensity of the repulsion, which is taken to be 5 in the simu-
lation. Frx, Fry, and Frz are used to represent this component
of trapping force along the x, y, and z directions, respec-
tively. Rl is equal to RI in Eq. �11�, which is set to be 2.2R in
the simulation. The final trapping forces in the simulation are
determined by summing the two components calculated from
Eqs. �13� and �15�.

After the determination of DLVO interactions and the
optical trapping forces, the accumulated sticking probability
P��� during trapping duration � is determined from Brown-
ian dynamics simulation. For simplicity, we assume that the
two particles aggregate once they come in contact in the
simulation. This can be confirmed by checking if the center-
to-center distance is smaller than the diameter. For each trap-
ping duration � and specified DLVO interaction for each par-
ticle pair, more than 1000 simulation runs were performed to
obtain average results.

IV. RESULTS AND DISCUSSION

The accumulated sticking probabilities for different trap-
ping durations of the two particles are simulated for different
DLVO interactions with different parameters. The expression
for the DLVO interactions used in this paper is

U = C�
−
A�

H
+ B exp�− 	H�� , �16�

where A�, B, and 	 determine the shape of the DLVO inter-
action potential, and C� is used to adjust the potential barrier,
which is directly related to the sticking probability p. Three
shapes of the DLVO potential are depicted in Fig. 2. In Fig.
2�a�, A�=2
10−30 J m, B=4
10−20 J, 	=5
107 m−1, and
C� is taken to be 0.6, 0.9, and 1.2, respectively. In Fig. 2�b�,
the parameters are A�=2
10−28 J m, B=4
10−20 J, 	=5

107 m−1, with C�=1, 2, and 3, respectively. In Fig. 2�c�,
A�=5
10−28 J m, B=1
10−19 J, 	=5
107 m−1, with C�
=1, 1.5, and 2.5, respectively. These figures show different
configurations of the interaction potential. The potentials in

Fig. 2�a� have almost no second minimum, while in Fig. 2�c�
there are obvious second minima.

Figure 3 shows the accumulated sticking probabilities
P��� obtained from our simulation for different trapping du-
rations � with different DLVO potentials and tweezers stiff-
nesses. The DLVO potentials used in Fig. 3 are correspond-
ing to those shown in Fig. 2. From Fig. 3, we can see that the
accumulated sticking probability P��� increases as � in-
creases. Previous experiments show that there is a jump at
the beginning of the collision induced by optical tweezers
and P��� exhibits an exponential increase with �1. In other
words, the plot of ln�1− P���� against � should be a straight
line without passing through the origin.1,5

Our simulation �see Fig. 4 using the same data from Fig.
3� shows the same behavior as our experiment: ln�1− P���� is
linearly related to � with negative intercepts. For collisions
of a particle pair induced by optical tweezers as described in
Refs. 1, 2, and 5, the sticking probability p �or the stability
ratio W� is determined by the intercept ln�1− p�. Concerning
the influence of the trapping force on the results, Fig. 4
shows that increasing kx by four times �i.e., kx=1 pN/�m is
changed to 4 pN/�m� causes only small shifts in the value
of the intercept. This implies that the stiffness of the twee-
zers, which determines the strength of the trapping force, has
only little influence on the sticking probability p, which has
been supported by experimental evidence.1

Figure 4 also shows that ln�1− P��=0.2 s�� is a good
approximation to the intercept ln�1− p� for all the simulated
results with different DLVO interactions and tweezers stiff-
nesses kx. This result indicates that P��=0.2 s� is a good
approximation for p, which further confirms the validity of
the improved experimental approach proposed in Ref. 2.

The simulation results for the three different types of
DLVO interactions also indicate that the method of using
optical tweezers to measure sticking probability p is appli-
cable to different kinds of interaction potential such as the
DLVO interactions used in the simulation, regardless of
whether a second minimum of the potential exists.

The main features reflected in Figs. 3 and 4 are associ-
ated with the presence of two different statuses experienced
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by the trapped particle pair.1,2,5 The ln�1− P����−� curve is a
straight line related to the so called relaxed status, and the
intercept is linked with particle aggregation in the compact
status. The intercept is ln�1− p�, where p is the sticking prob-
ability and the reciprocal of the stability ratio W. The Brown-

ian dynamics simulation can help explain why and how the
transition from compact status to relaxed status takes place.

For studying the difference between the two statuses, the
simulated results of P��=0� are compared with the p esti-
mated from Fig. 4, showing that P��=0� is equal to p for

FIG. 3. Simulated results of P��� for different trapping durations � with
different DLVO interactions and tweezers stiffnesses kx. The DLVO interac-
tions are �a� A�=2
10−30 J m, B=4
10−20 J, 	=5
107 m−1; �b� A�=1

10−28 J m, B=4
10−20 J, 	=5
107 m−1; �c� A�=5
10−28 J m, B=1

10−19 J, 	=5
107 m−1.

FIG. 4. Simulated results of ln�1− P���� for different trapping durations �
with different DLVO interactions and tweezers stiffnesses kx. The data can
be fitted linearly. The DLVO interactions are �a� A�=2
10−30 J m, B=4

10−20 J, 	=5
107 m−1; �b� A�=1
10−28 J m, B=4
10−20 J, 	=5

107 m−1; �c� A�=5
10−28 J m, B=1
10−19 J, 	=5
107 m−1.
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each of the DLVO interactions within the error range. There-
fore, �=0 is the moment to distinguish the two different sta-
tuses. By analyzing the different conditions before and after
�=0, the reason for the different statuses can be explained
explicitly.

To catch the second particle, the optical tweezers �with
the first particle trapped� are moved to approach the second
particle. The period for the compact status is considered to
be from the moment that the second particle feels the attrac-
tive force to the moment that both particles are trapped. Dur-
ing this period, there is observable transverse distance Rxy

between two particles although this distance keeps reducing.
Because the Rxy is large, the separation of the trapping posi-
tions of the two particles is smaller than that in the relaxed
status, especially when Rxy 0.5R, i.e., the trapping positions
of the two particles actually coincide as shown by Eq. �11�.
Therefore, both moving speed and trapping force of the op-
tical tweezers help two particles to approach each other and
fall into the compact status.

In the relaxed status, the two particles stay along the z
axis, as shown in Fig. 1�b�. Therefore, the transverse distance
Rxy should be around zero and therefore the trapping posi-
tions for two particles become separated according to Eq.
�11�. It implies that the collision frequency in the relaxed
status should be much less than that in the compact status. As
the two particles are steadily trapped in the relaxed status,
the value of �P��� / �1− P���� is proportional to time interval
��. This will lead to the relationship that ln�1− P���� is pro-
portional to �, as have been deduced by Refs. 1 and 5.

V. CONCLUSION

In this study, the accumulated sticking probability P���
for different time durations � that the two particles stay in the
optical tweezers is simulated by Brownian dynamics simula-
tion. Various contributing factors, including the DLVO inter-
action of particles, hydrodynamic interactions, optical trap-
ping forces on the two particles, and the Brownian motion,
are considered in the simulation. The simulation results have
reproduced the relevant features of the ln�1− P�−� curve
found in the previous experiments.

The simulation demonstrates that the method for measur-
ing the stability ratio by optical tweezers proposed in Refs. 1
and 2 is applicable to different types of DLVO interactions,
no matter if there is obvious second minimum or not. In
addition, the tweezers stiffness has little influence on the
obtained value of p.

This study provides an explanation for the transition
from the compact status to the relaxed status. It reveals that
this transition is associated with the change in mutual posi-
tions of two particles related to the laser beam direction. The
relaxed status corresponds to that one particle is behind the
other along the laser beam direction and the compact status
denotes the process from the second particle being attracted
to the optical tweezers to both particles being lined up along
the laser beam direction. In the relaxed status, two particles
stay in separated equilibrium positions �trapping positions�
and therefore have much lower collision frequency than
those in the compact status.

ACKNOWLEDGMENTS

This work is supported by Grand Nos. 10672173,
10432060, and 10332050 from the National Natural Science
Foundation of China and the “Chuang-Xin Project” of Chi-
nese Academy of Sciences.

1 Z. W. Sun, S. H. Xu, G. L. Dai, Y. M. Li, L. R. Lou, Q. S. Liu, and R. Z.
Zhu, J. Chem. Phys. 119, 2399 �2003�.

2 Z. W. Sun, S. H. Xu, J. Liu, Y. M. Li, L. R. Lou, and J. C. Xie, J. Chem.
Phys. 122, 184904 �2005�.

3 N. Fuchs, Z. Phys. 89, 736 �1934�.
4 M. Y. Han and H. K. Lee, Colloids Surf., A 202, 23 �2002�.
5 S. H. Xu, L. R. Lou, Y. M. Li, and Z. W. Sun, Colloids Surf., A 225, 159
�2005�.

6 D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69, 1352 �1978�.
7 M. Elimelech, J. Gregory, X. Jia, and R. A. Williams, Particle Deposition
and Aggregation �Butterworth-Heinemann, Oxford, 1995�.

8 E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of
Lyophobic Colloids �Elsevier, Amsterdam, 1948�.

9 P. C. Hiemenz, Principles of Colloid and Surface Chemistry �Dekker,
New York, 1986�.

10 M. Capitano, G. Romano, R. Ballerini, M. Giuntini, D. Dunlap, and L.
Finzi, Rev. Sci. Instrum. 73, 1687 �2002�.

11 A. Rohrbach and E. H. K. Stelzer, Appl. Opt. 41, 2494 �2002�.
12 S. H. Xu, Y. M. Li, and L. R. Lou, Appl. Opt. 44, 2667 �2005�.
13 A. Ashkin, Biophys. J. 61, 569 �1992�.
14 S. H. Xu, Y. M. Li, and L. R. Lou, Chin. Phys. 15, 1391 �2006�.

144903-7 Dynamics of colloidal particles J. Chem. Phys. 126, 144903 �2007�

Downloaded 13 Jun 2010 to 159.226.231.78. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


