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1 Introduction

In recent years, dynamic acroelastic simulations by solving three-dimensional Navier-Stokes
equations coupled with structural equations of motion have been extensively studied [1-3]. However,
in these methods, the flow governing equations are only loosely coupled with structural equations,
namely, after the acrodynamic loads are determined by solving the flow governing equations, the
structural model is used to update the position of body. The coupling contains the error of one time
step, thus these methods are always only first-order accuracy in time regardless of the temporal
accuracy of the individual solvers of the flow and structural equations. In addition, due to the
deformation of aeroelastic configuration, adaptive dynamic grids need to be generated at each time
step. In the existing aeroelastic methods, various adaptive algebraic grid-generation methods were
applied for their applications.

In the paper, a cell-center finite volume code is implemented for the aeroelastic calculation. The
LU-SGS subiteration algorithm is constructed for the thin-layer Navier-Stokes equations, and the
modified Harten-Lax-van Leer Einfeldt (HLLE) scheme [3] is used for the discretization of convective
terms of the flow governing equations. The structural equations of motion in generalized coordinates
are employed for the calculation of structures. A grid deformation approach suitable for the moderate

aeroelastic deformation is also developed.



The AGARDA445.6 standard aeroelastic wing test case [4] is applied to validate the resulting
aeroelastic solver. The aeroelastic boundaries are calculated from subsonic to supersonic flow. The

effects of grid resolution, time-step sizes are also discussed.

2 Governing Equations

2.1 Aerodynamic Governing Equations
Aerodynamic governing equations are the unsteady, three-dimensional thin-layer Navier-Stokes

equations in strong conservation law form, which can be written in curvilinear coordinates as
3,0+0:F+3,G+3,H=0,H,+S5¢, (1)

The source term S, is obtained from the geometric conservation law for moving mesh, which is
defined as
Sae. =007 +(& 1)+, 1), +(&, 10), ] @

2.2 Structural dynamic Governing Equations
Second-order linear structural dynamic governing equations after normalized similar to the flow

governing equation can be written as
MY+ [} =) 3
With these first N modes we have an approximate description of the displacement vector of the

system can be given by {d}= [d)]{q}. Since the natural modes are orthogonal with respect to both the

mass and stiffness matrices, premultiplying Equation 3 by [(D]T yields structural equations in

generalized coordinates
G +26i0,4, + 0l q; = [(D],T FiM; “4)
where o} =[@]} {k{o]. M, =[] {¥ fo]
The modal damping is readily added on the left hand side of Equation 4, where ¢; is the damping ratio

in the I th mode.

3 Numerical Method

LU-SGS method, employing a Newton-like subiteration, is used for solving Equation 1.
Second-order temporal accuracy is obtained by utilizing three-point backward difference in the
subiteration procedure. The inviscid terms are approximated by modified third-order upwind HLLE
scheme [3]. For the isentropic flow, the scheme results in the standard upwind-biased flux-difference
splitting scheme of Roe, and as the jump in entropy becomes large in the flow, the scheme turns into

the standard HLLE scheme. Thin-layer viscous term in Equation | is discretized by second-order



central difference.
The subiteration method can also be applied to the structural equations of motion in generalized

coordinates of Equation 4. The resulting scheme is
| —¢'At
O M@ 1+20' .l At

0 -1 0
+ At S? ~At
|:wi2 2(01‘;,1 {[Q]IT F’ /MI}}

where S=[g,g] and AS=5"""—S”. As p > oo, a full implicit second-order temporal accuracy

AS =@ {(1+@)S" —(1+20)S" + 48"
6))

scheme is formed by the coupling solutions of flow and structural equations. Numerical experiments

indicate the calculated results are nearly unchangeable as p 23 . In the following calculation, the

number of subiteration is set to 3.

4 Grid Deformation Method

For the aeroelastic application, if the grid is regenerated at every time step, then the elaborate and
time-consuming grid-generation method cannot be used. So in most common aeroelastic sovlers, only
algebraic grid generation methods are employed. Recently, a grid deformation method was developed
for the aeroelastic calculation by Melville et al [5]. The initial grid of high quality can be generated
with any elaborate grid-generation method. The adaptive grid at each time step is obtained by an

algebraic grid deformation approach and the grid maintains nearly the same quality of the initial mesh.

First a reference grid 7; ;; is constructed from the initial grid x; ;, and the deformed surface
grid point x'; ;| was calculated from the structural equations.

ik = Xija A ;) +[kai,j‘k =X 1) (6)

i
where Ax; il =x',-,j,1 =Xl is the deformed size of the surface grid and [R] is the surface rotation
matrix defined by unit normal vectors of the original surface and the perturbed surface. The new
dynamic grid can be generated by applying a blending function to the reference and the original grids:
Xk =bi ki ju =0y 0 )
A blending choice is a cubic function in arc-length space with zero slope at the endpoints, which

maintains the wall grid orthogonality and smoothly transitions in the far field. This can be written as
2
busae =510 51 P = 2Asi 0 0500 F - ®

where & is the last node in the grid normal direction. The arc-length s, ;, can be calculated by

max



k
Sijk = lei‘j,l = Xiji-1 ©
1=2
5 Results and Discussion

The AGARD 445.6 weakened wing model [4] is considered, which has an aspect ratio 1.6525, a
taper ratio of 0.6576, a quarter-chord swept angle of 45 deg and a NACA 65A004 airfoil section. A
C-H type grid is used. For the baseline grid of 161x51x43, there are 121 grid points around the wing
surface, and 39 grid points on the spanwise direction of wing surface. For the refined grid of
181%51% 63, 20 grid points are added both in the chord and normal directions.

The first four structural modes and natural frequencies provided in the reference (4] are used for the
present computation. To match the given mode shapes to the corresponding aerodynamic surface grid,
linear and spline interpolations are emplioyed in the chord and spanwise directions. Structural damping
coefficient is set to zero in the whole calculations. Each Mach number is run for several dynamic
pressures to determine the flutter point. As the dynamic pressure is varied, the freestream density and
Mach number are held fixed and Reynolds number is allowed to vary. A non-dimensional time step
Ar=0.05 is used for the flutter computations unless stated. All simulations are started from its
corresponding steady flow. At ¢ =0, a small initial velocity perturbation 0.0001 for the first bending

mode is applied to the wing.
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Fig. 1 Dynamic response of first four modes: M_ =096, g/g, =1.0 and 1.2
The response of the first four modes on the baseline mesh for dynamic pressure ¢g/g, =1.0and 1.2

is shown in Fig. 1, where the experimental dynamic pressure for flutter is g, =61.3 Ibf/fi®. The

dominant mode appears to be the first bending mode, and only second mode has some effects to the
first mode. The amplification factor of first bending mode is analyzed, which is defined as the ratio of
the magnitude of a peak with the magnitude of the previous peak of the same sign. Its corresponding

response frequency is determined from the period between these two peaks. For the present case, the



amplification factor and response frequency calculated from the average of the values for the last

positive and negative peaks are AF =1.023 and @ =84.135 rad/sec for g/g, =1.0 and the
corresponding amplification factor and frequency are AF =1.093 and @ =89.559 rad/sec for

q/q, =1.2. Based on the results of the above two calculations, the dynamic pressure and frequency

for flutter { AF =1.0) can be interpolated linearly as ¢g/¢q, =0.934, w =82.353rad/sec.
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Fig. 2 Effect of grid, time-step sizes, subiteration on mode 1 response

The effect of the size of time step and grid resolution on the response of the first bending mode for

q/q, =1 is demonstrated in Fig. 2. There are only small differences between them. To compromise

the computational efficiency and accuracy, the choice of time step and grid is appropriate for the
present case. It is seen the reduction of time step leads to a slightly reduction of amplification factor
and finer grid grows slightly the oscillation. This indicates that the effect of small time-step size is to
reduce the computed flutter speed, but the effect of improved mesh resolution is to increase the speed.

The computational efficiency of the full implicit method ( p =3, Ar=0.05) is also evaluated by the
comparison with the method in which subiteration is not used ( p=1) and structural equations of

motion are solved using the standard four-stage Runge-Kutta scheme. To enéure the approximate equal
total time consuming of the two methods, the time step (Af =0.02 ) is used for the loosely coupled
method. The comparison of the response of mode 1 with the two methods is shown in Fig. 2. The
loosely coupled method has significantly enhanced the growth ratio of the oscillation. Based on the
influence study of time-step sizes, it indicates the corresponding results can be obtained only for much
small time-step size. Namely, the present full implicit coupling method has higher computational
efficiency under the same requirements of accuracy and time cost.

Using the method aforementioned, the flutter boundary and frequency are calculated and compared

with the experimental data from subsonic (.338 to supersonic Mach numbers 1.141 in Fig. 3 The



calculated results agree very well the experimental data in the subsonic and transonic range, but are

higher than experimental values in the supersonic range.
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Fig. 3 Flutter speed and frequency for the AGARD 445.6 wing

6. Concluding Remarks

A full implicit finite volume aeroelastic solver has been developed for transonic flutter simulation

through the coupled subiteration of the Navier-Stokes equations and structural equations of motion.

Results are presented for the AGARD 445.6 standard aeroelastic wing configuration. For subsonic

casces

, the prediction of the flutter point agrees well with experimental data and simulations previously

reported. For the supersonic cases, the present calculation overpredicts the experimental flutter point,

but the computed results are better than those of the previous computational results.
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