温度对 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ 晶粒大小的影响

王翠玲1 黄小文1 刘秀波2 张军1 王延敏1

杨智宁1柳宏1计亚平3谷亦杰1*

(1.山东科技大学材料学院 青岛 266510;
2.中国科学院力学所 北京 100080;
3.中国机械科学研究院浙江分院 杭州 310003)

摘要:用共沉淀法合成LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂正极材料。采用谢乐公式计算LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂晶粒大小,与观察的SEM 晶粒结果进行比较。结果发现,计算得到的LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂II 每个晶面的晶粒尺寸比LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I相应 晶面的晶粒尺寸大,随温度升高LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂平均晶粒度增大,和观察到的SEM晶粒大小基本一致。 关键词:LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ 晶粒大小

0 引言

晶粒大小(晶粒度),均匀程度,各个晶粒的取向关系都是很重要的组织参数^[1]。随着纳米材料研究的深入 开展,对晶粒大小测定也越来越重要,锂离子电池正极材料晶粒尺寸的计算也是如此,晶粒大小对材料的电化学 性能产生一定的影响^[2]。

晶粒大小的测定方法,可分为观察法和计算法两类^[3,4]。观察法包括光学显微镜观察法、扫描电镜和透射电 镜等观察法;计算法是利用X射线衍射线宽计算晶粒大小的方法。由于晶体的衍射线只出现在满足布拉格方程的 位置(20)上,在理想情况下是一条条分立的直线。实际上,由衍射晶体晶格畸变和晶粒细化引起的物理宽化 效应,以及仪器测量过程中造成的仪器宽化效应,使衍射峰成为由一系列连续直线所包围的峰形曲线,造成晶 粒大小的精确测定十分困难。但在同一台衍射仪上对同一种物系进行测量时,仪器宽化影响是恒定的,可视为 常数^[5],这个差异是一个系统误差,相互比较时可以忽略。利用晶粒对X射线衍射峰的宽化影响,可以大致估算 晶粒的平均大小。本文阐述了谢乐公式计算晶粒并与观察的SEM晶粒结果相比较,考察由计算法和观察法得到的 随温度变化LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂晶粒大小变化情况。

1 试验及数据采集

1.1 试验内容

把摩尔比为 1: 1: 1 的镍、钴和锰硝酸盐配成 1mol/L 混合水溶液,氨水和 NaOH 混合溶液作沉淀剂,用共沉淀法合成前驱体 Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)₂,沉淀后陈化 12 小时,过滤洗涤 3 次,在干燥箱中 110℃烘 12 小时。将干燥好的前驱体 Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)₂ 与稍微过量计量比的 Li₂CO₃ 充分研磨混合后分 A 、B 两份, A 、B 两份均在空气气氛中 500℃先预烧 5 小时,随后升温分别在 800℃和 900℃烧 12h,随炉冷却制得产品 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I 和 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ II。

1.2 数据采集

LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂I 和 II 的 XRD 测试在德国 BRUKER 公司生产的 D8ADVANCE 型转靶 X 射线衍射仪上

*谷亦杰,男, 1972年生,博士,教授,山东科技大学材料学院,guyijie@sdust.edu.cn,青岛自然基金04-2-JZ-102

进行,以CuK_α作为射线源,通过步进扫描方式测取10°~70°数据,记录步长为0.02°,管压40kV,管流50mA。 SEM 观察使用 KYKY-2800B 型扫描电子显微镜。

2 结果与讨论

2.1 XRD 分析

图 1 为 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I 和 II 的 X 射线衍射图谱,都可以用六方 α-NaFeO₂结构来表征,属六方晶系,

空间群为**R3m**。从图中可以看到LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I衍射曲线底线粗糙,衍射峰强度低,峰半高宽较宽,006/012 和 018/110 两组峰裂分不明显。LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ II 衍射曲线底线平滑,衍射峰尖锐、强度增大,006/012 和 018/110 两组峰裂分明显,衍射峰宽变窄。LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ II 的衍射峰半高宽比LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ II 的衍射峰 半高宽略宽,LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I 的晶粒尺寸比LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ II 的晶粒尺寸细小。随着烧结温度的升高衍 射峰逐渐尖锐,衍射强度增大,006/012 和 018/110 两组特征峰裂分越来越明显,半高宽(FWHM)变窄,晶粒变 大。

图 1 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I 和 II 的 XRD 谱

2.2 谢乐公式计算晶粒大小影响因素

晶粒大小常用的测定方法是 XRD 宽线法,用谢乐公式^[6] D_{h,k,1}=K $\lambda/\beta_{h,k,1}$ Cosθ计算, $\beta_{h,k,1}$ 为h,k,l 晶面衍射峰的宽度(20 弧度),它可以按 $\beta_{1/2}$ 和 β_i 两种定义进行计算;k 为形状因子, λ 为 X 射线波长,D_{h,k,1}为晶粒大小, θ 为布拉格衍射角。当 $\beta_{h,k,1}$ 定义为半高宽 $\beta_{1/2}$ 时,k 一般取 0.89 或 0.9,当 $\beta_{h,k,1}$ 定义为积分宽 β_i 时,k 取 1.0。衍射峰的半高宽 β 是晶体大小(D)的函数,随着晶体大小(D)的增大,衍射峰的半高宽 β 变小,反之则变大。据此,衍射峰半高宽是一衡量样品晶体大小的参数。实验测得的 $\beta_{1/2}$ 包含以下内容:1.仪器的宽化因子 b, 2.晶粒细化的影响,3.晶体内应力的影响。必须要剔除,否则误差会很大。仪器宽化因子 b 主要取决于狭缝系统。由实验测得的衍射曲线经平滑、本底扣除、吸收因子及罗伦兹因子校正、扣除 Ka2 射线后得出的衍射峰宽度为 B 实际上是由仪器宽化造成宽度 b 和晶粒变细引起的宽度以及畸变引起的衍射峰宽化组成。如何从 B 中扣除 b,目前尚有各种不同的理论^[6]。当后两种因素不存在或可忽略时,可用谢乐公式计算晶粒大小 D_{hkl}。

样品中晶粒的尺寸有一定的分布,选择 β_{1/2}法计算出的晶粒尺寸着重考虑了尺寸较大的晶粒对衍射剖面的影响,忽略了细小晶粒的贡献;而选择劳厄积分宽度 β_i (Breath)计算晶粒大小是不需要也不应该考虑仪器线宽的。 原因在于剖面分析时,计算劳埃积分宽度,采用相对强度,于是额外宽化效应会自动得到校正。所以,用 Breath 方法计算则大小晶粒的效应都考虑了,从而更接近客观。

2.3 谢乐公式计算晶粒大小

本文使用专门软件处理衍射数据。运行该程序,输入数据后出现 XRD 图谱,进行平滑、背底扣除、ka2 峰 剥离,零点漂移得到校正的衍射曲线,再进行寻峰,得到劳埃积分宽度 Breadth。应用谢乐公式代入 Breadth 计 算主要峰的晶粒大小。LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I 和 II 晶粒大小数据见表 2 和 3.

从表1和表2可看出LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂I的晶粒粒径在76.8nm~161.5nm之间,平均晶粒度在119.2nm左右, LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂II的晶粒大小范围在173.7nm~238.9nm之间,平均晶粒度在206.3nm左右。随着烧结温度升高,LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂II每个晶面的晶粒尺寸比LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂I相应晶面的晶粒尺寸大,平均晶粒度增大。

表1	谢乐公式算出的LiNi1/3Co1/3Mn1/3O2 I晶粒大小					谢乐公式算出的 LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ II晶粒大小		
	(hkl)	20	Breadth	D(nm)	(hkl)	20	Breadth	D(nm)
	003 101	18.791 36.975	0.259	108.5	003	18.816	0.138	203.7
	006	38.079	0.213	139.0	101	36.953	0.135	216.6
	012	38.636	0.182	161.5	006	38.091	0.125	234.7
	104 015	44.726	0.272	109.2	012	38.609	0.123	238.9
	107	58.963	0.415	76.8	104	44.724	0.150	199.9
	018	64.709	0.284	115.6	015	48.899	0.154	197.8
	113	68.736	0.201	138.8	107	58.969	0.182	175.0
					018	64.709	0.189	173.7
					110	65.434	0.162	203.5
					113	68.753	0.165	203.6

2.4 SEM 分析

为和谢乐公式计算的晶粒大小结果相比较,将LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂I和LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂II两试样用 KYKY-2800B型扫描电子显微镜分别在25KV和3K及25KV和2K放大倍数下观察。图2为两样品的SEM表面形貌。 从图中可看出,在温度较低时(图2a),样品的晶粒较小,粒径分布窄,在150nm左右,表面光滑,产物团聚现象 不明显;温度升高晶粒变大(图2b),晶粒也较均匀,晶粒大小在350nm左右。

(a)烧结温度 800℃

(b)烧结温度 900℃

图 2 LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂的 SEM 形貌

两段连续烧成法合成LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂对形成较好的形貌有一定影响,首先在较低温下反应一段时间,这 一温度低于Li₂CO₃的熔点,可以使Li₂CO₃与Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)₂在低温下进行初步反应,伴有少量及未反应完全 的Li₂CO₃与Ni_{1/3}Co_{1/3}Mn_{1/3}(OH)₂,然后将温度升高至800 ℃和900℃,使反应完全。由于第一步低温反应后残留的 Li₂CO₃量很少,其粘结作用降低,且部分反应己在低温下完成,高温反应时间可以缩短,所以不容易出现烧结现 象,生成的产物具有光滑的表面以及较好的粒径分布。

SEM图片呈现的晶粒大小与谢乐公式计算的晶粒大小相差不大,基本一致,但计算得到的晶粒尺寸比实际 观察到的要小。由Scherrer方程计算出的晶粒大小是晶粒尺寸的下限,即最小晶粒的尺寸。这是因为,小晶粒的 衍射峰较宽,大晶粒的衍射峰较窄,在同一次衍射实验中较宽的衍射峰就会把较窄的衍射峰覆盖掉,只能观察 到小晶粒的衍射。因此,计算得到的晶粒尺寸往往较实际从扫描电镜观察到的要小。同时,由于忽略了仪器宽 化造成的影响,计算得到的晶粒大小必然小于实际晶粒的大小。

3 结论

1. 随着烧结温度升高,LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ II每个晶面的晶粒尺寸比LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂ I 相应晶面的晶粒尺 寸大,平均晶粒度增大。

2. SEM图片呈现的晶粒大小与谢乐公式计算的晶粒大小相差不大,基本一致,计算的晶粒尺寸比观察到的 晶粒尺寸略微偏小。

参考文献

1 H.P.克鲁格,等.X射线衍射技术(多晶体和非晶质材料).北京:冶金工业出版社,1986.

- 2 应皆荣,等.清华大学核能与新能源技术研究院.无机材料学报,2006,21(2).
- 3 曾汉民,等.高技术新材料要揽.北京:中国科学技术出版社,1993.
- 4 师昌绪,等.材料大词典.北京:化学工业出版社,1994.
- 5 李树棠,晶体 X 射线衍射学基础.北京:冶金工业出版社,1990.
- 6 何崇智.X 射线衍射技术.上海:上海科学技术出版社, 1988.

EFFECT OF TEMPERATURE ON THE CRYSTAL SIZE OF LiNi_{1/3}Co_{1/3}Mn_{1/3}O₂

WANG Cuiling¹ HUANG Xiaowen¹ LIU Xiubo² ZHANG Jun¹ WANG Yanmin¹ YANG Zhining¹ LIU Hong¹ JI Yaping³ GU Yijie¹ (1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266510;

Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080;
 Zhejiang Institute, China Academy of Machinery Science & Technology, Hangzhou 310003)

Abstract: The $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ cathode material was synthesized by the co-precipitation method \circ . The crystal size of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ was calculated with the Scherrer formula, and the calculated result was compared with SEM observed result \circ . The result shows that the calculated crystal size of each plane of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ II is larger than the corresponding plane of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ I, the average crystal size of $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ increases with the raise of temperature , on the whole, the calculated result is identical with observed SEM crystal size \circ .

Key words: $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Crystal size