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A simple relationship between the initial unloading slope, the contact area, and the elastic modulus
is derived for indentation in elastic-plastic solids by an indenter with an arbitrary axisymmetric
smooth profile. Although the same expression was known to hold for elastic solids, the new
derivation shows that it is also true for elastic-plastic solids with or without work hardening and
residual stress. These results should provide a sound basis for the use of the relationship for
mechanical property determination using indentation techniques. ©1997 American Institute of
Physics.@S0003-6951~97!04544-0#
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Indentation experiments have been performed for ne
one hundred years for measuring the hardness of mater1

Recent years have seen increased interest in indentatio
cause of the significant improvement in indentation equ
ment and the need for measuring the mechanical propert
materials on small scales. With the improvement in inden
tion instruments, it is now possible to monitor, with hig
precision and accuracy, both the load~F! and displacemen
~h! of an indenter during indentation experiments in the
spective micro-Newtons and nanometer ranges2–4 ~Fig. 1!. In
addition to hardness, the elastic modulus may be dedu
from the indentation load versus displacement curves for
loading.

The basis for obtaining the elastic modulus relies on
theory for elastic contacts. The relationships between l
and displacement for several shapes of rigid indenters c
tacting with an elastic half-space are known, including t
for spheres,5 flat punches,5 and conical punches.6 More gen-
erally, Sneddon7 has derived expressions for load and d
placement for elastic contacts between a rigid, axisymme
punch with an arbitrary smooth profile and an elastic ha
space. Using Sneddon’s results, Pharret al.8 have recently
derived an expression relating the slope (dF/dh), projected
contact area~A!, Young’s modulus~E!, and Poisson’s ratio
~n! at any point on the load versus displacement curves:

dF

dh
5

2E

Ap~12n2!
AA. ~1a!

If the slope,dF/dh can be evaluated at a point on the lo
versus displacement curve~loading and unloading coincid
for purely elastic contacts! and the corresponding projecte
contact areaA is known, Eq.~1a! can be used to evaluate th
quantity E/(12n2). In the case that the indenter itself h
finite elastic constants,Ei andn i , the reduced modulus,Er ,
conventionally defined as
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may be calculated from

dF

dh
5

2Er

Ap
AA. ~1b!

Equation~1! has also been applied to indentation expe
ments where plastic deformation clearly occurs during loa
ing. Doerner and Nix9 suggested that if the area in conta
remains constant during initial unloading, the elastic beh
ior may be modeled as that of a blunt punch indenting
elastic solid and, consequently, Eq.~1! can be used to deter
mineEr . Oliver et al.10 pointed out that Eq.~1! can be used
to determineEr using the initial unloading slope and th
initial projected contact area even when the contact area
tween the indenter and the solid changes continuously as
indenter is withdrawn and the indenter does not behave
a flat punch.

While Sneddon’s solution for elastic contacts has be
used to derive Eq.~1!, there has not been general discussio
on the validity of applying Eq.~1! to analyzing the initial

FIG. 1. Typical indentation load-displacement curve.
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unloading slopes when plastic deformation occurs during
loading part of indentation experiments. Such discussi
seem necessary since both experiments and simulations
demonstrated the dependence of initial unloading slope
contact area on the plasticity as well as elasticity of mat
als. For example, the unloading behavior is significantly d
ferent for aluminum and fused silica, which have about
same Young’s modulus and very different yield streng
values.10 Furthermore, it has been recognized that work ha
ening behavior and residual stresses can also affect co
area and load versus displacement curves.11,12 Therefore, a
verification of Eq.~1! when plasticity and residual stress
are involved appears necessary.

We show in this letter that Eq.~1! holds for general
elastic-plastic solids with or without strain hardening a
residual stresses. Furthermore, the equation can be obta
without invoking Sneddon’s results.7 In doing so we also
show possible limitations of this relationship.

We first consider the stress and deformation field at
maximum load. We denote the corresponding stress field
s i j

0 , the strain field bye i j
0 , and the displacement field byui

0,
wherei , j 51,2,3. The stress components satisfy the equi
rium equationss i j , j

0 50. Furthermore, based on the infinites
mal theory of continuum mechanics, the following bounda
conditions are satisfied on the undeformed surface of
specimen (x350) being indented:

u3
05hm2 f ~r !, for r 5Ax1

21x2
2<am5AAm /p, ~2a!

s33
0 50, for r .am , ~2b!

s31
0 5s32

0 50, for all r .0, ~2c!

wheream and Am are the respective contact radius and
projected contact area at the maximum indenter displa
ment, hm . The shape function of the rigid indenterf (r ) is
assumed to be smooth~Fig. 2!. The boundary condition in
Eq. ~2c! assumes that there is no friction between the
denter and the specimen. In addition, the stress field
proaches zero asAx1

21x2
21x3

2→`.

FIG. 2. Illustration of surface deformation by an axisymmetric indente
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Next, we let an infinitesimal unloading take place so th
the depth of penetration measured with reference to the
deformed surface decreases fromhm to h. We denote the
change in stress components bys i j and the change in dis
placement byui . Then, since at initial unloading all add
tional deformations are elastic and the total stress is thes i j

1s i j
0 , s i j must satisfy the equations of equilibrium and a

related to changes of strain expressed in terms of (ui , j

1uj ,i)/2 by Hooke’s law with the same elastic constan
everywhere. The following boundary conditions atx350
must be satisfied:

u35h2hm , for r 5Ax1
21x2

2<a5AA/p, ~3a!

s3352s33
0 , for a,r 5Ax1

21x2
2<am5AAm /p, ~3b!

s3350, for r .am , ~3c!

s315s3250, for all r .0. ~3d!

This stress field again approaches zero asAx1
21x2

21x3
2→`.

We note that according to~3a! the displacementu3 of the
specimen at the contact surface is constant so that~3a! by
itself is identical to the boundary condition that would ha
to be satisfied by a rigid circular flat punch.

For an indenter with smooth profile, the stress comp
nent s33

0 at r 5am is continuous. Sinces33
0 is zero just

outside the contact area, we have, in the limit
u35h2hm→dh, s33

0 50 in ~3b! as required by continuity.
The other conditions then show that the initial unloadi
problem is now reduced to the indentation by a rigid, fl
ended circular flat punch of constant radius. According
Ref. 13, to produce a uniform displacementdh under the
rigid, flat ended circular flat punch, a decrease in cont
pressure in the following form is required,

dp52~12r 2/am
2 !21/2dp0 , ~4!

wheredp0 is the infinitesimal change in the average cont
pressure in response todh. Integrating Eq.~4! over the con-
tact area, we obtain the decrease in load,

dF522pam
2 dp0 . ~5!

The corresponding decrease in penetration depth, accor
to Ref. 13, is given by

dh52
p~12n2!am

E
dp0 . ~6!

Equation~1a! is obtained from Eqs.~5! and ~6!, sinceAm

5pam
2 .

Equation~1a! is true irrespective of the shape function
the indenter as long as it is axisymmetric and does
cause stress discontinuity ins33

0 at am . This is assured if the
profile of the indenter is smooth. The usual substitution
E/(12n2) by the reduced modulusEr can obviously be
made in the case of an elastic indenter, leading to Eq.~1b!.

In the above derivation elastic unloading initiates from
general elastic/plastic state. The effect of the rules of pla
deformation imposed during loading with or without stra
hardening and the effect of the residual stress field app
only implicitly in the value ofAm . Also, strain hardening
does not change the elastic constants during unloading. C
C.-M. Cheng and Y.-T. Cheng
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sequently, Eq.~1a! is valid for any strain hardening elastic
plastic materials and when residual stress is present prio
indentation experiments. Recent finite element calculati
seem to support these conclusions. For example, Laursen
Simo11 showed an excellent agreement between the redu
modulus calculated using Eq.~1a! and the Young’s modulus
and Poisson’s ratio used in the finite element calculations
a rigid, conical indenter indenting into aluminum and silico
Work hardening was assumed in their aluminum model
silicon was assumed to be elastic-perfectly plastic. In a
cent finite element calculation for an aluminum alloy
Bolshakov et al.,12 both work hardening and initial stres
were included. Furthermore, the calculation showed that
contact area,Am , can be strongly influenced by the initia
stress. Nonetheless, a good agreement was noted betwee
elastic modulus calculated using Eq.~1a! and that used in the
finite element model, provided thatAm used in Eq.~1a! is
that given by the finite element calculations. The pres
analysis is consistent with these observations. It should
noted, however, that Eq.~1! is derived using the infinitesima
theory of mechanics, whereas finite element calculati
may account for nonlinear effects, including large strain a
moving contact boundaries.

If the profile of the indenter is smooth but not axisym
metric, Eq.~4! no longer applies, although by continuity th
normal stress at the contact line is still zero. If the indente
a pyramid, the requirement on the continuity of normal str
Appl. Phys. Lett., Vol. 71, No. 18, 3 November 1997
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may not be met because of possible stress concentratio
sharp edges of the indenter. In these cases, the validity of
~1a! requires further study.
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