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Abstract-A new statistical formulation and a relevant experimental approach to determine the 
growth rate of microcracks were proposed. The method consists of experimental measurements and 
a statistical analysis on the basis of the conservation law of number density of microcracks in phase 
space. As a practical example of the method, the growth rate of microcracks appearing in an 
aluminium alloy subjected to planar impact loading was determined to be ca. 10 pm/ns under a 
tensile stress of 1470 MPa and load duration between 0.26 ps and 0.80 ns. c; 1997 Elsevier Science 
Ltd. 

1. INTRODUCTION 

The growth of cracks in materials under stress has been widely studied in engineering. Some 
new results, such as the existence of a critical crack propagation velocity much lower than 
the Rayleigh wave speed, have been obtained in recent years (Fineberg et al., 1992 ; Shioya, 
1993). Gurson (1975) provided a useful model of damaged media, by averaging the effects 
of many microvoids and considering the presence and growth of a single void in a cell. 
Some significant advances in material failure modelling have been made with the aid of the 
Gurson model, e.g. Needleman and Tvergaard (1992). The growth of a single crack under 
impact loading has been explored by Prakash et al. (1992) and Freund (1992). Until now 
there have been very few fundamental investigations of the growth rate of micrometre 
cracks in materials subjected to impact loading. Curran et al. (1987) have studied the failure 
of materials involving the nucleation, growth and coalescence of microcracks, and referred 
to their approach as “microstatistical fracture mechanics”. In order to study this transient 
phenomenon, Curran et al. (1987) suggested a “frozen in” experimental technique and an 
iterative procedure to deduce the crack growth rate. Their procedure of measuring crack 
growth rates involved indirect inference and is summarized as follows. Firstly, obtain an 
estimate for the crack growth rate. The next step is to use constitutive relations of the 
resultant damage and perform computational simulations. Finally, by comparing the com- 
putational and experimental results the crack growth rate is modified until a satisfactory 
agreement is achieved. In the present manuscript, using a model based on the conservation 
of the number density of microcracks in phase space, an experimental approach to determine 
the growth rate of microcracks is presented. The result shows that the growth rate of 
microcracks in an aluminium alloy is a function of the incremental crack extension, and is 
approximately 10 prn/ps under a tensile stress of 1470 MPs, within 0.8 ps. 

2. BASIC EQUATIONS AND FORMULATION 

The essential idea of experimental determination of the growth rate of micrometre 
cracks under impact loading is to derive the crack growth rate based upon the evolving 
distributions of microcracks in association with the fundamental equations governing the 
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evolution of number density ofmicrocracks. This section provides the necessary background 
including the basic equations and relevant formulations. 

The conservation law of microcracks in phase-space leads to the following general 
evolutionary equation for the number density of microcracks Bai et al., 199 1. 

I l+zP;) ;+c 3r=nN-n A 
,=I 

(1) 

where n(p,,p,, . . ,p,) is the number density of microcracks. More concretely 
n(p,,p,, . . ,p,)dp,dp* dp, is the number of microcracks in the volume dp,dp, dp,. The 
coordinates p1,p2,. ,p, are the necessary variables constituting an Z-dimensional phase 
space and describing the states of microcracks, e.g. sizes, orientations and spatial coor- 
dinates. So, different states of microcracks can be mathematically described by a point in the 
phase space formed by pi coordinates. This space is called the phase space of microcracks ; t 
is the generalized time. Pi = pI # 0 is the rate of a sensitive variable of microcracks p,, e.g. 
microcrack length. nN and nA are nucleation and annihilation rates of number density of 
microcracks, respectively. 

The effect of interaction of microcracks on the evolution of damage is twofold. Firstly, 
every microcrack may alter the stress field within which other microcracks nucleate and 
grow. We shall explain this matter later. The second is of coalescence of microcracks. 
Obviously, two microcracks can coalesce when a threshold condition is satisfied. A cascade 
of coalescence of microcracks from small to large scales may lead to complete failure. This 
evolution induced catastrophe (EIC) presents some unforseen complexity, such as sample- 
specific behaviour and breakdown of scaling law. Discussions on these issues are beyond 
the scope of this paper. Readers interested in this matter can refer to Bai et al. (1994a; 
1994b), Xia et al. (1994). In the present study, we neglect the coalescence of microcracks 
and assume their annihilation, nA = 0. Our experimental measurement in Section 4 confirms 
this assumption. 

Figure 1 shows a micrograph of microcracks appearing in an aluminium alloy (Al- 
Cu) subjected to planar impact. In fact, in planar impact tests, most of the microcracks are 
approximately penny-shaped and perpendicular to the loading direction (Curran et al., 
1987) i.e. these microcracks, seen from Fig. 1, were cut from penny-shaped microcracks 
inside the material and most of them were parallel with each other. Thus, their size plays 
the most significant role in damage evolution. The variation of orientations of microcracks 
can be neglected. Therefore, we consider the size of microcracks as the variable describing 
the microcracks. Hence, the number of microcracks n(p,,p,, ,p,)dpIdp2. dp, is sim- 
plified by n(c)dc, where c is the length of microcracks at this time. That is, n(c)dc is the 
number of microcracks with a length c -+ cf dc. Therefore, the equation for evolution of 
microcracks, in one-dimensional phase space, can be expressed as (Xing, 1986; Bai et al., 
1988 ; Ke et al., 1990), 

an c3(nA) 
at+ 

-=n 
dC 

i-4 

where A = C is the average crack growth rate. In the model, A could be either positive or 
negative, corresponding to growth or healing of microcracks, respectively. In the planar 
impact experiment, only growth of microcracks was observed, since unloading “freezes” 
the microcracks in the specimen. As mentioned before, eqn (2) has neglected the coalescence 
of microcracks. In fact, at the initial or even intermediate stage of damage evolution, the 
probability of coalescence of microcracks is small. Furthermore, as many researchers have 
pointed out, the nucleation and growth rates are a function of the sizes of microdamage 
and macroscopic stress based upon their experimental experiences (Curran et al, 1987). 
The variation of stress field owing to nucleation and growth of microcracks can be included 
in the equation in terms of mean stress field. Therefore, we define microcracks in such a 
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G-4 

(4 
Fig. 4. Sequential pictures of microcracks appearing in an aluminium alloy (AI-Cu) subjected to 

planar impact (a N 1.5 GPa, time, t is (a) i 0.1 pts ; (b) 0.26 ps ; (c) 0.5 fits ; (d) 0.8 MS). 
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system as ideal microcracks. Speaking more clearly, the system of ideal microcracks implies 
that: 

(1) 
(2) 
(3) 

(4) 

Coalescence of microcracks is neglected. 
Nucleation and growth of microcracks are independent of each other. 
Nucleation and growth of a microcrack is uniquely governed by a macroscopic stress 
field. 
Interaction between microcracks can be considered in terms of the average variation 
of the stress field. 

Obviously, the model of ideal microcracks corresponds to initial and possibly, inter- 
mediate regimes of damage. In order to visualize the model, let us examine some exper- 
imental data. The tested aluminium alloy has Al-Cu second phase particles of about 
3 x 103/mm’ and approximately 4% area fraction. When approaching macroscopic fracture, 
t = 1 ps under a tensile stress of about 1.5 GPa (Shen et al., 1992) cracked second phase 
particles are about 1 x 103/mm2. So, even just before critical failure, microcracks remain 
quite sparse. Numerical simulations demonstrate similar sparse distribution of microcracks 
at EIC. In Section 4, we will provide another experimental verification of the ideal mic- 
rocrack model. In the model of ideal microcracks the variation of the average stress field 
due to interaction of microcracks is included in the equation. This leads to two dynamic 
laws, 

nN = nNct, c, a”> (3) 

A = A(& c, a,) (4) 

where 0” represents the remove average stress and can be a function of damage, c,, = crO 
(n), this equation is similar to the concept of the valid stress of continuum mechanics, the 
number density of microcracks is similar to the damage variable. As shown in Section 5, 
for our studied case, the damage fraction is still not very large, and the stress approximately 
holds constant. So the feedback effect go = co (n) can be ignored in our case. 

Equation (2) is a quasi-linear partial differential equation. Its characteristic equation 
and corresponding relations are : 

dc 

dn 
5 = ~N(f,~,~,(,,)-~(t,~;~,~~,,~ (6) 

respectively. Then, successive integration in the (t, c) plane would provide a solution to eqn 
(2). 

As a matter of fact, the general solution can be simplified in practical cases. We 
examine the special condition relevant to our experiment. 

Curran et al. (1987) have found that the nucleation rate of total microcracks in planar 
impact tests is time independent. Shen et al. (1992) confirmed this assessment with the Al 
alloy used in this study. A series of planar impact tests with ca. 100 ns loading duration 
was performed and the nucleation rate nN for the Al alloy was approximated as a time- 
independent product of two functions, both are single variable functions (Bai et al., 1992), 

n,(t, c> 00) = g(~o>.f(c>. (7) 

Within the range of loading duration, in the “frozen in” tests, stress is nearly held constant. 
The stress-dependent function has been found to be either linear or exponential. Detailed 
discussions can be found in Curran et al. (1987), Shen et al. (1992) and Bai et al. (1992). 
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Apart from a constant or parametric stress, if the growth rate A is also time-independent, 
the characteristics (5) and (6) can be integrated explicitly (Ke et al., 1990) as 

1 
n(t, c, oo) = z 

s 
)zN(c’, o,)dc’ 
c 

where, 5 is defined by 

I (’ dc’ 
t= 

c 4c’, (To) . 

On the other hand, provided the nucleation law is known and the evolving distribution of 
microcracks n(t, c, (T,J can be recorded experimentally, we can derive the average growth 
rate A inversely, in the light of eqn (2) and some proper boundary conditions. In the present 
study, we assumed the boundary condition as 

n(t, c, 0”) + 0 when c + 0 

since the measurement of microcracks, using scanning microscopy, showed that the number 
density distribution n(t, c, ao) tends to zero when the size c of visible microcracks is less 
than a micrometre. Thus 

Because the remote loading is nearly held constant in the planar impact loading, the growth 
of a specified microcrack, i.e. a microcrack with specified current size c and original size c,,, 
should not be different at different evolving times, i.e. the growth rate of microcracks should 
be explicitly time-independent. However, as shown in Section 4, the average growth rate A 
obtained from the experiments did demonstrate time-dependence. In fact, the time-depen- 
dence of the average growth rate A comes from the evolving distribution of microcracks. 
Hence, from a physical point of view, we introduce another growth rate of microcracks, V, 
which is dependent upon the current size of microcracks c, as well as its original size cO, as 
most researchers suggested [see Curran et al. (1987)]. Therefore, the average growth rate A 
is defined as 

s c 

Vc, co, aobo(t, c, co, co)dco 

A(t,c,o,) = I  i  s ( 

no (t, c> co, go Wco 
K 

(11) 

where V is the growth rate of microcracks with current size c and original size co. Clearly 
V should be independent of time t. [ is the minimum nucleation size of all microcracks with 
size c at time t. In eqn (1 l), no represents the number density of microcracks in two- 
dimensional phase space (c, co). i.e. no(t, c, co, o,Jdcdco is the number of microcracks with 
sizes c -+ c + dc and nucleation sizes co -+ co + dc,, so that, the sum of all cracks with sizes c 
at time t but with different nucleation sizes from minimum size < up to c is equal to 
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Line 

Region (1) 

0 co co 

Region (l), (3): no(t, c, CC,) is zero 

Region (2): no(t, c, cg) is non-zero 
Fig. 2. Schematic region of n,(t, C, c,,). 

c 

46 c, co> = s no (t, c, co, ao)dco 

In accord with the general formulation of microdamage evolution (l), no should satisfy 
the following equation in an ideal system of microdamage, 

0.N (12) 

where Q., is the nucleation rate in the two-dimensional phase space. The relationship 
between no,N and nN will be shown later. In particular, because the initial size co remains 
invariant with time, i3(n,v>/ac becomes the unique flux term in the equation. 

Next, based upon the above results, we will solve eqn (12) and obtain the growth rate 
of microcracks V from average growth rate A by making use of eqn (11). 

Now, we should examine the solution region of eqn (12) in the two-dimensional phase 
space (Fig. 2). In fact, the non-zero solution n,(t, c, co, oo) holds in the following region only 

n,(t, c, co, oo) > 0 when co 6 c < cf = c,(t, c,, a,). 

The requirement c B co is quite trivial, because all current sizes of microcracks must be 
equal to or greater than their nucleation size co due to the irreversibility of cracking. 
cr = c(t, co, a,), the front of the number density of microcracks in the c-co diagram is 
defined by 
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s 

‘I dC’ 
t= __~ 

(‘,, UC’,C” PO> 

(13a) 

or, [ = [(t, c, oo) is defined by 

s c dc’ 
t= 

: UC’,i,~o)~ 
(13b) 

Obviously, the above equations illustrate that the nucleated cracks with size c0 will grow 
up to the size cr at the growth rate V after evolving time t ; or, the cracks with current sizes 
c at time t come from the nucleated cracks with the nucleation size { at initial time. 
Moreover, the nucleation of microcracks can occur on c = c0 only. Hence, the nucleation 
rate n,,.+ in two-dimensional phase space should be a 6 function, satisfying the relation 

no,,(C, Co, oo)dco = nN(C, co> (14) 

so that, 

no,,(c, co, 00) = n,(co, ooP(c-co> (15) 

where 6 is the Dirac-6 function with the inverse dimension that its argument has, i.e. 
[6(c-co)] = l/[(c- co)] = Lp’, where [ ] denotes the dimension and L is the dimension of 
length. 

Substituting eqn (15) into eqn (12) and following the same procedure solving eqn (2) 
with parametric cro, we can easily derive the solution to eqn (12) 

0, for t -=c 

no(t, c, co, a,) = 
s < dc’ 

“0 VC’JO PO) 
(16) 

flN(CO>oO) 

VGco,~o) 
for t > 

The solution (16) can also be deduced and interpreted as follows. Since there is no flux 
of number density of microcracks in the co direction (Fig 2) for all microcracks, their 
nucleation size co cannot be subjected to any variation with time. Hence, for a specified 
microcrack, i.e. a fixed co, the current size c depends upon time as 

AC = V(c, co, a,)At when co d c G cf (17) 

On the other hand, in the light of the nucleation and growth laws, and the property of the 
6 function, the flux of number density in microcracks should be expressed in the following 
way. All microcracks in the domain Ac,Ac come from the nucleation in Ace. 

no(4 c, co, oo)AcAco = nO,N (c, co, o,)AcAc,At = n,(c,, a,)Ac,At. (18) 

Substitution of eqn (17) into (18) gives 

n,(l, c, co, o,)v(c, Co, 00) = n,(c,, 00) when co < C < Cf. 

This is the solution (16). From the above discussion, the implication of solution (16) 
becomes more clear. Firstly, for a prescribed point in the two-dimensional phase space (c, 
co), the number density no remains constant with time owing to the time independent 



Growth rate of micrometre cracks 2913 

nucleation and the deterministic law of extension. Secondly, @,I’)/& = an,/& = 0 when 
c0 d c 6 cr, i.e. the flux is independent of current size c. Incidentally, a matter concerning 
the notification of the front should be emphasized. For specified t and c, the front should 
be expressed in the second way of eqn (13b). 

So the complete form of eqn (11) should be 

A(tco)=Jb > 3 0 

1 v(c,co,~o)no(f,c.co,(~g) dco 

n= no (G c, ccl, ao)dco = dc,. 

(19) 

(20) 

Noticeably, eqn (20) represents the evolution of n in terms of nN and V. 
Additionally, substitution of eqn (18) into (19) leads to a solution similar to our 

previous solution (8) in one-dimensional space but with time-dependent A. 

n(t, c, oo) = 
1 ‘ 

s A(t,wo) i 
ndco, ookl. (21) 

Above all, provided the evolution n(t, c, ao) and the nucleating rates &co, go) are 
known and the average extension rate A(t, c, oo) is deduced from eqn (lo), a relation 
between t, c and [ can be established in terms of eqn (21) and eventually the physical growth 
rate V can be derived as 

v= g 0 ; (22) 

To summarize this section, we stress the two definitions of microcracks growth rate, 
A and I’. A is the average growth rate of all microcracks with the same current size c, 
regardless of their original sizes c o, whereas V is the growth rate of microcracks with the 
same current size c as well as original size co but these microcracks may encounter possible 
fluctuations owing to microstructures. So physically, growth rate V is much more mean- 
ingful. We shall discuss this matter in detail in Section 5. 

3. EXPERIMENTAL DESIGN AND DATA PROCESSING 

How did we get the evolution data of microdamage inside materials under impact 
loading? As mentioned in the Introduction, following Curran et al. (1987), we performed 
“frozen in” experiments with a light gas gun, but adopted some significant modifications. 
Curran et al. (1987) have described the “frozen in” tests in detail. The test is one in which 
known stress levels are applied “instantly”, held constant for a known duration and then 
“instantly” removed; stress amplitudes and duration can be varied independently. In 
this way, microcracks can be frozen in at various levels of damage development. Then, 
metallographic examination of sectioned samples that have been exposed to the known 
stress and duration would provide necessary kinetics data. Our modification is mainly on 
the design of the flyer plate, in order to reveal microcrack kinetics at various stages of 
development under exactly identical stress levels in one shot and thus with less testing error. 
By taking advantage of the 101 mm bore of our gun, we designed a flyer with three of four 
blind holes of different depths on its free surface and then created tensile stresses of the 
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Fig. 3. Specially designed and machined flyer. 

same amplitude co, but for different tensile durations ti (Zhao et al., 1991) (Fig. 3). So in 
one shot, several different evolution stages of microdamage were frozen in, at different 
positions of a target plate. After planar impact, the target was recovered softly and sectioned 
at different positions corresponding to the holes of the flyer. The microcracks on sectional 
surfaces were counted and measured by an image analysis system 

The counting of microcrack numbers demonstrates unavoidable fluctuations, even 
though the counting was made in tens viewfields. So, it is necessary to smooth the data in 
order to have a representative size distribution. Based on the sectional distributions of 
microcracks at different times t,, a continuous sectional distribution of microcracks was 
deduced with Lagrangian interpolation, 

ML c’, a01 = kIio ,I@+, 2 ( .) m(L c’, 00) 
I I 

(23) 

The transformation from a sectional distribution m(t, c’, CT,,) to volumetric distributions 
n(t, c, oo) was performed by making use of the following integral equation (Bai et al., 1993), 
see Appendix A. 

m(f,c’,flo) 2 = 
C’ i 

.(,,c,.o)J& (24) 
c’ 

and its solution (Appendix B) 

(25) 

Therefore, the evolution data of microcracks n(t, co, cro) were obtained from exper- 
imental measurements. The nucleation rate of microcracks nN(co, go) can be expressed as in 
eqn (7) for the aluminium alloy. Then, the substitution of the evolution data of microcracks 
n(t, c, ao) and the nucleation rate nN( co, oo) into eqn (lo), would give the average growth 
rate A(t, c, rr,,). Finally, the known functions n(t, c, a,), A(t, c, oo) and n,(co, oo), and eqn 
(21) lead to the relation between t, c and [, and the growth rate V can be derived from eqn 
(22). 

4. CASE STUDY 

As a case study, the mentioned aluminium alloy subjected to planar impact was 
investigated. Both flyer and target were taken from the same Al alloy plate. Before testing, 
both flyer and target were polished carefully and adjusted to be parallel in order to guarantee 
normal impact and designed loading duration. All sectional surfaces were ground and 
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Table 1. Specification of the test and relevant samples 

No. of blind holes 1 2 3 

Thickness of bottom of blind hole (mm) 0.642 1.361 2.258 
Speed of flyer (m/s) 172 
Tensile stress (MPa) 1470 
Duration of tensile stress (ps) 0.26 0.50 0.80 
Number of microcracks (nojmm’) 324 454 122 

polished with an Abramin automatic grinding and polishing machine. Then, with a Quan- 
tum 520 image analysis system, damaged regions on the surfaces were examined. For each 
sample, microcracks in about l&20 viewfields of 0.025 mm’ each were counted and summed 
to reduce fluctuations resulting from mesoscopic inhomogeneities. Figure 3 shows the 
design and dimensions of the flyer used in the case study. Table 1 lists specifications of the 
test and relevant samples. Figure 4 shows the sequential pictures of microcracks on sectional 
surfaces of samples (co.1 ps, 0.26 ps, 0.5 ps and 0.8 ps, respectively). 

To estimate possible errors involved in measurements of microcracks in the test, some 
preliminary measurements were made. Firstly, the transverse isotropy and homogeneity of 
the aluminium alloy plate were examined. On the plate surface grains were found to be 
roughly equiaxial, with ellipticity ( - 0.9 1). Whilst the ellipticity of grains on two sectioned 
surfaces perpendicular to each other are both 1.8 (Han, 1993). Then, from an arbitrary 
point on the plate surface we drew a straight line and counted the number of grains the line 
passed. The measurements showed that the grain number is independent of orientations of 
the straight line with variation less than 5% (Ling and Bai, 1994). These results justify 
statistical equivalence of measurements on different sectioned surfaces. 

Then, possible sources of scatter and errors were estimated. The scatter of numbers of 
second phase particles measured on different sectional surfaces is about 5.2% (Han, 1993), 
whereas numbers of microcracks in tested samples of different shots with similar loading 
conditions have greater variation, up to l&20%, even to 40%. Nevertheless, statistical 
features of the obtained data are similar (Luo, 1988). Finally, the variation from sectional 
to volumetrical transformation was examined numerically. By taking parameters similar to 
our tests i.e. the total microdamage on the sectional surface is 103/mm2 and the typical size 
of microdamage is 10 pm, the variation involved in the transformation (25) is 3% (Bai et 
al., 1993). Thus, we thought that our experimental data were representative. 

Before going further, we should also examine the scatter of obtained data in the case 
study. For each sample, e.g. that of 0.2 ps, we have 36 x 24,663 pm2 z 0.88 mm2 viewfields. 
The deduced rate of nucleation are also listed in Table 1. The least square fitting gives the 
nucleation rate of 928/mm2 P.S. So, except for an overshoot at the beginning, the nucleation 
rate of microcracks seems to be time-independent in the time range up to 0.8 ps. This 
qualitatively agrees with simulations, in which just before EIC, only very few coalescences 
occur. Therefore, we thought that the model of ideal microcracks, i.e. negligible coalescence 
and annihilation, works in the case study. 

Figure 5 shows the sectional number density distributions of microcracks m(t,, c’, a,J 
appearing at different time intervals. The Fourier approximation technique is applied to 
eliminate fluctuations. Figure 6 shows the smoothed number density distributions 
m(t,, c’, oo) and nucleation rate mN(c’, oo). Figure 7 shows the volumetric distribution 
n(ti> c, co) and nN(cO, o,,) completed in accord with the equation of transformation and its 
solution (24) and (25). Figure 8 demonstrates that the average growth rate of microcracks 
A is dependent upon the size c as well as time t derived from eqn (10). This is not physically 
meaningful. Figure 9 shows the growth rate of microcracks V versus the size c and the 
nucleation size c,, in our experimental range from 0.26 ps to 0.80 ps. Figure 10 provides the 
growth rate of microcracks V as a function of co/c in the same range of time, but unfor- 
tunately it was found that unlike the expressions derived by Mott (1948), Berry (1974) and 
others, the physical growth rate V is not the unique fluctuation of co/c. Finally Fig. 11 
shows that the data of growth rate Vcollapse to a function of a single variable-incremental 
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Microcrack Length(pm) 
Fig. 5. Sectional number density distribution of microcracks m(c’, t,). 

Microcrack Length (VII> 
Fig. 6. Smoothed number density distribution m(c’, t,) and nucleation rate r+(c’). 

extension (c-co). The formula of the growth rate of microcracks V fitted to all available 
data was written as 

V(c,c,) = v* 7 ( ) 
0 175 

(26) 

where c0 is the average nucleation size of microcracks, V* = 8.1 pm/p. With this formula 
(26) and eqns (13) and (20), the evolution of the number density distribution n(t, c, oO) was 
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0 5 10 15 20 25 

c@m) 
Fig. 7. Volumetric number density distribution n(c, t,) and nucleation rate +(c), 

80. 

20- 

0 
0 12 3 4 5 6 7 8 9 10 11 

Fig. 8. Average growth rate of microcracks A 

calculated again. Figure 12 shows the comparison of the calculated evolution of number 
density of microcracks and the experimental ones. The agreement is fairly good. 

5. DISCUSSION AND SUMMARY 

(1) When looking back to the proposed approach for the determination of growth 
rate of microcracks, one may ask whether the growth rate V is meaningful in practice. To 
answer the question, let us start from the very beginning and examine the i-th individual 
microcracks with current size c and initial size co, respectively, under remote stress oo. If 
we were tracking the microcrack with a microscope, we would obtain its growth rate 
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Fig. 9. The growth rate of microcracks V versus the size c and the nucleation size G in the 
experimental range (0.26 ~~-0.80 ps). 
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CO 

Fig. 10. The growth rate of microcracks V versus co/c 

u = v(i, c, c,,, CT,J, where i denotes the i-th crack. Owing to the difference of the micro- 
structure, such as grain boundaries, defects, etc. adjacent to the tip of the microcrack, v 
would sustain some perturbations. So, 

u(i, c, co, 00) = V(c, co,oo) +5, 

where 

“0 

V = (v) = Cvlno 
I 
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c-cc,(pm) 
Fig. 11. The growth rate V versus (c - cO) and a fitted line. 

Fig. 12. Comparison of the calculated evolution of number density of microcracks and the exper- 
imental ones (dashed line is the calculated result). 

and Gi is the perturbation. Clearly 
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Now let us investigate if the perturbation V; has any effect on the statistical evolution of 
microcracks. We may have the following relations, 

(27) 

However, this cannot affect our results (18) and (19), for example, 

In one word, it is the growth rate V rather than the individual growth rate v that governs 
the statistical evolution of microcracks. The latter, v, determined by tracking individual 
microcracks is less important in the evolution, except for the case when the microcrack has 
become the main crack. 

(2) A number of models of growth of cracks and voids have been proposed as follows 

Plastic model (Rice and Tracey, 1969) ri = 2 F (3 .)I”O.SSXsinh ($$j w R (29) 

Viscous model (Curran et al., 1987) 
PA - Pno 

l? = T-- 
411 

R-R (30) 

Cleavage model (Mott, 1948) A = V,(l - R*/R)‘!2 N (31) 

where R is the current size of void or crack. Generally speaking, eqns (29) and (30) belong 
to the type of ductile energy-dissipation, whereas eqn (31) is brittle. The comparison of 
our experimental result (26) and the above three formulae indicates that the mechanism 
controlling the concerned case may be of ductile dissipation. Indeed, some of our impact 
tests with longer loading duration created such fracture surfaces that there are dimple 
networks around second phase particles. We also tried a linear fitting of our experimental 
data. 

(32) 

After disregarding a few data of decreasing growth rate, although slightly arbitrarily, the 
fitting formula (32) gives K = 7.1 pm/pss’. This seems quite reasonable (Fig. 13) and does 
imply viscous mechanics of microcrack growth in the Al alloy. After conducting their 
iterative procedure and computational simulation, Curran et al. (1987) have suggested that 
“for many structural materials, plastic flow at the microcrack tips prevents brittle growth 
behavior at high imposed tensile stresses, and instead a viscous growth law like that 
discussed above for ductile void is appropriate”. Our results appear to justify this statement, 
but instead of the current size, the increment of microcracks appears in our results. The 
reason for this is still under study. 

(3) Previously, we had introduced the correlation of the macroscopic measure of 
damage D and the number density of microdamage II (Bai et al., 1991). For example, 
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Fig. 13. The linear fitting of growth rate of microcrack disregarding a few decreasing data. 

s a 

Do = ndc 
0 

(33) 

D3 = nc’dc -.f (34) 

D, is proportional to the volumetric fraction of microdamage,f, a macroscopic measure of 
damage. Substitution of the solution (20) into eqns (33) and (34) and exchange of integrals 
give 

s XI s “I 
dco> oo)dco 

de X 
Do(t, co) = 

0 c0 v~7,co,~o> = s 

~(co, co&o - t (35) 
o 

x ?I 
Di(t, COP s ~.,(co, ao)dco s c3dc 

0 c” I/(c,co,~o> . 
(36) 

Clearly, the evolution of number density IZ plays the key part in the damage. Furthermore, 
it is an integration of combined nucleation and growth laws of microdamage. This implies 
that some fluctuations in the two mesoscopic dynamic processes can be smoothed in the 
macroscopic measure of damage. However, the singularity of the integrand l/V(c, co, a,) 
coming from the initial growth V(c, co, ao) may become the most important mesoscopic 
effect on the macroscopic mechanical damage. 

(4) In the case study of the paper, even for the sample subjected to the longest loading 
duration (0.8 pus), the damage fraction is still not very large, ca. one tenth. So, the stress 
approximately holds constant, hence the model of ideal microcracks and corresponding 
solutions, like eqn (21), are valid. In fact, the model of ideal microcracks and eqns (2) and 
(12) can still work with mean field approximation. That is to say, the feedback effect 
go = ao[D(n)], due to interaction of microcracks can be included in the model of ideal 
microcracks. Details on this matter can be found in Bai et al. (1994~). This model has also 
been applied to microcracks occurring in fatigue tests. 
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(5) Now we would like to summarize the present study as follows 

??A new statistical formulation of microcracks in two-dimensional phase space (c, c,J 
was developed. The evolution of number density of ideal microcracks can be expressed 
by their mesodynamic laws of nucleation nN and growth rate V as in eqn (20). 

??An experimental approach to the determination of the growth rate of microcracks 
directly from experimental data was proposed. A practical example of aluminium alloy 
subjected to submicrosecond stress was presented. 

??The mechanism governing the growth of microcracks should be attributed to ductile 
dissipation. Also, the fracture surface demonstrates ductile dimples. The growth rate 
of microcracks in the aluminium alloy is about 10 m SK’, under a tensile stress of 1470 
MPa and load duration of 0.26 ~~-0.80 ps. 
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APPENDIX A. THE DERIVATION OF EQN (24) 

The derivation of the fundamental integral equation governing the transformation of sectional observations 
of meso-structures to their volumetric size distribution is based upon the following assumptions : 

(1) The concerned mesoscopic structures have the simplest configuration, i.e. spheres or parallel penny- 
shaped cracks. 

(2) The spheres and penny-shaped cracks are homogeneously, randomly distributed in the material. 
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It is worth noting that no limitation has been imposed on the form of size distribution. Firstly, we define the 
following quantities to describe their size distribution of these meso-structures. 

c : length scale of meso-structures, i.e. the true diameter of sphere of penny-shaped cracks ; 
c’ : apparent length scale of meso-structures on a sectional surface, i.e. the diameter of the apparent circle of 

sphere or the length of the apparent crack line of penny-shaped crack on sectional surface ; 
n(c) : volumetric number density of the meso-structures. For instance, n(c)dc represents the number of 

spheres in unit physical volume and in the interval of sphere-diameter c -+ c + dc ; 
m(c’) : sectional number density of the meso-structures. For instance, m(c’)dc’ represents the number of 

apparent circles of spheres, which are sectioned and shown themselves as circles with a diameter range of c’ + 
c’ + dc’ in the unit physical area on the sectional surface. 

To determine the number of cracks or voids within a given size range, say from c: to c:, l and c, to c,+ , . we 
form the integrals : 

s c,- I 
M, (6) = m(c’)dc’ 

c: 

and 

s ‘,+ I 

N(c) = ri(c)dc. 
(, 

Thus, we see that the units for m(c’) and n(c) are number per unit length” and number per unit length4. 
The basic idea of the derivation of the equation governing the transformation is due to previous works 

(Scheil, 1931, 1935 ; Underwood, 1970) and can be explained as follows. In the case of spheres, the observed 
number m(c’)dc’ of circles on a sectioned surface in the interval of diameter c’ + c’+dc is attributed to the spheres, 
which have diameters greater than c’ and are sectioned in the concerned volume. Furthermore, for an assigned 
sphere, its probability to be sectioned to become circles with diameter c’ between 0 and c can be determined 
according to equal probability of circles with the same increment in its height. In order to sketch the idea clearly, 
a penny-shaped crack and its sectional line are shown in Fig. Al. It can be verified that the case of spheres follows 
the same procedure, reasoning and result. 

For a penny-shaped crack with diameter, c = 2R, its probability p(c’)dc’ showing a crack line with a length 
in c’ + c’+ dc’ on a sectional surface is 

1 c’dc’ p(c’, c)dc = - ; = - ___ 
cm 

(AlI 

due to 

I 2 

r2=R’_ 5 0 c’dc’ 
2 

and dr= -___ 
233 

If each crack is represented by its mass centre, then the number of cracks with diameters between c and c + dc 
in a given volume c. 1*, (Fig. Al) is 

Fig. Al. A penny-shaped crack and its sectional line. 
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s 

cc 
m(c’)dc’ * i2 = n(c)dc*c.l’ *p(c’,c)dc’ = 

I =c s 

m 1 c’dc’ 
n(c)dc*c.IZ*------ 

c J;-2_c’1 
(A2) 

LZL’ 

The integral is due to the contribution made by all the penny-shaped cracks with diameter greater than c’ and 
corresponding probability p(c’)dc’. Now the governing integral equation can be written as follows 

m(d) * 
i 

dc 
__ = _.I n(c) -__ 

‘ J, Jc’ _ c’l 

where m(c’) is the observed quantity on the sectional surface, and n(c) is the unknown volumetric size distribution. 
Obviously, this is a first-kind Volterra’s integral equation, but with infinite integral limit and singular kernel. 

APPENDIX B. THE DERIVATION OF EQN (25) 

Usually, the function m(c’) is generally normal in practice. Noticeably, the kernel l/J= is continuous 
and differential in the range (c’, co), but with (- l/2) power singularity at lower integral limit c = c’. This shows 
apparent similarity to the Abel’s integral equation. 

To solve the integral equation, we multiple eqn (A3) by l/R and then integrate it with respect to c’ 
between the limits c’ = z and c’ = z : 

where z is an intermediate variable, an alternative representation of length scale, either c or c’. The integral region 
of the double integral in the right hand side of eqn (Bl) is the shaded angular domain in the c-c plane, as shown 
in Fig. Bl. When we exchange the order of the double integral, expression (Bl) should be rewritten with 
correspondingly changed integral limits as follows 

let t = (c’-c’*)/(&z2) and can obtain 

I” c’dc’ 1 r’ dr ,R 

J; J(c’_c”)(c”_2~) =a m’ 

thus 

(B3) 

(B4) 

where N(z) is the cumulative number density of penny-shaped cracks with diameters not less than z per unit 
volume. In order to calculate the following differentiation, 

C 

I 
C 

Fig. Bl The integral region of double integral (the shaded angular domain). 



we notice 

and then integrate by parts, thus 
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dN(z) 2 d u m(c’) dc, n(z) = _ __ = _ - - ___ 
dz s rrdz: J= 

+,=;j--$--i_y+y]dc’ 

In the derivation, we have used the apparent boundary condition 

,I& m(c’) = 0. 
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