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Abstract 

We investigate the existence of wavelike solution for the logistic coupled map lattices for which the spatiotemporal periodic 
patterns can be predicted by a simple two-dimensional mapping. The existence of such wavelike solutions is proved by 
the implicit function theorem with constraints. We also examine the stabilities of these wave solutions under perturbations 
of uniform small deformation type. We show that in some specific cases these perturbations are completely general. The 
technique used in this paper is also applicable to investigate other space-time regular patterns. 
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1. Introduct ion 

Pattern dynamics in coupled map lattices (CML) have recently attracted considerable attention [1-3]. It has 
been found that CMLs exhibit a variety of  space-t ime patterns: kink-antikinks, space-t ime periodic structures or 
wavelike patterns, space-t ime intermittency and spatiotemporal chaos [2], which are common to other spatially 

extended systems [3]. Among all space-t ime patterns, wavelike patterns play an important role. They have been 

observed as typical space-t ime patterns in numerical simulations, for instance, in the regime of "pattern selection" 

in CML [2]. Moreover, more complex situations, such as spatiotemporal intermittence, are reasonably considered 
as a result of  nonlinear interactions of  different wavelike patterns and (or) kinks [4]. 

Wavelike patterns, or simply waves, are defined to be spatially periodic structures even though their temporal 

motion may be steady, periodic or chaotic. Numerical simulations show that CMLs may exhibit wavelike patterns 
in several regions of  parameter space and the ranges of  their possible wavelengths depend on these parameters. This 
phenomenon is physically described as a wavelength selection from nonlinearity [2]. Furthermore, it is also known 
that there exists a nonlinear dispersion relation for such type of dynamics [5]. Recently, an expression has been 
obtained for the wave patterns [6] which is exact for the values of  the parameters when the high-order harmonics 
vanish. In this case, the corresponding dynamics of  the CML can be reduced to a simple two-dimensional map 

(SM), which plays the role of  amplitude equations. To our surprise, the validity of the SM model is not restricted to 
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such an extreme condition. It can also describe wavelike patterns in the more general situation as was shown in our 

numerical simulations. In this paper we will show how the SM model can represent dynamics of  wavelike patterns 

in CML and reveal the mechanism of wavelength selection. 
The validity of  the SM model under the general conditions stated below indicates in which cases and in what 

exact conditions the low-dimensional model may catch the dynamics of  patterns for spatial extended systems. 

The key problem is how to find a general expression for the addressed patterns and construct the corresponding 

low-dimension models. In such cases the SM will describe the dynamics of the CML for the corresponding set of  

initial conditions. Moreover, it is also necessary to verify the stability of the solutions and re-confirm the validity 

of the low-dimensional models mathematically. The present work suggests a more systematic approach to find the 

low-dimension mappings, and to investigate the wavelike patterns of CMLs. 
The organization of this paper is as follows: after a brief presentation of  the model of  interest, the wavelike 

solution and the corresponding SM model are reformulated. We use the implicit function theorem with constraints 

to extend the existence regions of  each type of solution so that the domain of  the validity of  the SM model is 

indirectly confirmed. After that, we discuss the stability of such wave solutions under a special type of the small 

perturbations that we call deformations. We shall show that they are completely general in some specific cases. The 

final section is the conclusion. 

2.  E x i s t e n c e  o f  w a v e l i k e  s o l u t i o n s  

Our working model is a diffusive coupled map lattice with nearest neighbouring coupling and periodic boundary 

conditions, namely: 

I t t t t t 
.,cl +j : -  (1 - ~)f(x~) + ~¢{f(xj 1) + f(xj+l)} ,  Xto = x  N, x 1 = X u +  j, j ----- 1, 2,  . . . ,  N ,  ( 2 . 1 )  

where ~ is the coupling parameter with 0 < ~ < 1, t a discrete time step and j the j th lattice site. f denotes the 

local map, which is always taken in this work as the logistic map: 

9 
f (x )  = 1 - a x -  ( O < a  < 2). 

2.1. Dynamics  o f  wavel ike  pat terns  

For a wavelike pattern, we search for a solution of the following form in (2.1): 

x~ = A t + B t cos(jco + 05) (2.2) 

where co = ( 2 7 r / N ) q  is a wave number, q an integer to be determined later and 05 a constant phase. In order 

to simplify the notation, we write A = A t and .,{ = A t+l,  with the same notation for B t and other amplitudes 

( , t .  D t, E ~ of the next section. 

Substituting (2.2) into (2.1), we have 

/t + / )  cos(jco + 05) = {f (A)  - l a B 2 }  + { o t f ' ( A ) B }  cos(jco + 05) + { - I f l a B 2 }  cos(2jco + 205) 

in which 

ot = l - 2 ~ s i n 2 ( l c o )  and / 3 =  1 - 2 E s i n  2co. 

If co (or q) and ~ are chosen such that/3 = O, then the SM model is immediately obtained: 

fi~ = f ( A )  - ½aB e, B = e t f ' ( a ) B .  (2.3) 
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Eq. (2.2) is the exact solution of  the CML (2.1) in the case where/3 = 0, and (2.3), as a simple two-dimensional 

mapping, is a system of the amplitude equations corresponding to (2.1). It completely describes the dynamics of 

the CML for all the initial conditions in the bassin of  attraction of  the patterns (2.2). When (2.3) has a periodic 

solution, the CML (2.1) exhibits a spatiotemporal periodic pattern. In fact, the condition/3 = 0 is not necessary for 

the existence of  the wavelike solution. We will modify (2.2) a little so that it can still describe the wavelike solution 
of  (2.1) even for/3 ~ 0. 

2.2. The implicit function theorem with constraints 

Used in its more general form, the implicit function theorem may ensure the existence and uniqueness of  the 

solutions of  (2.1) in the neighbour of/3 = 0 if the Jacobian matrix of (2.1) is invertible. However, it cannot guarantee 

that the obtained solution possesses the specified spatial pattern. In other words, it may as well be possible that 

the obtained solution is not of  wave type. One way to deal with this problem is to use the norm with weights [7], 

by which the existence and stability of kinks have been proved [8]. Instead, the method which we shall use is to 

consider the specified spatial patterns as constraint mapping. The fixed point of  (2.1) together with the constraint 

mapping is just the addressed pattern. Therefore, the implicit function theorem will work in the system of both (2.1) 
and constraint mapping. 

2.3. Existence of the wavelike solution in the neighbourhood of~3 = 0 

For the sake of simplicity, we first consider the steady wave, that is, (A, B) is a fixed point of  (2.3): 

' ' ' t  A -- B = 1 + 2aa  2aot'  - -  4a~t 2 . (2.4) 

Using the map (2.1), ~- : R N × ~2 ~ ~ N  may be defined as 

[xj] × (a, E) w-> 5t-([xj], a, ¢) = [(1 -- ¢ ) f ( x j )  + I E ( f ( x j _ l )  + f (x j+l) )]  -- [xj], 

and the constraint mapping G : [~A; × Rc __~ R~¢ of  the wave-like patterns as 

[Bj] x (a, E) w-> G([Bj], a, E) = [A + Bj cos(jo90 + ~b)], 

where I~ N is an N-dimensional Euclidean space, [xj] = (xl, x2 . . . . .  XN) T is an N-dimensional vector (T denotes 

transposition), and A is the same as in (2.4). Let us choose a0 and or0 in such a way that (2.4) is a stable fixed point 
when o90 and E0 satisfy both fl = 0 and a0 = 1 - 2E0 sin2(½w0) [6]. Therefore, (2.1) and (2.2) give 

.Y'([xj], a, ~) = 0, [xj] = ~([Bj],  a, ~), 

o r  

.T'(•([Bj], a, E), a, E) = 0. (2.5) 

Obviously, the solution of  (2.5) is a steady wave of  the CML (2.1) since the [Bj] are close to [B]. The next task 
is to prove the existence of  the solution of  (2.5). We know that (2.5) holds for the given B and (ao, ~o), i.e.; 

5t'(G([B], ao, ~:o), ao, ~o) = 0. 
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At this point, the corresponding Jacobian matrix is 

aY([xjl, a, ~) OG([Bj], a, ~) 
,ff(.T" o ~)(B,ao,~0) ---- O~([Bj], a, E) O(BI . . . . .  BN) 

where I is the identity matrix, and (diag denotes a diagonal matrix) 

D = d iag{f ' (A + B cos(w + 4))) . . . . .  f ( A  + B cos(Nw + (~))}, 

W = diag{cos(w + 4)) . . . . .  cos(Nw + ~b)}, 

: - !  2 . . .  2 ~  

2 - 1  2 . . .  0 

0 2 - 1  . . .  0 J . 
• . . . , .  

2 0 0 . . .  2 - 1  

E = 

= {(I + ½~E)D - I}W,  

407 

(2.6) 

Here the initial phase 4~ is chosen so that cos ( jw + q~) q: 0 for each j .  In other words, there are no nodes in the 

lattice sites. Therefore, the matrix W is invertible. By the same argument, 4' may at the same time be chosen such 

that D is also invertible. Then, (2.6) can be rewritten as 

if(5 r o ~)(B.a0,E0) = (I - D - I  + I E E ) D W .  

Thus, the determinant of  (2.6) is not zero if 

[]½~EI[ < Ill - D- I l l ,  (2.7) 

where II " II is a matrix norm. Eq. (2.7) is easy to be verified because (1 - D - l  ) is diagonal. For example, if II • II is 

taken as the rank norm, (2.7) becomes 

< min{! - [ f ' ( A  + B c o s ( j w  + 4 0 ) ]  -1 , j = 1, 2 . . . . .  N}. 

In this case, by the implicit function theorem, there exists a neighbourhood U of (a0, e0) such that (2.5) has a 

unique solution in S2: 

Bj = Bj (¢ ,a)  = B + O(s). (2.8) 

In the second equation of (2.8), s is small, as a consequence of  the implicit function theorem, since it is determined 

by the distance of  the solution to the reference solution with fl = 0, i.e. s is such that [Bj - BI < s when (a, ¢) is in 

/_. Therefore, the CML (2. l) displays wavelike patterns even for [3 # 0, namely a steady solution of  the wave type: 

xj =- A t + B~ cos(jo9 + q~). (2.9) 

The amplitudes Bj of (2.9) are close to B of  (2.2) whereas its mean value and wave number are kept unchanged. 

Due to this modified amplitude, (2.9) is no longer a strictly spatial periodic structure. However, since the pairs of 

neighbouring sites where {cos(jwo + q~)} changes the sign itself are frozen inside U (they correspond to "nodes", 

although these nodes are not located in the lattice sites), this configurations look like wave patterns. The lattice 
length between the nearest two such "nodes", or simply the wavelength, is determined by om corresponding to 
/3 = 0. Therefore, this kind of  approximate wavelength depends only on the values of the parameters, in the sense 

that the allowed wavelengths are such that they exist and are stable for the corresponding value of  c~ when/3 is 
zero. That is to say, they are completely determined by the SM. Sometimes they are called natural wavelengths• The 
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patterns between the corresponding nearest two "nodes" are called domains. In this case, the lengths of  the domains 
do not change in time. 

The validity of  (2.8) in U means that, for each fixed a, the corresponding wave number oJ = (2zr/N)qo is kept 

constant in a neighbourhood 11 = (E0 - & ~0 + 3) of the point ~0, where 6 is a small positive real number. In other 

words, there is an interval 11 of  the diffusive parameter for which the wave number is locked. This result is easily 

seen from the following discussion: if 13 = 0, the diffusive parameter takes only a discrete set of  values ~q, and each 

one corresponds to one of the possible discrete wave number O)q = (2zr/N)q, q = 1, 2 . . . . .  N. By the implicit 

function theorem, o) takes the same value as O)q in the neighbourhood of ~q, that is, the wave number is locked. 

This wave number locking leads to a "staircase" in the curve of  the wave number versus the diffusive parameter, a 
phenomenon which is similar to the frequency locking. 

Using the same argument, we can prove the existence of  another wavelike pattern by constructing the correspond- 

ing mapping and computing its Jacobian. Namely, we consider the set of patterns of the form: 

X t j  = t O l Aj + COS(jw + q$), (2.10) 

where the mean value is modified instead of  the amplitude. The difference is only that now W is replaced by 1 in 

expression (2.6) of  the corresponding Jacobi matrix. Comparing the two solutions (2.9) and (2.10), we see that if 

W is invertible in (2.6), that is to say, no node is located at the lattice sites, these two wavelike patterns exist, and 

are equal at least in a common subrange of  the parameter space (by uniqueness): 

t B t x~ = A t + B ~ c o s ( j w + q ~ ) = A t + ( B t + O ( s ) ) c o s ( j w + g ) ) = A j +  cos(jo) + q~). 

However, if W is not invertible, that is, if some nodes are located at the lattice sites, (2.10) always exists and (2.9) 
may not exist (of course, with the Bj close to the B). 

Remark 1. The initial phase ~b is only important to ensure that the nodes are not on the sites. Notice that, if 4~ is 

time dependent, the solution is a travelling wave, a case that we have addressed in another paper [10]. 

Remark 2. Wavelike solutions do exist in the parameter region where the Jacobian matrix (2.6) is invertible. 

Remark 3. In order to generalize (2.9), it is a natural idea to look for invariant subspaces of  the configuration space 

as they may be expressed in terms of the amplitudes A j, Bj and so on. In this way, it is possible, even if rapidly 

cumbersome, to discuss more complex patterns. In the same way, but with the same limitations, it is also possible 
to treat the periodic (in time) solutions of  the SM analysed in [6]. 

3. Stability of wavelike patterns 

3.1. Uniformly small deformations 

Once a wavelike solution of  CML (2.1) is obtained, its stability must be studied. The full analytical treatment of 
the stability problem of the wavelike patterns (even in the linear case) is, for the moment, out of our reach. One way 
to go further is of  course to use a computer to work out the spectrum of the N × N Jacobian matrix at the given 

solution. This was the method used in [6]. Instead we shall investigate here a different possibility, namely to consider 
only those perturbations that are compatible with a family of  the given pattern fixed for proving the existence of  
solutions. This means that here we consider only a restricted class of  perturbations that we call deformations. 
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This admissible perturbations must respect the type of solution under consideration, i.e. they shall change the 

original solutions (or patterns) only by some deformation. From the view point of  pattern dymanics, these pertur- 
bations give rise to tiny changes of  the original pattern so that the perturbated pattern looks very similar to the 

original one, the former being only a deformation of the latter by drift, modulation or torsion. We trust that these 

dclormations are the realistic permissible perturbations for the case we treat. 

Definition. Let [xl] = X ( A  (j ,  t), w)  be a solution of the CML (2.1), where A ( j ,  t) ,  w are space-t ime dependent, 

and space-t ime independent parameters, respectively. These parameters may be multi-dimensional. Let [~j ] = )~ 

be another solution of the CML (2.1) perturbed slightly from the solution by an amount [3xj] = 6X  such that 

"~, = X] + 8Xj. Then: 
( I ) ,~X is uniformly small on the lattice if there exists a small 8 independent of  j such that ][ [3xj ][I < 3 for each j ,  

where 11" ]1 is a norm. 
(2) ~X is a deformation if [.~j] = [xj] + [Sxj] = X ( A u (  j ,  t) ,  w u) for some ~ where X ( A u (  j ,  t)) is continuously 

differentiable as a function of # and [~j ] [z~=0 = [xj ]. In other words, deformations are the perturbations of the 

structural parameters of the patterns. 

A perturbation that satisfies both ( l )  and (2) is called an uniformly small deformation (USD). We shall also see 

that they are general in some specific case, that is to say that condition (2) of the above definition may be redundant 

in such a case. 
For example, cos[ j  (w + #)]  is a deformation of the pattern cos(j~o) but it is not an uniformly small perturbation. 

We now show how to handle the problem of the linear stability of the wave solution (2.2) under USD, the other 

families of  solutions being treated in the same way. 

3 2. Stability o f  wave solution 

The wave (2.21) depends on three structural parameters: amplitude, phase and wave number. As seen in the 
examples of the Section 3.1, perturbations of  the wave number can never be a USD, so that we may only consider 

the perturbations of  the amplitude and phase. When the perturbations of the amplitudes and phases are independent 
of the spatial lattice sites j ,  it is readily found that the linear stability of (2.2) is equivalent to the stability of 

the solution (2.4) of the SM model (2.3). Therefore, in the following we shall consider only the case where the 

amplitude's perturbation is j-dependent.  The perturbations of the phase will be ignored since they do not affect our 

conclusion. 
Let us first consider the simplest perturbed wave, for which the perturbation introduces only a new wave number: 

xj-; = (A t + sD;  c o s ( j ~ ) )  + (B t + 2sC t cos ( jQ) )  cos(joJ) 

= A t + B t cos(jco) + s (Ct (cos[ j (co  - Q)] + cos[j(co + Q)]) + D t cos [ j~ ] ) ,  

where A t, B t, C t and D t are in order of 1, and ~ and s are the small parameters (of the same order) that fix the size 

of  the perturbation. This kind of perturbation is indeed a USD, and £~ is a modulated wave. Substituting ,~ into the 

CML (2.1), we obtain 

. ~ t+ l  = At+l Bt+l s(ct+l  j + cos(jco) + (cos[j  (co -- f2)] + cos[j  (w + Q)]) + D t+l cos[ jQI)  + O(s2). 

where (using the same notations as in the last section) 

[ ") 
= f ( A )  -- ~ a B ' ,  B = o t f ( A ) B ,  (3.1) 
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and 

= a [ f ' ( A ) C  + ½f'(B)D],  D = f ' ( B ) C  -4- f ' ( A ) O .  

The Jacobian matrices of (3.1) and (3.2) are 

J ( A , B )  = ( f ' } A )  ½f ' (B)  
\ o t f  (B) otf '(A) ] 

and 

(3.2) 

otf '(A) ½otf'(B) ) 
J(C, D) = f ' ( B )  f ' ( A )  ' 

respectively. It is verified easily that the matrices J(A,  B) and J(C, D) have the same trace and determinant: 

tr[J(A, S)] = tr[J(C, D)] = (or + 1)f ' (A),  

det[J(A, B)] = det[J(C, D)] = a [ f ' ( A )  2 - ½f'(B)2], 

where tr and det represent the trace and the determinant of a matrix separately, so they have the same characteristic 
polynomial. 

Therefore, the perturbations C t and D t will converge exponentially to zero as the time t goes to infinity if the 
eigenvalues of the coefficient matrix in (3. l) are less than unity. For example, if (2.4) is the stable fixed point of 
(3.1), the perturbations C t and D t will approach zero. In this sense, (2.2) is the stable steady wave of (2.1). For the 
same reason, if (3.1) has a stable periodic orbit, C t and D t will also approach zero. In this case, the stabilities of 
the periodic solutions of (3. l) provide the sufficient but not necessary conditions for ones of wavelike solutions of 
(2.1). This fact suggests that we may verify the stability of (3. l) directly instead of looking for wavelike solutions 
of (2.1). 

Now, let us show that, up to the first order in the perturbation, such is the general case of a USD. Moreover we 
shall see that here, due to the special type of pattern considered, all the small perturbations are of USD type, then 
allowing to conclude in this case to the linear stability under all sufficiently small perturbations. 

Suppose that 

2~ = A + s E DI cos(jr2/) + B + 2s CI cos(jr2/) cos(rio + tp) 
/=1 I=1 

N 
= A + B cos(jw) + s E ( C I [ c o s ( j w  - jf2t + dp) + cos(jw + jf2l + ~b)] + DI cos(jr2/)), 

/=1 

where now s and the f2t are the small parameters (of the same order). Again, introducing the above expression into 
(2.1) we obtain, up to second order, 

N 
3~j +1 = .~ + S cos ( jo ) )  q- s E ( (T / [COS( jo )  -- j ~ l  + dp) + c o s ( j w  + j ~ l  + ~b)] + / ) 1  c o s ( j ~ l ) ) ,  

I=1 

where again 

= f ( A )  - ½aB 2, [~ = otf ' (A)B, (3.3) 

and 

Ct = a[ f ' (A)Cl  + ½f'(B)Dl], Dl = f ' (B)Cl  + f ' (A )Dt .  (3.4) 



G. He et al./Physica D 103 (1997) 404-411 411 

Therefore, the same property as the above holds now for all the amplitude perturbations Ct and Dr. Finally, since we 

allow here arbitrary local small perturbations on the parameter A, this immediately implies that the only restriction 

on the perturbations is given by condition (1) of the definition of USD given above. Therefore, in this case, USD 

are the most general small perturbations on the solutions of  the CML. 

4. Conclusion 

In this paper we present a systematic (if not general!) approach to construct low-dimensional mappings repre- 

senting the dynamics of regular space-time patterns of  CMLs. We may summarize as follows: 

( 1 ) find the solutions of  regular space-time patterns for some special values of  the parameters for which, indeed, 

the amplitude equations are exact, starting from initial conditions in the bassin of attraction of  the given pattern; 

(2) extend the region whose solutions exist by using the implicit function theorem with constraints, which fix the 

shape of  the corresponding patterns; 

(3) study the linear stability of  such solutions under special perturbations (that we call uniformly small deforma- 

tions); however, as stated above, in some cases, these are all the possible small perturbations. 

We used the above approach in the simplest case to construct the two-dimensional SM (2.3). When the diffusive 

parameter 6 satisfies the equality/3 = 0, (2.3) gives the exact description of  the wavelike pattern in the CML (2.1), as 

well as their linear stability with respect to perturbations of  a special type defined as uniformly small deformations. 

When the diffusive parameter e is such that/~ is in a neighbourhood of/~ = 0, the CML (2.1) exhibits a wavelike 

pattern (2.9) similar to (2.2). Therefore, the simple model (2.3) can not only represent the wavelike patterns of  the 

CML (2.1), but also predict their stability to some extent. Similar conclusions can also be obtained for waves with 

higher temporal periods as computed in [6]. However, chaos will never occur in this way, for chaotic amplitudes 

IA' ,  B t) will force the perturbations to grow fast, and therefore we should be in presence of  patterns completely 

different from the type of those studied here. They may instead probably be understood as modulated (in space as 

well as in time) waves with respect to our basic patterns. 
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