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The electronic spectra of one-dimensional nanostructured systems are calculated within the 
pure hopping model on the tight-binding Hamiltonian. B y  means of the renormalization 
group Green's function method, the dependence o f  the density o f  states on the distributions 
o f  nanoscaled grains and the changes o f  values o f  hopping integrals in nanostructured systems 
are studied. I t  is found that the frequency shifts are dependent rather on the changes of  the 
hopping integrals at nanoscaled grains than the distribution o f  nanoscaled grains. 

PACS: 71.20. Ad, 61.46. + w 
There is much current interest in nanostructured systems.l The sizes of the grains in these 

systems are intermediate between the sizes of macro-crystals and those of atoms or molecules 
or atomic clusters. Previous  experiment^^-^ showed that in these systems there exist many 
singular properties that are much different from those of bulk crystals or amorphous with the 
same compositions. However, there is few theoretical understanding due to the fact that the 
limit of the finite sizes of nanoscaled grains makes theoretical calculations of their lattice dy- 
namics diffi~ult .~ Recently, we used renormalization group (RG) approach to study vibrational 
properties of nanostructured systemsa6 It provides somewhat an intuitive and coherent picture 
about the vibrational spectrum. 

A nanostructured system is piled up with many nanoscaled grains of which the sizes are 
distributed randomly in a certain extension. In order to construct one-dimensional (1D) ver- 
sion of nanostructured systems, we consider a kind of model chains based on the chain-like 
Si-backbone p01ymer.~ In a nanostructured chain, L nanoscaled building blocks with vari- 
ous numbers {Ki}(i = 1 , 2 , . . .  , L )  of atoms are arranged randomly by using the Monto-Carle 
method. For a certain building block, K, takes value with possibility. The possibility is de- 
termined by a distribution function such as the Poissoi, function. Each distribution function 
has two character factors, the most-possible number K,  and the half-maximum breadth A K .  
Here, we take the Poisson distribution function [see Figs. l(a) and l(b)] to generate the atomic 
numbers of the building blocks, which are arranged in a sequence by using the Monto-Carle 
method. 

Let us consider the electronic tight-binding Hamiltonian 

i i,j 

where the site energy ~i takes €1 at a crystalline site, or €2 at a second neighbor boundary 
site, or ~3 at a nearest-neighbor bbundary site, and the hopping integral t i j  takes TI between 
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two crystalline sites, or T2 between a crystalline site and a boundary site, or T3 between two 
boundary sites. Introducing the Green’s function G ( 2 )  = l / ( Z I - H ) ,  we can get, from Eq. (l), 
the matrix element equation of the Green’s function 

(2 - E,)G,, = 6,, -k tzkGk, , i, j = 0, fl, 6 2 ,  - * .  (i no Sum) (2) 
k 

with the Kronecker delta 6,,, where 2 = E + iv(7 + 0). One remembers that the crystalline 
sites are ordered in each building block. Thus, some RG transformations can be used to 
decimate the atoms with the same local environments. Analogously, the site parameters { E , }  

and {t,,} are changed to be the renormalized site parameters { e : }  and {ti,}. From Eq. (2), one 
can get the recursion relations of the renormalized site parameters { E : }  and {ti,} to the original 
site parameters { E ~ }  and {t,,}, which are similar to the sets of RG equations in Ref.6. As a 
transformation used, tens of sites in each building block of the original system are decimated. 
So the original nanostructured systems are transferred to be simple systme only consisting of 
the boundary sites which have the same local environments in original system. As the series of 
RG transformations are iterated successively, the hopping integral tz,,*l between two nearest- 
neighbor pseudosite in the renormalized chain gets smaller and smaller. When t z , z f l  + 0 after 
iterations of RG transformations, one can calculate, from Eq. (2), the local Green’s function 
G,, = 1/(Z - E : )  at  every site i of the studied nanostructured system. 
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Fig. 1. Schematic bar representations of the Poisson distribution of atomic numbers of nanoscaled 
building blocks in nanostructured systems, in which the distribution factors K m / A ~  are (a) 30/1; 
(b) 30/5. 

Once the local Green’s functions {Gii}  at all kinds of sites are known, many physical prop- 
erties of the nanostructured systems can be calculated. For instance, the electronic density of 
states (DOS) is given by 

lim Im ~ i i  ( E  + i 7)] }) , 1 
p ( E )  = - lim 

i 
N-+m (G{ n - 4  [ (3) 

L where “1”’ denotes the imaginary part of a complex quantity, and N = xi = K; is the total 
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number of sites of the studied system. As N tends to  infinite, the model systems with infinite 
number L + 00 of building blocks are big enough to be compared to real nanostructured 
materials. Here, we present the DOS of nanostructured systems mainly on the pure hopping 
model for which the on-site energies { E % }  are the zero of energy. As typical example, the number 
of blocks in the studied system is L = 300, and the infinitesimal is q = 0.001. The DOSS for 
some types of nanostructured systems with the site parameters {TI ,  Tz,T3} and the distribution 
factors k Y m / A K ,  are shown in Figs. 2 and 3, respectively. 

E E 

Fig.2. 
{1.0,0.9,0.5), where the distribution factors K , / A K  are (a) 30/1; (b) 30/5. 
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Fig. 3. Electronic DOS of the nanostructured systems with the distribution factors Km/Ajy = 30/1, 
where the site parameters {Tl,T2,T3) take (a) {1.0,0.8,0.3}, (b) {l.l, 1.0,0.6). 

In Figs. 2(a) and 2(b), the site parameters {TI,Tz,Ts} are chosen to be {1.0,0.9,0.5}, while 
the distribution factors K m / A ~  take 30/1 and 30/5, respectively. The increase of AK in a 
nanostructured system corresponds to the increase of the proportion which is of the number 
of boundary sites to the total number of sites. Comparing Fig.2(b) with Fig.a(a), one can 
see that the number of sharp peaks decreases as well as that the structures of amplitudes of 
electronic DOS are reconstructed when the proportion of the number of boundary sites to 
the total number of sites in nanostructured system increases. For example, the center peak 
at E = 0.0 in Fig.2(a) disappears in Fig.2(b) as A K  increases. This result supports the 
conclusions obtained for vibrational spectrum of nanostructured systems by using the pure 
numerical LMTO (linear Muttin-Tin orbit) m e t h ~ d . ~  However, the edge E = f1.9701034 of 
the spectrum is not extended as the half-maximum breadth A x  increases. We also calculate the 
electronic DOSS of the nanostructured systems with the distribution factors K , / A K  = 20/1 
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and 50/1, for which the site parameters {TI, T2,T3} are the same as those in Fig. 2(a). Due 
to limited space, we do not show them here. The results show that the edge of the spectrum 
is fixed on E = f1.9701034, i.e., is not extended, too, when the most-possible number K ,  
changes. It means that the changes of the distribution factors K,/AK do not affect the shifts of 
the edges of electronic spectra of nanostructured systems. The “blue shift” phenomena found 
experimentally are caused neither by the numbers of atoms in nanoscaled grains nor by the 
distribution of atomic numbers of nanoscaled grains in nanostructured systems. 

As we know, experiments show that the decrease of average diameters of grains in nanostruc- 
tured systems makes frequency ~ h i f t . ~ > ~  How are the theoretical discussions in qualitative agree- 
ment with the experimental results? it is noted that, besides the decrease of atomic number in 
nanoscaled grains, the contractions of lattice constants may reduce the diameters of nanoscaled 
grain. So we calculate numerically the electronic DOS of the nanostructured system with the 
distribution factors K m / A ~  = 30/1 and the site parameters {Tl,Tz,T3} = {1.0,0.8,0.3} and 
{1.1,0.9,0.6} in Figs. 3(a) and 3(b), respectively. Comparing Fig. S(a)-with Fig. 3(b), one can 
find that when the hopping integral TI between crystalline sites does not change the decreases 
of Tz and T3 lead to  the decrease of number of sharp peaks, and the wider bands at energy 
region [-1.5,1.5] of the spectrum of nanostructured systems. However, at the energy regions 
[-1.5, -2.01 and [1.5, 2.01, the number and the positions of sharp peaks do not change except 
the change of the amplitude distribution. The edge of the spectrum is also fixed on the ener- 
gies E = f1.9701034. Similar conclusion to above paragraph can be obtained as the hopping 
integrals Tz and T3 at the boundary of nanoscaled grains decrease. In Fig. 3(b), all of TI, Tz, 
and T3 are larger than those in Fig. 2(a). It is shown that as the gaps become wider the edge 
of the spectrum is extended when the hopping integral T I ,  as well as Tz and 2’3, increase. It 
means that the edges of the spectrum shift to the direction where /El is higher as the hopping 
integrals {TI}  between crystalline a t o m  increase. For a nanostructured system with certain 
composition, the decreases of the distances between two nearest-neighbor atoms may not only 
reduce the diameter of a grain, but also enhance the interactions between atoms. The changes 
of the hopping integrals T I ,  T2, and T3 in a nanoscaled grain are due to lattice distortions. it 
indicates that the lattice distortions of nanoscaled grains in a nanostructured system, which can 
reduce the diameters of nanoscaled grains, may raise the frequency shifts of spectra in nanos- 
tructured systems. Otherwise, the distribution of atomic numbers of grains in nanostructured 
systems does not take the effect of frequency shifts. It only modulates the amplitude structures 
of electronic DOS. It should be mentioned that similar conclusions can be obtained from the 
DOSS of nanostructiired systems for the case E ,  # 0 either on the basis of pure hopping model 
or on the combined model. 
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