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Abstract. — In this paper we use a simple normal form approach of scale invariant fields to
investigate scaling laws of passive scalars in turbulence. The coupling equations for velocity
and passive scalar moments are scale covariant. Their solution shows that passive scalars in
turbulence do not generically follow a general scaling observed for velocity field because of
coupling effects.

1. Introduction

Recently, much attention has been paid to the scaling of velocity structure functions in fully
developed turbulence. It is classically admitted that there is a range of scales, called the inertial
range, where the structure functions of order n scale as power law:

Sn(`) ≡ 〈|u(x + `)− u(x)|n〉 ∼ `ζ(n), (1)

where ζ(n) is some scaling exponent. Recent studies, however, have raised up doubts about
the validity of such scaling: for example, it is shown in [1] that the true scaling could rather
be exp(ζ(n)a−1`a) where a is inversely proportional to the Reynolds number. Given such
controversy, the discovery by [2] of a new form of scaling is very interesting. This general form
of scaling, named General Scaling, extends down to the smallest resolvable scale. This new

scaling involves the reduced structure functions Sn/S
n/q
q and can be written:

ln
Sn

S
n/q
q

∝ ln
S3

S
3/q
q

, (2)

for any n, q, where the proportionality factor only depends on n and q.
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Note that if (2) is really valid for any n, q, and if the following limit exists:

S∞(`) = lim
n→∞

Sn+1

Sn
, (3)

then, the General Scaling property can also be written:

ln
Sn

Sn∞
∝ ln

S3

S3
∞

, (4)

where the proportionality factor only depends on n. The existence of the limit (3) is not
always guaranteed: for example it does not exist if u is Gaussian. There is however good
indication that such limit exists in turbulence (see e.g. [3, 4]). In such case, the function
roughly characterizes the scaling properties of the most intense but rarest velocity increments
(see e.g. [5, 6]).

For sake of simplicity, we then consider the General Scaling property under the form (4) in
the sequel of the paper. All our results could be similarly derived using (2) but computations
would be slightly more intricate.

The General Scaling of scaling has been observed in a large variety of numerical and exper-
imental flows. By contrast, a similar form of scaling does not seem to hold for the structure
function of a passive scalar transported by turbulence [2]. This indicates that General Scaling
is representative of a fundamental property of velocity increments.

To our knowledge, the only theoretical explanations of General Scaling so far are based on
scale invariance of the Navier–Stokes equations: Dubrulle [7] used a normal form approach to
show that General Scaling is a generic outcome of scale invariance in the case of one random
field; Dubrulle and Graner [8] used a Lagrangian formalism applied to a single random field
to show that, in such case, General Scaling directly stems from the conservation of a general
impulsion along the scale. In the case of the passive scalar, we must consider two coupled
random fields. Moreover, it can be shown that the equations governing the passive scalar
dynamics are also scale invariant (see e.g. [9]). One may wonder in this respect why passive
scalar structure functions do not follow General Scaling. The goal of the present letter is to
offer an explanation to this paradox: we show, using an approach similar to that developed
in [7] that General Scaling is not a generic outcome of scale invariance in the case of the
passive scalar. This difference from velocity increments can be traced down to the existence of
a coupling with the velocity fields, which introduces a second characteristic scaling function.

2. Scale Invariant Moment Equations

The structure functions of velocity and temperature increments should in principle obey a
number of physical constraints. For example, regularity conditions constrains the structure
functions to follow a “regular behavior” Sn(`) ∼ `n at small enough `. Our goal is to derive
a generic shape for the structure functions involving a minimal set of assumptions, and taking
into account the scale symmetry. We adopt here the point of view developed in Dubrulle [7].
We therefore only sketch the main hypothesis and computations, referring the reader to [7] for
the corresponding detailed discussion. We assume that the velocity and temperature increment
structure functions obey a system of differential equations involving a scale invariant operator.
Furthermore, we assume that there is a transition towards the regular behavior at a scale
` = ηn (resp. ` = ηθ,n) for velocity (resp. temperature) structure functions (1). The generic

(1) We note that Pumir [10] obtained numerically the following relation between these two scales
ηθ,n = 0.59ηnPr−1/2, for 1/8 < Pr < 1 where Pr is the Prandtl number. The relation was obtained
for Reynolds number (based on the Taylor scale) less than 70.
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equation is then derived using only scale symmetry argument, in the spirit of normal form
theory.

We introduce, for convenience, the log variables

Xn = ln〈|δu`|
n〉,

Yn = ln〈|δθ`|
n〉,

T = ln `. (5)

In the inertial range, we expect the velocity and temperature structure functions to be close
to power laws (see further discussion after Eq. (11)), so that:

Xn ∼
χn

an
T,

Yn ∼
χ′n
a′n
T, (6)

where χn/an and χ′n/a
′
n are scaling exponents. We thus set An = dXn/dT − χn/an and

Bn = dYn/dT − χ′n/a
′
n. Near the inertial range, these amplitudes are small. In the spirit

of amplitude equation theory, we then seek for a differential equation for An and Bn as an
expansion in An andBn. The shape of the expansion is constrained by symmetry considerations
and requirement of both global and local scale symmetry [7]. In the log coordinates, global
scale symmetry amounts to a translation symmetry [6, 7]. The generic differential equation
therefore only includes derivatives of Xn and Yn with respect to T , i.e. the terms in An,
Bn and their derivatives. The highest relevant derivative is determined by the number of
boundary conditions. Like in [7], our initial assumptions are consistent with only two boundary
conditions for each field: one set by the existence of a largest scale in the system, and one set
by the requirement of transition towards the regular solution. The simplest coupled differential
equations which fits our requirements are:

bn
dAn
dT

= anAn + dnBn +O(A2
n, AnBn, B

2
n),

b′n
dBn
dT

= a′nBn + cnAn +O(A2
n, AnBn, B

2
n). (7)

We can further simplify equation (7) by remarking that Navier–Stokes and transport equations
make the temperature field depend on the velocity field, but allow free evolution of the velocity
field. This suggests dn = 0. Finally, we can use the local scale symmetry [7] to rewrite the
constants appearing in (7) as:

χn = χ̃n, an = ãn, bn = b̃n ln(`1/`0),

χ′n = χ̃′n, a′n = ã′n, b′n = b̃′n ln(`1/`0), cn = c̃n, (8)

where `0 and `1 are two fixed characteristic scales and the constants ãn, ... are invariant under
local scale transformations and only depend on the choice of `0 and `1. Fixing `1 = L, the
largest scale in the system, and `0 = ηn, and introducing the pseudo–Reynolds number Rn as:

Rn =
L

ηn
,

dropping tildes, and coming back to the physical variable Xn and Yn, we can finally write the
simplest generic differential equation for velocity and temperature structure functions as:

χn = an
dXn

dT
+ bn ln(Rn)

d2Xn

dT 2
,
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χ′n +
cn

an
χn = a′n

dYn
dT

+ b′n ln(Rn)
d2Yn

dT 2
+ cn

dXn

dT
. (9)

The solutions of this system of equation depends on the boundary conditions. We adopt a set
of conditions analog to that chosen in Dubrulle [7]

lnXn(T = 0) = 0

dXn

dT
|T=− lnRn = n

lnYn(T = 0) = 0 (10)

dYn
dT
|T=−γn lnRn = n.

Here, we have fixed the scale origin at ` = L and introduce a pseudo–Prandtl number

γn =
ln(L/ηθn)

ln(L/ηn)
.

The boundary conditions (11) guarantee the transition towards the regular solutions.

2.1. Generic Solution of Moment Equations. — We are only interested in generic
solutions of the 2nd order differential equations: ana

′
n 6= 0 and bnb

′
n 6= 0, since it exhibits

a feature reminiscent of what is observed in turbulence. Observing that the set of coupling
moment equations must not be degenerate, we suppose that anb

′
n−a

′
nbn 6= 0. Then the solution

of equation (9) is

Xn =
χn

an
T + αne−

an
bn lnRn

T + βn

Yn =
χ′n
a′n
T + α′ne

−
a′n

b′n lnRn
T

+ β′n +
bncn

anb′n − a
′
nbn

αne−
an

bn lnRn
T (11)

where the constants αn, βn and α′n, β
′
n are determined by the boundary conditions (11):

αn = −βn = (
χn

an
− n)

bn lnRn
an

e−an/bn

α′n =

(
χ′n
a′n
− n−

ancn

(anb′n − a
′
nbn) lnRn

αne
γnan
bn

)
b′n lnRn
a′n

e
−γna

′
n

b′n

β′n = −α′n −
bncn

anb′n − a
′
nbn

αn. (12)

2.2. Properties of the Solution. — In (11), we find features already observed in [7].
The generic shape of the velocity and temperature structure functions is not power law (Xn

and Yn linear in T ), but power–exponential law, as observed and discussed in [1, 11, 12]. The
classical power law shape (or sum of power law shape depending on the way the limit is taken)
is obtained in the limit Rn →∞, with T fixed or in the neighborhood of T = 0, with Rn fixed:

Xn

T
≡ ζn =

χn

an
(1− e−an/bn) + ne−an/bn

Yn

T
≡ ξn =

χ′n
a′n

(1− e
−
γna
′
n

b′n )− kn
χn

an
e−an/bn + n(e

−
γna
′
n

b′n + kne−an/bn) (13)
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where

kn =
bncn

anb′n − a
′
nbn

(1− e(an/bn−a
′
n/b
′
n)γn). (14)

Note that the coupling between the velocity and temperature field is lumped into the con-
stant kn.

We see from equation (13) that the scale exponents are made from two contributions: χn/an
and χ′n/a

′
n stemming from the solutions of moment equation with bn = b′n = 0 (no finite

size effects) and the exponent power terms from the finite–size effect. This decomposition is
reminiscent of the decomposition obtained by other general scale symmetry arguments [6, 9]:

ζn = n∆∞(X) + δζn, ξn = n∆∞(Y ) + δξn. (15)

Here, δζn and δξn are the contributions obtained from scale symmetry considerations. Their
limits with n infinite, C(X) = limn→∞ δζn and C(Y ) = limn→∞ δξn, can be interpreted as
the codimensions of the most intermittent structures. ∆∞(X) and ∆∞(Y ) are the scaling
exponents of the maximum values of Xn and Yn, which may depend on the experimental
apparatus [8]. The factorizations (15) then suggest to interpret the constants as [7]

e−an/bn = ∆∞(X),
χn

an
= δζ∗n,

e−γna
′
n/b
′
n = ∆∞(Y |X)

χ′n
a′n

= δξ∗n, (16)

where ∆∞(Y |X) is the “naive” scaling exponent of temperature moment without the velocity
coupling, and δζ∗n and δξ∗n are “bare” values of the scaling exponents, obtained in absence of
finite size effects. In terms of these quantities, the scaling exponents can be written:

ζn = n∆∞(X) +

[
1−∆∞(X)

]
δζ∗n,

ξn = n

[
∆∞(Y |X) + kn∆∞(X)

]
+

[
1−∆∞(Y |X)

]
δξ∗n − kn∆∞(X)δζ∗n. (17)

These expressions show that finite size effects act on two levels: first by introducing a linear part
in the expression of scaling exponents; second, by modifying the value of the codimension of the
most intermittent structures. To understand this, let us consider for example the log–Poisson
case, where [9]

δζ∗n = C∗(1− βn2 ),

δξ∗n = (U∗+ − U
∗
−)(1− βn1 ) + U∗−(1− βn2 ), (18)

where β1 and β2 are two constants, C∗ and U∗+ are the codimensions associated to most inter-
mittent structures of the velocity field and temperature field, and U∗− is a coupling constant.
Finite size effects then induce a modification of these bare values into:

Cfs = C∗
[
1−∆∞(X)

]
,

U fs
+ = U∗+

[
1−∆∞(Y/X)

]
− knC

∗∆∞(X),

U fs
− = U∗−

[
1−∆∞(Y/X)

]
− knC

∗∆∞(X). (19)
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Using this interpretation of the constants, we can finally investigate the existence of General
Scaling property in the passive scalar situation. In the next Section, we explicitly consider
the log–Poisson case, but similar results could be obtained with other statistics for δζ and δξ.
The central hypothesis in fact lies in the “factorization” property (15). If we do not make this
assumption, then General Scaling stands neither for velocity increments, nor for temperature
increments. If we want to be sure that General Scaling does not occur for passive scalar even
though it is valid for velocity, the factorization assumption is then natural.

2.3. General Scaling . — To investigate the General Scaling property, we introduce the
maximal event functions δu∞ for velocity and δθ∞ for temperature increments. Again, we
stress that this assumption is not essential, it just simplifies the computational burden. The
maximal event functions follow:

ln (δu∞) = lim
n→∞

(Xn+1 −Xn),

ln (δθ∞) = lim
n→∞

(Yn+1 − Yn). (20)

We now observe that if the pseudo–Reynolds numbers Rn, Prandtl number γn or the coupling
constant kn depend on n, the General Scaling property is not satisfied for the velocity incre-
ments (nor for the temperature increments). We then assume that Rn ∼ R, kn = k and γn ∼ γ
(see [2] for a discussion on these assumptions). From the equations (11), we compute

ln
〈|δu`|n〉

|δu∞|n
= A(T )δζn

ln
〈|δθ`|n〉

|δθ∞|n
= B(T )δζn +D(T )δξn (21)

where A(T ), B(T ) and D(T ) are functions of T . They can be explicitly computed, for example,

A(T ) = T −∆∞(X)
lnR

ln ∆∞(X)
(∆T/ lnR
∞ (X)− 1).

B(T ) = k∆∞(X)

[
lnR[

γ∆∞(Y |X)

∆γ
∞(X) ln ∆∞(Y |X)

(∆T/γ lnR
∞ (Y |X)− 1)−

∆
T/ lnR
∞ (X)− 1

ln ∆∞(X)
]

+D(T )

]
(1−∆∞(X))−1

D(T ) =

[
T −

γ∆∞(Y |X) lnR

ln ∆∞(Y |X)
(∆T/γ lnR
∞ (Y |X)− 1)

]
(1−∆∞(Y |X))−1. (22)

We solve the equations (21) with n = 3 for A(T ) and D(T ), and then substitute them into the
equation (21). We get, turning back to explicit notations:

ln
〈|δu`|n〉

|δu∞|n
=

δζn

δζ3
ln
〈|δu`〉|3

|δu∞|3
,

ln
〈|δθ`|n〉

|δθ∞|n
= B(T )(δζn −

δξn

δξ3
δζ3) +

δξn

δξ3
ln
〈|δθ`|3〉

|δθ∞|3
. (23)

This shows that while velocity increments obey General Scaling, temperature increments do
not follow this property, due to the coupling with the velocity field. Deviations with respect
to General Scaling depend on the ratio B(T )/D(T ): when this ratio is very large (resp. very
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small), the temperature increments follow approximate General Scaling with exponent δζn/δζ3
(resp. δξn/δξ3). In situations where D dominates at T � T0 and at T � T0, while B
dominates at T ∼ T0 (where T0 is a characteristic log–scale), one can get the situation observed
experimentally by Ruiz et al. [13]: when plotting the reduced temperature structure function
of order n as a function of the reduced structure function of order 3, one observes two parallel
lines (of slope δξn/δξ3) for T � T0 and T � T0, connected together by a transition region.

3. Summary

Using scale symmetry arguments, we were able to write the generic simplest coupled equations
relating moments of velocity and temperature increments. Their solutions reproduce many
observed features of velocity and passive scalar in turbulence. The velocity and temperature
share such typical properties as: (i) transition from an exponential power law to a power law
with increasing Reynolds number; (ii) transition between a regular scaling at small scale and
to anomalous scaling at larger scale, although the transition scale may be different for the two
fields.

However, they are also characterized by a striking and important difference: velocity struc-
ture functions obey a general scaling [2] property in any situation. Such property is not
observed in general for temperature increments, because of coupling effects quantified by a
constant kn. This results is in agreement with a recent study of scaling properties of velocity
and temperature scaling laws [2].

Since we were interested in generic results, we only considered in the present paper the
simplest case of linear coupling. In a next step, nonlinearity should be considered. Nonlinear
coupling may be introduced in two different ways: forcing and parameter excitation. For the
convection in turbulence, the latter deserves more attention. Finally, we note that in the
present formulation, moments are not coupled with higher order moments since linear coupling
between them can be removed by matrix transformation. By contrast, nonlinear coupling with
higher moment could not be simplified such easily, and would lead to a more difficult treatment
of the equations. We however believe that the results obtained in the linear case are generic,
and should also be obtained in such nonlinear case.
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