Periodic vortex breakdown in wide spherical gaps
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The flow field with vortex breakdown in wide spherical gaps was studied numerically by a finite
difference method under the axisymmetric condition. The result shows that the flow bifurcates to
periodic motion as the Reynolds number or the eccentricity of the spheres increasd997©
American Institute of Physic§S1070-663(97)03205-4

Flow between two coaxially rotating spheres has re-because any infinitestsmal disturbance will destabilize it. Our
ceived much attention in the last decatfebecause it is a unsteady simulation reveals that the flow tends to develop
typical case for studying nonlinear characteristics such aito a periodic flow structure at such higte numbers.
bifurcations and chaos which are often related to the dy- In our numerical code, the unsteady axisymmetric
namic system of the incompressible Navier—Stokes equdNavier—Stokes equations were solved by the finite difference
tions in a closed domain. Depending on different controlmethod®’ The method is a modified version of the
parameters and time histories of the boundary conditionpseudocompressibility method in which a subiteration is per-
very different fluid phenomena were observed in narrow tdormed at each physical time step to drive the pseudocom-
medium gap$;e.g., Taylor vortex, spiral vortex, wavy tor- pressibility terms toward zero to satisfy the continuity equa-
oidal vortex, shear waves, Stuart vortex, quasi-periodic flowsion. Because the computation has to run several hundred
and chaotic flows. Recently there have been several studiggvolutions of the inner sphere before the flow develops into
on the vortical motions in wide spherical gaps. Bar-Yosepha stable steady state or periodic state, it is important to keep
et al? first reported a numerical study of vortex breakdownthe numerical viscosity much less than the physical viscosity.
in the polar region of a spherical gap in a certain range of thé\ third-order upwind differencewas used. The divergence
Reynolds number. Their following wotkeported further re-  of velocity was reduced below 18 within 6 subiterations.
sults of vortex breakdown at different Reynolds numbersThis quantity is accurate enough for computing most slow
gap widths, eccentricities and rotation ratios. Their experi€volutionary flows. Although a stretched grid may be useful
mental result indicated that the vortex breakdown might be
nonsteady or nonaxisymmetric. In a parallel study of the
confined swirling flow in a cylindrical container, Gelfgat
et al® proved that the appearance or disappearance of vortex|
breakdown in steady states are not connected with the insta-| :
bility of the flow and for a certain aspect ratio range the Wi
transition from a steady to an oscillatory flow regime takes
place as a result of an axisymmetrical supercritical Hopf bi- (a)
furcation. This fact that a periodic motion always happens in
a flow in a closed geometry with increasiRe number mo-
tivates our present numerical study.

We examine numerically the incompressible flow be-
tween a rotating inner and a stationary outer sphere. The |///f
eccentricity is along the common axis of rotation. There are =
three control parameters: a dimensionless gap width
s=(R,—R)/R,, a Reynolds numbeRe=Q;R%/ v and a di- aiies
mensionless eccentricity=e/(R,—R;), whereR; and R, 1-716.8 T2721.2 T-728.4
are the inner and outer radf); is the angular velocity of the
inner spheree the distance between the two sphere centers |
and v the kinematic viscosity. We limit our study to “wide-
gap” geometries, i.e. the gap wid#x 0.5 and the eccentric-
ity is either 0 or 0.9. For a concentric gag=0.55 at
Re=10% the numerical result of Ref. 4 showed that the flow
evolves a sequence of single flat bubble, two bubbles and the (g)
merged bubble structursee Fig. 4 in Ref. ¥ However that
was the result of a steady-state solver. It may be an unstable
steady solution which is one branch of a supercritical bifur-
cation. The supercritical unstable steady solution is difficults|g. 1. Temporal variation of the meridional streamline pattern in one pe-
to remain for a long time even using an unsteady solveriod, s=0.55,Re=12 600, concentric gap.
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FIG. 2. Phase plot of W,v) velocity components near the equator at FIG. 3. The meridional streamlines for an eccentric spherd).9, s=0.5,
(r—R)/(R,—R;)=0.4, ¥=80°,s=0.55,Re=12 600. Re=2553.

in resolving the boundary layer, the vortex bubble lies in therior region, and finally splits. The split vortex ring is con-
interior domain and to resolve this region we have to usevected to the interior region and disappears. From Fig. 1
uniform mesh. The numerical tests showed that the mesto Fig. 1(h) and back to Fig. (), the flow passes through
number and time step have significant effects on the compwne period. This periodic pattern was obtained after about
tational result. The computations were repeated with thre@50 000 time steps witlAT=0.003, whereT=t();. The
uniform meshes: 81(x81(#), 121x81 and 14k 121 fora phase plot(Fig. 2) for u-v velocity components near the
quarter annulus. When mesh numbetx@®ll was used, the equator of the annulus is shown to be a closed loop. This
computed flow for concentric gag=0.55Re=12600 would indicates that the flow has become periodic. The result is
have a stationary single vortex bubble but when mesh numguite different from the steady two bubble structure in Ref.
ber 121X 81 and above were used, the result was a periodid. We think the difference is caused by using different nu-
flow. In order to obtain a reliable result, mesh numbermerical codes. Our unsteady method allows a small numeri-
141X 121 was used. Apart from the mesh number, it is alsacal disturbance to grow to such an extent as to produce in-
important to keep the time step small enough so as to makstability of the flow at supercritical Reynolds numbers.
the CFL number less than 1. In our initial computation with The second case is an eccentric gaf0.5, e=0.9. The
At=0.025, the computed periodic flow had a very large vor-grid number 8Kk 129 was used. The flow &e=2553 (as
tex bubble. In the present computation, time step was set tgiven in Table | of Ref. #was computed. Our resufig. 3
0.003. Representative results dg a concentric gap with shows that there is only one steady bubble on the wider polar
s=0.55 andRe=12600; and(b) an eccentric gaps=0.5, axis rather than a vertically oscillating structure as demon-
e=0.9 at twoRe numbersRe= 2553 andRe=4000. strated in the experimeftThis difference may be within the
Figure 1 shows the time sequence of the meridionakxpected mismatches of numerics and experiments, or may
streamlines for concentric gagp=0.55 atRe=12600. We be due to the fact that a true three-dimensional flow can not
see that a vortex bubble first appears upstream on the polae simulated by imposing axisymmetric restriction. How-
axis, then grows in size, becomes flat, extends into the intesver, asRe increases, for exampl& e= 3000 in our compu-

FIG. 4. Temporal variation of the meridional streamline pattern in one petie@,9, s=0.5, Re=4000.
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tation, the flow indeed develops into an axisymmetric peri-Engineering Computing, Institute of Computational Math-
odic one. In Fig. 4, meridional streamlines at differentematics.

instants show that the vortex bubble swings upstream and

downstream in the wider polar region. The period of the

velocity on the polar axis is about 9.5 times that of the rota-

tion of the inner sphere. Although direct comparison between

the present result and other experimental or numerical oneg\ythor to whom correspondence should be addressed. Electronic mail:
has not been made, our result seems reasonable and in qualinan@phy.cuhk.edu.hk
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