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Abstract. In the present paper, by use of the boundary integral equation method and the techniques of Green 
fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the 
first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform 
domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy 
singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with 
the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type 
integral equations can be solved by combining the numerical method of singular integral equation with the ordinary 
boundary element method. Further use the numerical method for Laplace transform, several typical examples are 
calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is 
successful and can be used to solve more complicated problems. 

1. I n t r o d u c t i o n  

In fracture dynamics, the impact or transient loading problems possess high value of prac- 
tice and theory. But due to mathematical difficulties, the solution of problems in classical 
elastodynamics remains an extremely complicated and difficult task. Only limited solutions 
in a closed form have been obtained for infinite domain problems. To obtain solutions for 
finite and irregular domains, there is a clear need for developing powerful theory and effective 
numerical techniques which can model arbitrary time-dependent loads and geometry. 

In special transient crack problems, the Griffith crack problem may be the most basic one. 
This problem was firstly considered by Sih and Chen [1 ]. They applied the Laplace-Fourier 
integral transforms and obtained a system of dual integral equations. In 1980's the method 
was further applied to some other special problems [2-5]. In general ones, the pure numerical 
methods, finite difference method (FDM) and finite element method (FEM) have been applied 
with some success to solve dynamic problems of cracks. But some difficulties in using FDM 
and FEM for fracture dynamics have been pointed out [6]. The boundary integral equation 
method (BIEM) provides an efficient numerical approach towards crack analysis. However 
the conventional displacement BIE formulation gives rise to degenerate integral equations 
for crack problems and is not suitable for numerical solutions. For dynamic crack problem, 
the ordinary BIEM was firstly used by Fan and Hahn [7], Sladek and Sladek [8], Chirno 
and Dominguez [9], where the domain has to be divided into subdomains by means of a cut 
along the crack. To circumvent the difficulties in using the ordinary integral equation method, 
several other approaches have been proposed; see for example, the papers by Cruse [10], 
Sladek and Sladek [11 ], Nishimura and Kobayashi [ 12]. Most of these studies first reduced the 
high order singularities to integrable ones, and then solved the modified BIE's numerically. 
A simple and straightforward derivation of non-hypersingular BIEs for elastodynamic crack 
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analysis was recently proposed by Zhang, Achenbach and Gross [13-16], where a two-state 
conservation integral of elastodynamics is used and the unknown quantities are the crack 
opening displacements and their derivatives. The dynamic crack problems of 2D and 3D 
infinite bodies have been solved by them in both the time domain and the frequency domain. 

In the present paper, the finite plane crack problem subjected to impact loading is investi- 
gated. The traction BIEs are derived. Some techniques of the Green fundamental solution and 
singularity analysis are used to obtain Cauchy singular integral equations along the crack line 
with the crack dislocation densities as unknowns. Combining the ordinary BIE along the outer 
boundary, the problem is finally reduced to solving a set of mixed-type integral equations. By 
use of the ordinary BEM and the numerical methods for singular integral equations, the equa- 
tions are firstly solved in Laplace transform domain, then the final solutions can be calculated 
by Laplace numerical inversion. In the last section of this paper, several typical examples are 
calculated and the dynamic stress intensity factors are obtained. 

2. The basic formulation 

In the linear elastodynamics problem, the displacement field ui (g, t) must satisfy the equations 
of motion 

02Ui 
#Ui,kk q- (A q- #)Uk,ki ----- 19 Ot  2 (1) 

and boundary and initial conditions 

aijnj = t i ( x , t ) , x E F t  t >. O, (2) 

Hi = c r u  ' 

Ot I t :0  = / t ° ( x )  ' z + r ,  (3) 

where A and # are elastic modules, p is density of material and f~ is the region enclosed by 
boundary F(F = Ft + Fu). 

0 /t °, and applying the Supposing the initial conditions are homogeneous, that is u i = 
Laplace transform about time (t) to (1), we obtain 

#(zi,kk + (A + #)(zk,ki -- pp2fzi : 0, (4) 

where the bar denotes the Laplace transform, p is the transform parameter. The solution for 
(4) in f~ can be expressed by the Somigliana formula 

uk (y ,P )  = fr[{i(~,P)(Jik(~l -- Y,P) - fzi(~,P)¢ik(rh Y,P)] dF(~), (5) 

where Uik and T/k are the Green fundamental solution (see Appendix). 

3. The mixed-type integral equations for the crack problem 

For the crack problem shown in Figure 1, the boundary consists of two parts F = S + L +, 
where S is the outer boundary and L ± is the surface of crack. Then (5) can be rewritten as 
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Figure 1. A plane crack problem. 
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= ~[{i(7],p)(Yik(7] -- y ,p)  -- f~i(7], Y,p)Tik(rh Y,P)] dr(v)  ~k(Y,P) 

- fab A'~i (7]1 ,p)Tik(Vl, Y,P) d7]l, (6) 

where A~2k = fZilL+ -- fZiln- is the dislocation between up and down of the crack. Let n be 
the boundary outward normal, then 

¢i~ : rikln(O,-l)' ¢i~ (7]I' y 'p)  : ~'+(7],Y,P)Ivz=0. 

Let y --~ S in (6). One can obtain the regular boundary integral equations along the outer 
boundary S. 

½ ~ (y, p) = £ [~(7], p) ~ (7] - v, p) - ~ (7], v, p)¢~ (7], y, p)] dr(7]) 

] - Tik(7]*,y,p)dT]* A~2i,l(7]l,p)drh, y E S, (7) 
1 

where the close condition at crack-tip Af~i,l la+,b- = 0 has been used and A72i,1 = OAfLi/Orh 
is the dislocation density function along the crack. 

In order to obtain the traction BIEs along the crack, some techniques have to be used. By 
the meaning of Green's fundamental solution, the following equations are satisfied 

o¢+(7],v,p)_ oVv~k(7],v,p) 
+ pp2~-fik(7],y,p), 717~ y, (8) 

Oy2 0711 

where lZVik(7], y ,p)  = Tik(7], Y,P)lnO,O)" 
Substitute (6) into physical equations 

6k2  = //,('/Zl,2 -t- '~2,1), 
2# 

~22 - -  l - -  212 [z j~I ' I  q- (1 - -  /2)U2,2] , (9) 
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and use (8) and integrate by part, the stresses in f~ can be expressed as 

#k2(y,P) = /s[{i(r/,P)T+(r/, Y,P) + [£ik(r/, Y,P)Ui(r/,P)] dr(v)  

+ Hik(r/, Y,p)Afti,l(rh,p) dr/i, (10) 

in which 

= - .  t . -b-Z + -b-Z, ) , 

2# [llOTil o~2] 
R i 2 -  1 - 2 u  [ ~ +(1-u)--0-~-y2] , 

s-s. = - # ( ~ 2  + #~1)  - #op  2 ~ 1  d~*, 
I 

2# [u~i + + (1 - u)l/Vi2] 2#_(1 -_ff)pp2 fb(Ji2dr/," 
Hi2 - 1 --- -2, 1 - 2u Jnl 

From [8], the Green fundamental solutions of dynamics and statics satisfy the following 
asymptotic relations 

Tg~ - m i k  = O ( I r / - Y l  ln l r / -  Yl), 6"~ - U~  = O(1),  (11) 

where Uik and Tik are static Green fundamental solutions (also see Appendix). It shows 
that the dynamic and static problems have the same singularity. Let y --+ L + in (10) and use 
relations (11) to separate the singular static part from the integral kernels. We finally obtain 
the Cauchy singular integral equations along the crack line (a, b) 

fs[{i(r/,P)T+ (r/, ,P) + gik(r/,Y,P)Ui(r/,P)] dS(r/) Yl 

L L A b Afsk,l(771,P) dr/l + Hik(r/1,yl,p)Agi,l(r/1 p)dr/i 
"rr r/ l  - Yi 

= qk(Yl,P), k = 1,2, Yi C (a,b), (12) 

in which, qk(Yi,P) = 6k2iL± is the Laplace transform of known dynamic loading on crack 
surface, and 

A = # / 2 ( l  - ~,), ~r~2(r/l, w , p )  = ~q21 (r/~, w , p )  = 0, 

-IQ-II = --#(~-/='1+2 -I- ~/71/1 1 - -  TI2 - -  W l l )  - -  #pp2 ~-~]'1 1 dr/*, 
1 

2# 
/]r22 - l - 2u [u(7~+ - T21) + (1 - u)(l/V22 - W22)] 

2/~-(-1__ 2~u) pp2 f~i U22 dr/*, 



Transient elastodynamic plane crack problems 43 

where u is the Poisson ratio and should be substituted by u/(1 - u) in plane stress problem. 
Now the problem is reduced to mixed-type integral Equations (7) and (12). To solve them, the 
following single value conditions of displacement are needed 

fa bA~zi,l(~ll,p) drll = 0, = 1,2. (13) i 

The solutions for the above equations belong to the Laplace transform domain. After the 
Laplace transform inversion one can obtain a solution of the problem. For the special Griffith 
crack problem, we can simply obtain the Cauchy singular integral equations by letting S --+oc 

A b /k~21,1 df]l + /)-llA~,l,ldf/1 Ctl(yl,p), (14a) 
71" ~71~ --Yl ~,a 

A b A~22,1 dl + /)-22A?22,1dr/l c72(Yl,P) (14b) 
7~ Z/l -- Yl 

where (14b) is for type-I problem and (14a) is for type-II problem. They are clearly independent 
and can be easily used to for multi-crack problems. 

The above method can be used for static problems in the similar way, where we only need 
to exchange the dynamic Green fundamental solution for a static one and remove the inertial 
terms. The integral equations for static problems are listed as follows 

luk(y ) = [ [ti(zl)Uik(~7, y) -- uiOT)Tik(% y)] dS(r/) 
dS 

--fab[fbT +'-*[jo, ik~,'q ,y) dz/*] A'/~i,l(r]l)df/1 , y e S ,  

~[ ti (T])T+ (T], Yl) -~- Kil(7], Yl)Ui (1~)] dS(r/) 

A [b Auk, A 
+Trja ~:yldrll=qk(yl), ylE(a,b), k = l , 2 ,  

where 

( OTil OTi2 
T~ + = T~kl,~(o,-,), K .  = - #  \-0-~y2 + -b-~W / ' 

2# [uOTil OTi2 ] 
i-2.[ 5- -yl " 

(15) 

4. The equivalence proof between two kinds of equations 

In this section we will prove that Equation (14b) proposed in the present paper is equivalent to 
the equations obtained by Sih and Chen [1 ], where, by the use of Laplace-Fourier transforms, 
the Griffith type-I crack ( -a0 ,  al) problem is reduced to solve the dual integral equations as 

~ C(/3,p) cos(/3yl) d/3 -- 0, Yl > ao, (16a) 
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i ° f(/3,p)C(/3,p) cos(/3yl) d/3 = q2(Yl,P), 0 < Yl < ao ,  (16b) 

where 

_ --  4/32¢1¢2 , 
7f E1 \ C 2 f  J 

= ~ C1 = - - :  
P 

(17) 

= ~ C2 = • 

To prove the equivalence, at first we need to simplify the dual integral Equations (16a,b). 
Since it has been supposed that the problem is symmetric about Y2 axis [1], the loading 
q2(Yl, t) satisfies condition q2(Yl, t) = q2(-Yl, t). The displacement can be expressed by the 
unknown function C(/3, p) 

2 2/32 + ~22 e-¢,v2 __/32 e-~Zy2 

× COS(/3yl)C(/3, p) 8/3. (18) 

Then the dislocation density is 

½A~z,j = ~ y2=O+ - - ~  /3 ~ sin(/3yl)C(/3,p)d/3. (19) 

Appling the Fourier sine integral transform to above equation, we obtain 

l( ) f0a° C(/3, p) = - ~ sin(/3r]l )A~2,1 (r/l, p) dr/l, (20) 

Substitute (20) into the left of (16a) 

o °° C(/3, p) c o s ( / 3 y l )  8/3 

=_; [sin%+ l/ 
× A ~ Z , l ( r / 1 , p )  dr / l ,  

_ s i n / 3 ( r h - - Y l ) ]  d/3} 
/3 

(21) 

and use formula 

fo °~ sin c~___~ d/3 = 11r, a > 0. 
/3 

(22) 
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Paying attention to condition Yl > a0 > r/1 > 0 in (21), one can easily examine that (16a) 
is satisfied automatically. Also, substitute (20) and (17) into (16b) 

1 fa,  - L(~7,,Yl,P)Azt2,1(711,P)&TI = q2(Yl,P), 0 < Yl < a0, (23) 
71- J0  

where the kernel is 

f 0 ~ [  f13 21~ 2#/3~,(pp2)2 2#/3~2] # 2#-~1 + 2pp + L(TII'UI'P) -- pp2 

x [sin/3(~/1 - Yl) + sin/3(~/1 + Yl )] d/3. (24) 

To simplify this kernel, we use the following integral variable substitutions respectively 

/3 = Psh~, /3 = Psh¢. (25) 
Cl C2 

Then kernel (24) can be changed into 

L(~71,y,,p) 

= # fo 2# sh3¢ + 2pp 2 pp2 ~ Psh~ 

x [sin p(~71 --yl)Shgcl + sin P(~/1 +yl)sh¢]cl d¢ 

pp2 ~-2 sin p(r/1 -_yl)Shgcl + sin P(r/1 +_ yl)sh~.]Cl J ch~dg 

fo - fo °¢ sin/3(~71 + y') d/3, + ½pp2 ~¢ sin/3(~7, Y') d/3 + ½pp2 (26) 

by use of the integral expression and differential relation for Bessel function and their derivative 

/5 /5 Ko(Z) = cos(Zshg) de, K1 (Z) = sin(Zsh~)sh~ d~, (27a) 

dKl - -Ko(Z)  - 1KI (Z) ,  Re(Z) > 0. (27b) 
dZ 

The kernel can be rewritten as 

4#2 } 
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+ 4#---~2pp2 ( p ) 3  [K,1 ' (_~)_ -K1  ( -~ ) ]  } 

+½pp2 foe~ Sin3(Tl -Yl) dfl+ ½pp2 fo e~ sinfl(71+ yl) dfl, (28) 

where r = 171 - Y117 f = 1711 + Yl I1 r ,1  = ( 7 1  - Yl)/T~ r ,1  = (71  - Y l ) / ~  and by further use 
of relation 27(b), the kernel is finally rewritten as 

L(71~Yl,p) -- 2lZr'l (5--2~2Ko(pr) 4#r,lC2Kl (Pr) 
r \el/  -01 Pr 2 Cl 

+2#pr'l ( C2 + l) K1 ( ---c 2 ~1 + 2/zr,lr Ko (pr)~2 

pf2 Cl ~l + -  
2#pf, l c~ + 1 K1 

Cl -- C--~l ~ll 

+½pp2 fo °° sinfl(71- Yl) dfl + ½pp: fo °° sinfl(71 + Yl) dfl. (29) 
/~q-1 3q-1 

Now the dual integral Equations (16a,b) have been changed into (23) with kernel (29), then 
we need to prove that (14) is equivalent with (23). Paying attention to the symmetry, (14) can 
be changed into 

1 fa,,c(7~ yl,p)A~2,1(71 p) d71 = c]2(Yl,P), (30) 
7rd0 

where the kernel is 

G(7~,yl,p) - 

1 ~  [#T~(71,-Yl,P) + (1 - ~)1/~:22(71,-Yl,P)] 

2~(1 - .)=pp2 fa,, ~22(n* -- Y~,P) dn* 

2 . (1  - ~)~pp2f-a~22(n. + yl ,p )  dn*. 
1 - z u  arl~ 

(31) 
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Now we only need to prove that (23) and (30) have the same kernel, that is L(r]l, Yl,P) = 
G (r/l, Y l, p). Substituting the expressions of Green's fundamental solution to (31), after careful 
derivation we can obtain 

G(?71~yl,p) _ 2#r,1 (c2~ 2 _  Ko (pr)  4#rlC22K1 (pr )  
\C1/ -~1 P 1"2 C1 

+ 2#r,1Ko pr lc2K1 ~2 - 1 ---- ~ c2 ~22 r -~2 + - -  pr ( 1 - u ) # r , l P K 1  

Z [,<o +#,<, \ C2 / \ C2 / 

2#f,l(c:~:Ko(Pf ) 4#f,'C2Ki(Pf ) 

+ 2#r'l Ko ( P r ) ~  ~ -'J- ~ c 2 K l  (Pr)~ -- (1-u)#r'lPKI( ~-~ ~ C 2 ~2 

1--12 2 -ao (p~*~ (p~*~ 
\ C2 / \ C2 I 

-- (~ l l )2~ ,K1  (PT*~] d?7 Cl / (32) 

where r* = it/* - yll ,  ~* = I~* + Yll. In order to simplify (32), by use of the relation (27b), 
we can easily examine that 

Then using (26, 32, 33) and deriving carefully, we can obtain 

L(~I, Yl, P)  - G ( r / 1 ,  Y l ,  P) 

(33) 
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Figure 2. (a) Type-I Griffith crack problem. (b) The dynamic stress intensity factors. 
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Figure 3. (a) Type-II Griffith crack problem. (b) The dynamic stress intensity factors. 

= ½pp2 fO ~ [sinfl(r/l_-- yl)  sinfl(r/1-t-yl) 1 d~ 
L /~q-1 + ~ql 

q pclpr,1 K1 _ }pp2 Cl K1 dr/* 
2 -~1 ~ pr* \ c 1 ,/ 

-~ pclpr,1 K~ _ l pp2 c1 K1 dr/*. 
2 ~ ~ pT* \ C1 / 

Also use relation 

Ko ~-l = cos \ e l  / 

We can easily examine that 

(34) 
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Figure 4. (a) Square with a central crack subjected to impact loading. (b) The dynamic stress intensity factors. 
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Figure 5. (a) Circular ring with a crack subjected to impact internal pressure. (b) The dynamic stress intensity 
factors. 

[sin/3(~71 - Yl) sin fl(~/1% Yl).] 
d~ / 

pr* \ Cl / JvJ Pr* \ Cl / 

Then (34) can be reduced to 

L(T]I, Yl, P )  - G(T]I, Yl, P )  

- - 2  p 

(35) 
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_½pp2 fa(, [Ko (pr '~ + ~r ,K I (pr '~l  drl. 
d~l ~ C2 ] \ C2 / J 

- - l p p 2 C l r ' l K 1  ( ~ l )  
- - 2  p 

- l p p 2 f ~ ? a ° [ K ° ( P r ' ~ + ~ r  * K I ( p f * ~ ] \  c2 / \ c2 ]J  dr/'. (36) 

Use relation (27b) again, we obtain 

L(r/l, yl,P) = G(r/l, Yl,P). (37) 

It indicates that (14) is equivalent with (16a,b) and shows that the method proposed in the 
present paper is reliable. 

5. The numerical methods 

Usually the analytical solutions to the integral equations of this paper are not available and it 
is therefore necessary to solve the equations numerically. By combining the numerical method 
of singular integral equation [17] with the boundary element method, a numerical method for 
the mixed-type integral equations is suggested, where the integrals along the outer boundary 
S are calculated by BEM and the integrals along the crack line (a, b) are calculated by the 
Gauss-Chebyshev formula. For the first boundary value problem, (7, 12, 13) can be discretized 
as 

N M 

Z Mik(YJ 'yl'p)~zi(yj'p) + E Cik(r/j,Yl,p)Fi(r/j,P) 
j = l  j = l  

N 

= Z { (yj,p)Oik% - v ,p)hj, 
j = l  

N b - a  
E Kik(Yj,'rm,p)hjfti(Yj,P) + 2----M 
j = l  

× Z  - - +  hik b'k%,p) 
j=l r/j - rm 

N 
= qk(rrn,P) -- E {i(YJ'P)T+(yJ ' ~'rn,p)hj, 

j = l  

b _ a  M 
2M Z = o, 

j = l  

(38) 

where k = 1,2, l = 1 , 2 , . . . ,  N, rn = 1, 2 , . . . ,  M - 1; hj is the length of the element; N is 
the number of boundary elements along S; r/j and rm are the zero points of first and second 
Chebyshev polynomials in (a, b) and M is the number of the zero point. 

b - a  7r(2j - 1) b+a b - a  7rm b+a 
r/j = ~ cos 2 M  + - - ~ ,  rm - 2 cos-~-- + - - - ~ ,  (39) 
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and 

2 ~/(x - a)(b- x)Afti,l(x,p) ~'i(x,p)- b--a 

Cik(~lj, Yt,P) -- 7r(b - a) b -+  • f 2 M  ~ 75 

{ Tik(Yj, Yt,p)hj, j ¢ l, 
Mik (yj, Yl, P) = N 

• - Z 
j=l , j¢l  

j = l .  

(40) 

The stress intensity factors in Laplace transform domain are determined by 

ffQ(a,p) = lim ~/27r(x - a)AAftzj(x,p), 
37--~ a 

/~l (b, p) = - l im ~/27r(b - x)AAfz2,1 (x, p), 
x--+b 

K n ( a , p )  = lim ~/27r(x - a)AAfzl,l(x,p), 
x - - ~ , a  

[qi(b,p) = - l i ~  ~ 2 7 c ( b -  x)AA(q,l(x,p). 

(41) 

By use of Equation (40), Formulae (41) can be rewritten as 

/£, (a, p) = 

/~I (b, p) = 

/£n(a ,  p) = 

ffgn(b,p) = 

AiTr(b2 a) ff'2(a,p), 

-AiTr(b2 a) T'2(b,p), 

A i Tr(b2 a) ~'l (a, p), 

-AiTr(b2 a) ff'l(b,p), 

(42) 

where/~i  (a, p) and/~i (b, p) are computed  by following interpolation formulae 

Fi(a,p) - (--1)M ~---'(--1)Jtg (23"__-- 1)Tr. ~,i(rlj,p) ' 
M z._.,, 4 M  j=l 

1 M Fi(b,p) = -~ ~-'~(-1)J+' ct9 (24~/fl)Tr • Fi(rlj,p). 
j=l 

(43) 

In order to obtain the solution as a function of t ime we have to take the inversion of Laplace 
transform, but this can be done only numerically. In the present paper we choose the method 
of Miller and Guy suggested by [1,7]. The details can be seen in [7]. 
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6. Several numerical examples 

To show reliability of the method in this paper, some typical examples are calculated and their 
dynamic stress intensity factors are obtained in this section. The following numerical values 
are assigned to the constants describing the medium 

u = 0.29, p = 7800 Kg/m 3, # = 8 x 101°Pa. 

EXAMPLE 1. Infinite plane with single crack subjected to impact loading 
In this example, the dynamic stress intensity factors are computed for two cases; the results 

are consistent with those from [1 ]. 

EXAMPLE 2. Square with a central crack subjected to impact loading 

EXAMPLE 3. Circular ring with a crack subjected to impact internal pressure 

R = 2r, a = 1.4r, b = 1.6r, c = ( b -  a)/2 = 0.1r 

7. Appendix 

The Green dynamic and static basic solutions are listed as follows respectively 
1 

~_fik(7] -- y) = ~(( f l (~ik  -'F ~-f27",ir,k)~ 

1 {[(c21c2--2)(J4+2(Yz]ni(~)r,k+(2Oz+(JS)nk(~)r,i} 

Tik(~, Y) = ~ r  +[(2U2 + U3)Sik + 2((J4 _ (f3 - 4[J2)r , i r ,k]nj (r l )r ,  j ' 

1 
Uik(~7 - Y) = ~ ( U 1 5 i k  + U2r,ir.k), 

~rl {[(c21 c 2 -  2)U4 + 2U2]ni(77)r,k + (2U2 + U3)nk(rl)r,i } 

Tik(rl, y) = +[(2U2 + U3)Sik + 2(U4 _ U3 _ 4U2)r,ir,k]nj(~)r, j ' 

where 

(pr )  (p~') __ C1Kl ( ) /-9"1 : K °  ~-2 -t- C2Kl - (c2~2 P'f" 
pr -~2 k, C 1 /  P~' ~-1 ' 

Ko + 2CLK1 - Ko + 2C2K1 , 
pr pr 

C2 

l ( l ~c~  
Ul = --~ \--J~-~ l in~, 

u3 =-~, u4- ~ c~' 

2 
_ P r K I  , 

c1 

4 ) '  



Transient  e las todynamic  p lane  crack p rob lems  53 

r,k = r k / r ,  k = l , 2 .  
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