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Abstract. This paper describes the shock propagation through 
a dilute gas-particle suspension in an aligned baffle system. 
Numerical solution to two-phase flows induced by a planar 
shock wave is given based on the two-continuum model with 
interphase coupling. The governing equations are numeri- 
cally solved by using high-resolution schemes. The com- 
putational results show the shock reflection and diffraction 
pattems, and the shock-induced flow fields in the 4-baffle 
system filled with the dusty gas. 
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1 Introduction 

Shock-induced flows have been an avid interest for more 
than 100 years of research (Hillier 1993). Most of the ex- 
isting work concerns mainly the shock phenomena in pure 
gases. Recently, relevant investigations are extended to treat 
the problem of shock reflection and diffraction in various 
gas-particle suspensions (i.e. dusty gases) since many appli- 
cations (dust explosion, ablation and erosion, etc.) involve 
such a dusty gas. For instance, shock propagation in baffle 
systems filled with a dilute dusty gas and the post-shock 
flow in the two-phase medium are important for explosion 
safety analyses. 

In this work, numerical simulation of the two-phase flow 
induced by a planar incident shock wave in an aligned two- 
dimensional baffle system is performed. Some experimental 
and computational studies have been done for the pure-gas 
case (Reichenbach and Kuhl 1993; Luo et al. 1993) but none 
for the dusty-gas case until now. To formulate the unsteady 
compressible two-phase flow in these systems with com- 
plex geometry, two-dimensional and time-dependent Euler 
equations are presented based on the two-continuum model, 
where the interaction between the gas and particles is taken 
into account. The goveming equations are solved by using 
the GRP scheme (Ben-Artzi and Falcovitz 1984) and NND 
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scheme (Zhang and Li 1992), which are adopted respec- 
tively to the gas and particle phases. The dusty shock re- 
flection and diffraction patterns and the unsteady two-phase 
flow structures behind the shock front are obtained for a two- 
dimensional baffled tube. These computational results reveal 
the fundamental features of the post-shock flow field: turbu- 
lent mixing and particle relaxation consist of the dissipation 
mechanisms of the shock strength and speed. 

2 Basic assumptions and governing equations 

As mentioned above, the problem under consideration is the 
shock-induced flows due to the reflection and diffraction of 
a planar incident shock wave propagating in an aligned 2-D 
baffle system filled with a dilute dusty gas. For the analysis 
of this two-phase flow, the two-continuum model is em- 
ployed and the following assumptions are included: (1) The 
gas phase is a compressible and perfect gas. Its viscosity and 
thermal conductivity are ignored except for the interaction 
between the gas and particles. (2) The particle phase consists 
of rigid and inert particles. They are uniform solid spheres 
without Brownian motion and internal temperature gradient. 
(3) The volume fraction of the particle phase is negligible 
and there is no mutual interaction among the particles. (4) 
In this dilute gas-particle system, the partial pressure due 
to particle contribution can be neglected. (5) There are mo- 
mentum and energy (but no mass) exchanges between the 
gas and particles. Therefore, in addition to the interphase 
force, the effect of heat transfer on the two-phase flow is 
included. (6) The only force on the particles to be taken into 
account is viscous drag since the other mechanisms such 
as pressure gradient force, virtual mass force, Basselt force, 
gravity force and lift force are much smaller than the friction 
force. 

Under these assumptions, the Euler equations governing 
time-dependent, two-dimensional and two-phase flows can 
be written in the quasi-conservative form as (in the following 
expressions, the Subscript p refers to the particles) 

OU OF(U)  OG(U) _ H ( U )  (1) 
o--f + o--7- 

where 
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Fig. la ,b .  Density contours of gas phase (Ms = 1.23); a pure gas; b dusty gas 
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Here u and v are the velocity components in x and y di- 
rections. E = CT + (u 2 + v2)/2 is the total specific energy 
(C stands for gas specific heat at constant volume C~ or 
particle heat capacity C,0 .  The variables p, p, and T are 
respectively pressure, density, and temperature. These three 
gas parameters can be associated by the state equation: 

p = pRT (2) 

where R is the gas constant. The appearance of some inter- 
phase terms is the main difference between our Equations 

(1) for the dusty gas and the corresponding equations for the 
pure gas. For the present problem, the interaction parameters 
are introduced as follows: fx, fu, and q are respectively the 
drag force components and heat transfer to be exterted on 
particles per unit volume; Q = Upfx + Vpfy + q is dissipation 
work due to the interphase effects. 

3 Numerical method 

In constructing a two-dimensional scheme for time-depen- 
dent and compressible flows, well-known techniques of 
operator-splitting for temporal and spatial operators (Sod 
1978; Strang 1968) are employed and then the single 2-D 
conservation system (1) is decomposed into a set of three 
1-D systems: 

OU OF(U) _ o; OU OG(U) = o ; d U  
at + + o---7- = H(U) (3) 

In this way, there is no coupling between the flows of the 
gas and particle phases for the first two systems. As well 
known, when the shock wave propagates in the dusty gas, 
the induced flows for the gas and particle phases possess dif- 
ferent features because that the solid particle has much larger 
inertia than the gas molecule. Hence, for solution of these 
first two equations, two different finite-difference schemes 
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Fig. 2a,b. Density of gas phase along symmetric axis (Ms = 1.23); a pure 
gas; b dusty gas 

F i g .  3a,b. Pressure of gas phase along symmetric axis (Ms = 1.23); a pure 
gas; b dusty gas 

based on the GRP and NND methods are applied respec- 
tively to solve the gas and particle flows. Here, the GRP 
method is an "analytic" second-order extension of the clas- 
sical Godunov scheme (Godunov 1959). Due to its ability to 
capture shocks with high resolution without spurious oscil- 
lations, this upwind GRP scheme has been used for unsteady 
inviscid compressible flows of various fluids with jump dis- 
continuities. Following the original work of Ben-Artzi and 
Falcovitz (1984), this method was applied to deal with 1- 
D duct flows with material interfaces (Ben-Artzi and Bir- 
man 1986) and with variable cross section (Ben-Artzi and 
Falcovitz 1986), 2-D shock diffraction at a expansive cor- 
ner (Hillier 1991), 2-D shock reflection by a double wedge 
(Falcovitz et al. 1993) and so on. Wang and her colleagues 
(1991, 1993) extended the GRP method to two-phase flows 
induced by shocks in a dusty gas. In the present paper, the 
operator-split GRP scheme is developed for predicting the 
complex shock-wave pattern involving transmission, reflec- 
tion, diffraction and the resulting flow in the baffled tube. 
The NND method (Zhang 1988) is a non-oscillation and non- 
free-parameter dissipation difference scheme and its NND-4 
version (Zhang and Li 1992) has second-order accuracy. The 
third system is an ordinary differential equation which con- 
tains the interaction terms between the gas and particles. It 
is solved by a second-order predictor-corrector method. 

Let Lx, Ly, and Lr to be the difference operators. The 
following combined five-step scheme can be constructed for 
each time step: 

f fn+l  A•n Z ~ n  vii = Lr(-~--)Lx(--~-) 

• L y ( A t ~ ) L x ( ~ ) L r ( ~ ) U i ~ j  (4) 

where i , j  and n are space and time nodes; Atn is the time 
interval determined by the CFL condition to satisfy the sta- 
bility requirement. 

4 Computational results 

With the above algorithm, computations were performed to 
simulate the dusty shock reflection and diffraction process in 
the aligned 4-baffle system with the following parameters for 
the particle phase: diameter d = lOpra, material density Crp = 
2500k9/m 3, mass loading ratio a = 1.0, heat capacity ratio 
/3 = 1.0 and with the following expressions for the inter- 
phase interactions: drag coefficient CD = 0.48 + 28Re -~ 
Nusselt number Nu = 2.0 + 0.6Prl/3Rel/2(Re is the slip 
Reynolds number, Pr is the Prandtl number). Corresponding 
calculations for the pure gas were also carried out in order 
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Fig. 4a,b. Density contours of gas phase (Ms = 2.50); a pure gas; b dusty gas 
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Fig. 5a,b. Shock-induced gas flow field in dusty gas (Ms = 2.50); a pressure contours; b entropy contours 
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Fig. 6a,b. Pressure distributions of gas phase in baffle system (Ms = 2.50); 
a pure gas; b dusty gas 

to illustrate particle effects on the induced flows. The com- 
putation was first made under the same conditions as for 
the pure gas interferogram test by Reichenbach and Kuhl 
(1993), where the incident shock Mach number Ms is 1.23. 
In this weak-shock case, the obtained isopycnics for the pure 
and dusty gases are plotted in Fig. la and lb, respectively. 
The time sequence of the flow field in Fig. la takes the same 
instants as the flow visualization test: they are successively 
at t = 96.04#s, 186.08#s and 282.35#s (here, the moment 
at which the shock front arrives the first baffle plate is taken 
as the initial time t = 0). The comparison of numerical and 
experimental results indicates the excellent agreement be- 
tween the computation and experiment. It verifies the accu- 
racy and effectiveness of the numerical method. Figure lb 
presents the numerical results of the shock-induced flow in 
the dusty-gas case, where the three frozen shock fronts have 
the same z-position as for the pure gas. However, the ar- 
rival time takes different values as ~ = 108.94/zs, 220.61#s 
and 315.65#s. The decrease in the strength and speed of 
the transmitted shock front can be attributed to particle dis- 
sipation mechanisms. The variations of gas density along 

Fig. 7a,b. Density distributions of gas phase in baffle system (Ms = 2.50); 
a pure gas; b dusty gas 

the symmetric axis are shown in Fig. 2a (for the pure gas) 
and 2b (for the dusty gas). Similarly, the variations of gas 
pressure along the symmetric axis are given in Fig. 3a (for 
the pure gas) and 3b (for the dusty gas). In Figs. 2 and 3 
the position z = 0 is taken at the first baffle plate. It is 
seen that under the weak-shock condition, the shock front 
is fully dispersed in the dusty-gas case. For a stronger inci- 
dent shock wave (Ms = 2.50), Fig. 4 shows the gas density 
contours in the post-shock flow field. The time instants in 
sequence are respectively t = 48.65#s, 104.71#s, 160.11#s 
for the pure-gas case and t = 61.43#s, 132.21#s, 198.69/zs 
for the dusty-gas case. In addition, for the dusty-gas case, 
the pressure and entropy contours of the gas phase at the 
three different time are given respectively in Fig. 5a and 5b. 
Similarly, at these moments the shock front arrives at the 
same position as in the Ms  = 1.23 case. In Figs. 6 and 7 
the pressure and density distributions of the gas phase at the 
time t = 132.21#s are presented for the case of Ms = 2.50. 
Compared with the pure-gas case, the overpressure in the 
dusty-gas case is much higher due to the presence of par- 
ticles in the baffle system (cf. Figs. 6a and 6b). This fact 
can be found from Fig. 8 where the density distributions of 
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Fig. 8a,b. Density distributions of particle phase in baffle system (Ms = 
2.50); a t = 132.21/zs; b t = 198.69/zs 

the part icle phase at the t ime t = 132.21/zs and 198 .69#s  
are plotted. These  numer ica l  results reveal  the fundamenta l  
features o f  the dusty shock ref lect ion and diffract ion pat- 
terns. W h e n  an incident  shock w a v e  propagates  through a 
dusty gas in a baffled tube, ref lect ion and diffract ion occur  
and the strength o f  the t ransmit ted shock is great ly reduced  
because  of  double  mechanisms:  baffle b locking  and part icle 
dissipation.  For  the dusty gases, the ref lect ion and diffrac- 
t ion patterns in baffle systems b e c o m e  more  compl ica ted  
compared  wi th  those in corner  sys tems(Wang et al. 1993). 
It is seen t h a t ,  at each sharp corner  o f  the orif ices in the 
baffule plate,  a shear layer  is genera ted  and then rapidly 
rolls  up in a spiral vortex.  Moreove r ,  each pair  o f  the cor-  
ners results in a mushroom-shaped  region,  where  turbulent  
m i x i n g  is a dominan t  process.  Therefore  turbulent  mixing,  
part icle relaxation,  and their  interactions consis t  o f  comp lex  
f lu id-dynamic  effects. 

5 C o n c l u s i o n  

Numer ica l  s imulat ions  o f  the dus ty -shock- induced  f low in 
the a l igned two-d imens iona l  baffle sys tem indicate  that the 
ref lect ion and diffract ion patterns b e c o m e  quite c o m p l e x  due 
to the presence  o f  baffle plates and particles.  Turbulent  mix-  
ing and part icle re laxat ion are the main  diss ipat ion mecha-  
nisms.  
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