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Abstract. This paper introduces a statistical mesomechanical approach to the evolution of damage. A sell-closed 
formulation of the damage evolution is derived. 

1. Introduct ion  

The concept of damage was introduced by Kachanov [1]. According to his approach, a damage 
variable 0 < D ~< 1 was defined and an a priori evolution law was assumed as 

/ ) ~  l 
(1 - D)'r" (1) 

A plain interpretation of damage is a certain properly averaged amount of broken micro- 
scopic elements. So, a simple and widely applied correlation of actual stress a on the ligaments 
still supporting load with damage D is presumed as 

GO 
(l (2) 

where a0 is the nominal stress. In this way, the damage variable was included in constitutive 
formulation as an internal variable describing a kinetic process of microscopic transformations 
in damaged materials. Obviously, this approach to damage and failure of materials is decisively 
based upon the presumptive model (1), which needs a sound physical basis. 

On the other hand, Cocks and Ashby [2] assumed a mesomechanical approach to the 
evolution of damage in creep. The essential idea is to isolate a cylindrical element of material 
(about the void spacing) centred on a void. 

Actually, macroscopic damage should be a collective response of microdamage. Therefore, 
one should understand how microdamage evolves collectively, i.e. in which situation an 
average approach works, what is the physical basis for a widely assumed semi-empirical 
equation of damage, how and when disorder in microscopic structure and damage must be 
taken into account, and so on. In the light of a statistical mesomechanical study of damage 
we intend to provide some of our results concerning some of these questions. The effect of 
mesoscopic disorder and fluctuation on damage and failure of materials can be referred in our 
other papers [3, 4]. 
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2. Statistical mesomechanical equations of damage evolution 

It has been found that evolution of microdamage can be depicted by the following conservative 
equation in two-dimensional phase space (c, co) [5-7] 

an0 O(noV) 
0-"~- + O ~  --  ?10N' (3) 

where no = no(t, c, co, a) is the number density of microdamage with current and initial size 
c and co respectively, and t is the generalized time. 

nON = UN(C0, o) (C -- CO), (4) 

is the nucleation rate of microdamage and 

V = V(c, co, a) ,  (5) 

is the law of growth rate of microdamage. In this formulation, the concept of ideal microdamage 
is assumed, the coalescence of microdamage is ignored but the interaction of microdamage 
can be considered by the variation of the stress field [5], like expression (2). Equations (3)-(5) 
constitute the statistical description of evolution of microdamage. 

The solution to (3)-(5) was obtained under constant stress a [7] 

nN(CO,~Y) 
no(t, c, co, a) = V(c, co, a ) '  (6) 

because the initial size co of microdamage is an undetectable variable in experiments, the 
current number density n can be defined and expressed as [6, 7] 

Tt(t, C, ~7) : ?go(t, C, CO, ~) dc 0 = nN(CO, a) dco, (7) 
V(c, co, 

where ~ = ~(t, c) denotes the minimum initial size of microdamage of current size c at time 
t and is defined by the lower limit of an integral 

f~ c dc' fq c s dc' 
t =  V(c',(,cr) or t =  , g(c',co, a)' (8) 

where cf = ci  (t, co) is the front of the number density of microdamage in phase space. 

3. Evolution equation of continuum damage 

In accord with the physical interpretation of damage, the ith order momentum of continuum 
damage can be expressed by number density of microdamage as 

/5 Dj = dn( t ,  c, a) dc. (9) 

Substitution of the solution (7) into expression .(9) and exchanging the order of integrations 
leads to the continuum damage Dj and its rate Dj 

Dj(t, ~) = ny(co, a) cf c j dc 
, V(c,  co, a) de0, (10) 
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Dj(t,o-) --- nN(Co, a ) 4 d c o  = DNj + j dco cJ - lVnodc ,  ( l l )  

where 

/0 =   N(c0,  )d0 de0. (12) 

From expression (i 1), one can see that the rate of continuum d a m a g e / )  is dependent on 
the propogation of the front c I(t) of the number density of microdamage in phase-space. 
Generally speaking, there is not a simple relation between the continuum damage D and its 
rate D. 

The application to practice of the evolution equation of damage (10), (11) and (9) needs 
details of meso-kinetical laws of microdamage, (4) and (5). Usually, it is desirable to find a 
self-closed equation of continuum damage, in which only a few macroscopically measurable 
parameters are included while detailed meso-kinetics are not needed. 

One possibility can be deduced by adopting a viscous growth law of microdamage 

V(c, co, or) = tic. (13) 

After substituting (13) into (11), we obtain 

[gj = Dj (Dj, a) = j f lDj  + DNj. (14) 

In expression (13) , / ) j  is no longer dependent on time t explicitly. So it is autonomous; in 
fact, (13) is exactly that which Davison and Stevens had suggested [8] by assuming a Taylor 
expansion. 

A physical basis for growth rule (13) is viscous extension of microdamage [9] 

V(c, c0, a) a - a ,  - - - c ,  ( 1 5 )  

where ~1 is the viscous coefficient, and a ,  is a threshold stress. 

4. Self-consistency of average stress 

As a matter of fact, stress must sustain simultaneous variation with continuum damage, like 
expression (2). Then, how to consider this effect? 

When we re-examined the procedure, we developed a new point of view. If we intend 
to understand the mechanism of damage evolution, the solution of the number density of 
microdamage to (3)-(5) is a necessity. However, since engineers mainly have an eye to 
continuum damage, it might be possible for us to skip the derivation of the solution. 

Noticing the definition (7) and integrating (3), we have 

On a(nA) _ n N ( c , a ) ,  (16) 

where A = f ~  no • V dco/n. Differentiation of (9) and substitution of (16) into it leads to 

JDj = DNj + j A . n ( t , c , a )  .cJ-l  de. (17) 
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Still, provided (13) or (15) works, (17) is reduced to (14). In this derivation, stress can be a 
variable parameter. So, substitution of (2) in (17) or (13) gives 

f )  = D N  + J .  f lD ,  (18) 

where J is a constant and fl = f l (D)  = ((ao - a , )  + a , .  D ) / ( 1  - D).  This is of the Kachanov 
[ 1 ] type. 

5. An experimental illustration 

Usually the empirical criterion for spallation is assumed as [10] 

) k(D) 
aO -- aeo • t = K ( D ) .  (19) 

O- c 

This expression can be reduced to 

b = f ( D ,  ao),  (20) 

independent of time t explicitly, therefore autonomous. 
This may imply a kind of viscous dissipation in damage growth, in accord with the above 

discussion. Actually, experimental data fitting of the growth rate showed 

V ~  ( c - c 0 )  s , (21) 

a ~ 0.8. Roughly speaking, this does seem to be the viscous dissipation type [7]. 
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