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A~traet--Experimental stress-strain data of OFHC copper first under torsion to 13% and then under 
torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive 
models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and 
Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for 
infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises- 
type yield surface used in the three models brings about significant departure of the predictions from 
the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's 
model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's 
models produce almost the same prediction to the data, while Dafalias' model cannot accurately pre- 
dict the plastic deformations when a loading path changes in its direction. Copyright © 1996 Elsevier 
Science Ltd 

I. INTRODUCTION 

After extensive investigations of both theoretical considerations and experiments, it is 
recognized that constitutive models based on the Mises-type yield surface with kinema- 
tical and isotropic hardening is a good approximation for the description of time-inde- 
pendent behaviour of elastic-plastic materials under infinitesimal and stable 
deformations. Consequently, many researchers in this area devoted their efforts to estab- 
lishing the relationship between kinematic hardening and plastic deformation. These 
efforts resulted in many constitutive models. Among the commonly used models in recent 
literature are Prager's linear model [1949], Armstrong and Frederick's nonlinear model 
[1966], Chaboche [1986], Mroz's multi-surface model [1967], Dafalias and Popov's two- 
surface model [1976], Valanis [1971] endochronic model and its development by Wata- 
nabe and Atluri [1986]. 

In face of many constitutive models, one may wonder how to choose a model for a 
specific problem. Each model was based on some experimental facts and did not fully 
discuss other situations. It seems interesting to evaluate some of the commonly used 
models, especially considering their merits and limitations for some typical experimental 
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data. In fact, a few researchers have made efforts in this respect. McDowell [1987] 
experimentally evaluated the non-proportional cyclic behavior of  Mroz's, Dafalias and 
Popov's, Chaboche's and Tseng-Lee's models. Inoue et al. [1989,1991] gave a compre- 
hensive comparison between their experiments and the predictions of  10 models, including 
those by Chaboche, Mroz and Valanis, on plasticity, creep and their interaction. 

This paper evaluates the three elastic-plastic constitutive models: Chaboche's super- 
positional nonlinear model [1986], Dafalias and Popov's two surface model [1976] and 
Watanabe and Atluri's version of endochronic model [1986]. Emphasis is placed on the 
suitability of the three models to a set of experimental stress-strain data, given by Khan 
and Wang [1993], of  OFHC copper first under tension to around 13% and then under 
torsion and tension to about 10%. In Section II, the experimental procedure is briefly 
presented. Section III gives the description of the deformation and stress of  a thin-walled 
tube under finite deformation and correlates the measured stresses and deformations 
based on a general constitutive relationship. In Section IV, the equations of  the three 
constitutive models are provided in a systematic way. These models were originally pro- 
posed for the case of infinitesimal deformation. In order to predict a deformation of about 
20%, these models are extended to finite deformation by changing the rates of stress and 
kinematic hardening from the material rates for infinitesimal deformation to the corotated 
objective rates with elastic spin for finite formation. The determination of  the parameters 
in the three models is given in Section V. The experimental data and the predictions of the 
three models are presented and discussed in the fifth and sixth sections. 

II. EXPERIMENTAL P R O C E D U R E S  

The material used in this study was OFHC copper. Thin-walled tubular specimens, with 
a test section approximately 1.2 in. (30.48 mm) long, having an inside diameter of 0.375 in. 
(9.53 mm) and an outside diameter of  0.45 in. (11.43 mm), were used for all the experiments 
presented. Before the tests all the specimens were annealed in an oxygen-free atmosphere 
at 1100°F (593.3°C) for an hour and then cooled in a furnace to room temperature. 

The testing machine was a dead weight type capable of combined tension-torsion 
loadings. Water flow with a constant flow rate was used as the loadings in order to 
maintain constant normal stress or shear stress rate. Details of  the machine were described 
by Khan and Parikh [1986]. 

The loading paths are depicted by Fig. 1, in which path O ~ C was the first stage tor- 
sion to a plastic state, path C ~ U was the torsion which unloaded partially the specimen 
and the paths beginning at point U with angles 0 °, 15 °, 30 °, 45 °, 60 °, 75 °, 90 ° and 180 ° to 
the shear stress axis were the second stage nonproportional loadings. 

The deformation during the first stage torsion and the partial unloading is recorded by 
a TRANS-TEK angular displacement transducer. During the combined tension and tor- 
sion, strain gauges are used to measure the deformations in the directions of  the tube axis 
and 4- 45 ° angles to the tube axis. Details of the measurement were reported in the paper 
b y K h a n  and Wang [1993]. 

HI. D E F O R M A T I O N  AND STRESS OF THIN-WALLED TUBE 

Before we consider the material behavior of the specimen, we need to generally derive 
its deformation and stress in order to clarify the relationship between the measured stres- 
ses and the measured deformations under finite deformation. 
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Let L, RI and R2 denote the initial length, inner and outer radii of the tube, respec- 
tively. Since the tube is expected to deform under the loading in tension and torsion, the 
deformation can be described as 

r = a R  

O = O + w Z  

z = A Z  

(1) 

where (r, 0, z) and (R, O, Z) are the positions a point after and before the deformation in a 
cylindrical coordinate system. The origin locates the center of one end of the tube and the 
Z-axis coincides with the tube axis, w is the twisting angle per unit length and a and A are 
the ratios of radii and lengths before and after deformation. 

From the above deformation, the deformation and velocity gradients, F and L, can be 
found (e.g. Khan & Huang [1995]): 

F = aer ® eR + aeo ® eo + waRmeo ® ez  + Aez ® ez  (2) 

and 

L = F .  F-1 = ~ er ® e, - &Ze, ® eo + d.:Zeo ® er 

+ - e o  ® eo + 4*0 ® ez + -;-ez ® e~ 
oz A 

(3) 
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in which (eR, eo, ez) and (er, e0, ez) are the base vectors of a point in the tube before and 
after deformation, ~b is defined by 

(p - o~ Rm dJ 
A (4) 

and Rm = (R1 + R2)/2 has been used to replace R in a thin-walled tube. 
Accordingly, the strain rate and material spin of  the specimen are 

D = (L + L r) = ~-e, @ er + -e0c~ @ e0 

+ ~ eo ® ez + ~ ez ® eo + ~ ez ® ez 

(s) 

and 

1 (L - L ~) = -dJZer  ® eo + d.;Zeo ® e, W=~ 

+ eoOez-ge~Neo. 

(6) 

Now, let P and M denote the axial tensile force and the twisting moment. Due to the 
loading symmetry, the stress in the tube will be 

cr : crooeo ® eo + crzoez ® eo + ~rozeo ® ez + Crzzez ® ez, (7) 

where 

O - Z Z  m 
P P 

27rr(R2 - RI) - 27ro~Rm(R2 - R1) (8) 

and 

M M 
Crzo = 27rr2(R2 - Rl) -- 27ro~2R2(R2 - R1)" 

(9) 

This stress and the above material spin produce the following Jaumann rate of the 
stress: 

6- = dr-- W- or+ o--W 

= (doo - $cro2)eo ® eo + fYo~ + (~oo - Crzz) ~ eo ® ez 
(10) 

+ &o~ + (croo - ~zz) -2 ez ® eo + (dzz + ~Croz)ez ® ez. 
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Suppose that the constitutive relation of  the specimen is described by 

~r= C : D (11) 

where C is the elastic-plastic modulus, then by substituting the strain and stress rates, 
eqns (5) and (10) into this constitutive relation, six equations will be obtained. Among 
these six equations the two equations which correspond to the stress components Crr0 and 
~rrz are expected to be naturally satisfied because of the symmetrical deformation. The 
remaining four equations are used to determine the four unknown variables 6~, A, ~b and 
~00 if the loading rates 15 and ~ / a r e  prescribed, or alternatively to determine the four 
unknown variables/6, h;/, & and ~00 if the deformation rates A and ~b are provided. In this 
way, a loading history will be related to a corresponding deformation history, if the con- 
stitutive relation is specified. 

IV. THREE CONSTITUTIVE MODELS FOR FINITE ELASTIC-PLASTIC DEFORMATION 

In the phenomenological theory of finite plasticity for engineering metals, the following 
assumptions are usually adopted: 

(1) Velocity gradient L is decomposed into elastic part L e and plastic part Lp as 

L = L e + L  p 

and each part is sub-decomposed into strain rate and spin: 

De 1 - - ~ ( L e + L e r ) ,  W e =  (L e - L  eT ) 

(12) 

(13) 

and 

1 
D P =  ( L P + L P r ) ,  W P = ~ ( L P - L  pT) (14) 

where the superscript " T "  means transpose. 
(2) Elastic strain rate follows Hooke's  law: 

~r = 6 " -  W e. ~ +  o ' . W  e = C e : D e 

where 6" is the material rate of stress and 

(15) 

2Gv 
C e = 2GI4 + 1 _----Z-~v I ® I (16) 

is the elastic modulus in which G is the shear modulus, v is Poisson's ratio, I and 14 are  the 
unit second- and fourth-order tensors. 

(3) Plastic deformation occurs when the following Mises-type yield criterion is satisfied 
with kinematic and isotropic hardening: 

~/2(s 3 - o t ) : ( s - o t ) - t r y - r = 0  (17) 
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where ay is initial tensile yield stress, ot is kinematic hardening, r is isotropic hardening 
and s = cr-tr(cr)I /3 is deviatoric stress. Especially for continuing plastic deformation, the 
yield criterion gives the following consistency condition: 

N : s = N : & + V ~ - - ~  

where & and ~: are the material rates of ~x and r and 

N =  
x/(s- o,): (s-  

(4) Plastic strain rate obeys the normality rule 

D p = pN 

(18) 

(19) 

(20) 

where p is called the magnitude of plastic strain rate• 
(5) The rates of isotropic and kinematic hardening are proportional to the magnitude of 

plastic strain rate: 

= Erp (21) 

and 

& = & -  w e  . o~ + o~. W e  = E~p  (22) 

where Er and E~ are the moduli relating the hardening to the plastic deformation• 
(6) Plastic spin is proportional to the magnitude of plastic strain rate: 

W p = Mp (23) 

where M is an anti-symmetrical tensor factor• 
From these assumptions, the elastic-plastic modulus C in eqn (11) can be found to be 

where 

C = C  e 2G 
2 G + E p ( 2 G N  + M .  o r -  c r .M) :  N (24) 

N:  O 
Ep = N : E a +  Er-- P (25) 

is known as plastic modulus. Therefore, if these assumptions are used for the formulation, 
then the task of developing a constitutive model turns to be that of specifying Er, E~ and 
M, i.e. the evolution of isotropic and kinematic hardening and plastic spin• 

The evolution of isotropic hardening can be directly determined by one-dimensional• 
tensile or torsional, stress-strain experimental data. Several experimental studies show 
that the following assumption is a good approximation: 

i" = / 3 ( R m  - r)p (26) 
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where Rm and/3 are two material parameters. In fact, this assumption states that isotropic 
hardening is an exponential function of plastic deformation with maximum value Rm and 
shape-controlled parameter ~. In terms of the modulus of isotropic hardening, 

Er = ~( R,n - r). (27) 

As for the relation between plastic spin and plastic deformation the Dafalias suggestion 
[1983] is widely accepted: 

W p = zI(tx • D r - D p. ix) = r/p(tx • N - N.  ~x) (28) 

where r/is a function of plastic deformation. In our opinion, plastic spin normally has the 
same order as the plastic strain rate. Therefore, it is proposed that 

1 
(29) 

V/(~x. N -  N • tx): (o~. N - N .  or) 

With these considerations, the modulus of plastic spin becomes 

o r . N - N -  tx 
M = (30) 

V/(cX. N - N  • or): ( o r . N - N .  or) 

The evolution of kinematic hardening has been one of key issues in the phenomen- 
ological theory of elastic-plastic constitutive relation. Many competitive models for it 
have been proposed. In the following section, three models which are often used in recent 
literature are represented. These models were originally proposed for use with infinitesi- 
mal deformation. Here, these models are extended to finite deformation by changing their 
rate of kinematic hardening from the material rate for infinitesimal deformation to the 
corotational rate with elastic spin. That is, & = & - W e • tx + tx. W e is used to replace & 
in these original models. 

IV.1. Chaboche's super-positional nonlinear model 

Chaboche [1981] proposed that kinematic hardening might be composed of say, n parts, 
as  

n 
oc(i) (31) 

i 

i=1 

and that each part evolves with plastic deformation as in Armstrong and Frederick's 
[1966] exponential function: 

&(i) = 3~i)(~i)D p _ o~(i)p). (32) 

w h e r e  /~i) a n d  O/~ i) are material parameters, representing the saturated values and shape- 
controlled parameters. 
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By using eqn (20), eqns (31) and (32) yield the modulus of kinematic hardening: 

n 

E.  = ~ [~(i)(o~(i) N - -  ~x(i)). 
L _ ~  '-C \ C 

i 

(33) 

IV.2. Endochronic model and its modification by Watanabe and Atluri 

Contrary to the usually used rate form of an elastic-plastic constitutive model, Valanis 
[1971] proposed an integral form: 

z I 0tEp t 
s = p(z - z ) ~z  I dz (34) 

where e p is plastic strain (for infinitesimal deformation &P = DP), z is an intrinsic time 
which is defined by 

dz - P 
f ( f p )  (35) 

and p and f a r e  two material functions. But Watanabe and Atluri [1986] found that if the 
material function p was assumed to be 

2 
p(z) = -~ po6(z) + £ p(i)e-h(°z (36) 

i=1 

where 6(z) is the Dirac function of z, P0, hi and p; are material parameters, then eqn (34) 
was equivalent to (a) the Mises-type yield criterion with isotropic and kinematic hard- 
ening of eqn (17), (b) the normality rule eqn (20) and (c) the following evolution of kine- 
matic hardening: 

o~ = ~ o~ (i) (37) 
i=l 

and 

6~(i) = f l ! i ) ( a ~ i ) N  _ ay + Rm o~(i)p ) ( 3 8 )  
a y + r  

where 

a~i) _ Rm Jr- Cry p(i) (39)  

poh(i) ' 

P°h(i) (40) 
]~i) --  Rm -'~ f ly '  
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and 

r=pof(f 
Obviou,;ly, this model gives the modulus of kinematic hardening as 

(41) 

H 

E~ = ET(i)(a!i)N ~+__Rm ix(i)) (42) 
i Cry+r 

IV.3. Dafalias and Popov's two surface model 

In order to describe the evolution of kinematic hardening, Dafalias and Popov [1975] 
introduced another criterion called bounding surface. They proposed (a) that the bound- 
ing surface might have the Mises-type form: 

/~(Sb 3 --tXb):(Sb--O~b)--oob--rb=O (43) 

where O'0b  :, IX b and rb are similarly called initial yield stress, kinematic and isotropic hard- 
ening of bounding surface and Sb is the deviatoric stress at bounding surface; (b) Sb was 
determined by making the normal of the bounding surface at this point identical to that of 
yield surface at the loading points s, i.e. 

S b : O£ b -{" O'0b "1- r ~ b  (s -- tx); (44) 
or0 + r  

(c) the kinematic hardening of the yield and bounding surfaces evolve with plastic defor- 
mation in the direction from the loading stress to the stress at the bounding surface: 

- . S b  - -  S ( 4 5 )  • Sb S ~ b  = ~b 6 
& = #  /5 ' 

where /5 = V/(sb - s ) :  (Sb- s), /2 and ]Zb are two factors to be determined and (d) the 
plastic modulus Ep depends on the distance t5 from the loading point to the stress point at 
bounding surface such that 

/5 
Ep = Epb + h(/5o) /50 - /5  (46) 

where 60 is the initial value of 6 at the beginning of continuous plastic deformation, h(6o) 
is a material function of 60 and Ebp is defined by 

Epb 1-N 1N W e. = : Sb = : (Sb -- Sb + Sb" we) .  (47) 
P P 
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By substituting eqn (45) for 6~ into eqns (22) and (25), f ac to r / / i s  found to be 

= p  G -  Er N : ( S b - - S ) "  (48) 

Similarly, if we let 

~b 
E,b = --  (49) 

P 

denote the modulus of the isotropic hardening of  the bounding surface, the factor//b can 
be found to be 

iZb = p G b  - Erb N : (Sb -- S) (50) 

Dafalias and Popov [1976] described E~b as a material parameter and once E~ b is specified; 
the two kinematic hardening, one for yield surface and the other for the bounding surface, 
are formulated. 

V. DETERMINATION OF MATERIAL PARAMETERS 

In the preceding constitutive models, two parameters, G and v, are included for the 
description of elastic behavior. To describe plastic behavior, the initial yield stress ay, the 
saturated value of isotropic hardening, R m and shape-controlled parameter fl are 
involved. More parameters are included for the description of  kinematic hardening. In 
Chaboche's model, if kinematic hardening is composed of two parts, i.e. n = 2 in eqn 

(1) (2) (1) (2) (31) as Chaboche [1986] suggested, the parameters will be ac , ac , fl~ and fl~ . Simi- 
larly, four parameters, a!  '), a~ 2), fl~') and fl~2) appear in Watanabe and Atluri's model, if 
n = 2 is chosen for eqn (37). Dafalias and Popov's model includes parameter ¢y6 and two 
functions h(6o) and Erb. All of  these material parameters and functions are the character- 
istics of  a specific material and need to be determined by experiments. 

Figure 2 shows the experimental data in solid lines of  engineering shear stress-strain of 
fully-annealed OF HC copper. Section OC is the first stage torsion. Section CU is the 
unloading before the non-proportional loadings are applied, section UF is the reversal 
loading which is shown in Fig.1 with path 0 ° and section UCD is the reloading which is 
shown in Fig. 1 with 180 °. In order to determine the parameters for this material, points d 
and E are labeled on this curve. The two points are the initial and reversal yield points 
which are determined by amplifying the sections OA and CU and using 0.2% offset strain 
as the yield criterion. The values of points A, C, D, E and F are listed in Table 1. 

From the data at points A, C and E, the elastic shear modulus G is found by averaging 
the slops of  sections OA and CE. The initial yield stress ay = v~(1.732 ) = 3 ksi. Poisson' 
ratio cannot be determined by this curve, but is estimated to be 1/3. 
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Determining the other parameters from the data in Table 1 is not straightforward. 
When a tubular specimen is deformed by a twisting moment, the specimen undergoes not 
only a torsional deformation, but also an extension. The coupling of the two types of 
deformation makes it difficult, if not impossible, to find an explicit relation between the 
twisting moment and the torsional deformation from a general constitutive equation, such 
as any of the above three models. As a result, the data in Table 1 cannot be related to the 
other parameters in an explicit form. In practice, a numerical curve fitting method is 
usually used to solve the problem. In this paper in order to reduce the complexity of 
finding the parameters for the material, we divide the parameter-determining procedure 
into two steps. The first step is to get estimated values of the parameters by simplifying the 
problem and using infinitesimal deformation. For infinitesimal deformation, the coupling 
does not exist and an explicit relationship between the twisting moment and the torsional 
deformation can be obtained from Chaboche's and Dafalias and Popov's models. Thus, it 
is possible to use the data in Table 1 to directly determine the parameters. Since the 
maximum deformation in this set of experiments is about 20%, the estimated values of the 
parameters are expected to be a good approximation of their actual values. The second 
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T a b l e  1. S o m e  d a t a  o f  Fig.  2 

Po in t s  A C D E F 

S h e a r  s t ra in  ") 0 .0005 0 .134  0 .269 0 .128 0 .042 

Plas t ic  shea r  s t ra in  3 ,p 0.0 0 .132 0 .264 0 .132 0 .046 

S h e a r  s t ress  ~- ksi 1.732 12.2 16.7 - 8 . 3  14.5 
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step is to modify the estimated values of the parameters in the numerical implementation 
of  the three models to values such that they make the theoretical prediction of the models 
match the whole set of experimental data as closely as possible. 

Under infinitesimal deformation, the stress and strain rate of  the specimen under the 
twisting moment have only nontrivial components of aOz and Doz and so do the stress rate, 
plastic stain rate and kinematic hardening. Also, the stress and all the rates involved can 
be replaced by the engineering stress and material rates. Therefore, let 7 p = 2DPz, a = aoz 

and ~- = aoz, then p - -  q--g/P where ' + '  is for -~P > 0 and ' - '  is for -~P < 0, and the yield 
surface of  eqn (17) becomes 

T=aiffY +r 
v ~  (51) 

Since in the three models, a and r are supposed to depend on plastic deformation, the 
hardening at points A, C and E can be found from the data in Table 1: 

ra = O, r c  = re  . . . .  14.75 (52) 

and 

12.2 - 8.3 
aA = 0, a c  = aE - 2 - 1.95. (53) 

Meanwhile, let ro, ao,  a~ i) and %P denote the initial values of r, a,  O~ (i) and 7 P, respectively. 
Then, the evolution equation of isotropic hardening and the Chaboche kinematic hard- 
ening formulations, eqns (26), (31) and (32), can be integrated into 

r - ro = (Rm - ro)(1 - e :F;~(Tp-7op)) (54) 

and 

- = ( i )  - 

i=1 
(55) 

where 

a(i) _ a~ 0 = 1 (+a(  0 _ a~i))(1 - e:F~"(nP-%P)). 
2 ~ c 

(56) 

In order to determine the parameters included in the above equations, the plastic shear 
strains, 7 p = " r - T / G ,  at the points A, C, D, E and F are calculated and presented in Table 
1. Thus, for the loading process AC, eqns (54)-(56) are 

R m ( 1  - e -°132~) = 14.75 (57) 
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and 

2 
y ~  aO~ ) = 1.95 (58) 
i=1 

where 

0~(~ ) : lo/(i)(1 __ e-O.132/3~ i)) 
c \ (59) 

Similarly, the application of eqns (54)-(56) as well as eqn (51) to the loading process C D  

and the rew.~rsal loading process E F  yields 

ro  = Rm(1 - e -°'264~) (60) 

and 

rF = rE q- ( R m  - re)(1 - e -0"0868) (61) 

2 3 +rD 
c~g ) = 16.7 (62) 

i=1 X/~ 

}~ _ _ 3  + rp (63) 
i=l ~ ) = -14.5 + v ~  

where 

~(~) _= 1 c~(i)( 1 _ e_0.264~i/) 
2 c , 

1 e_0.086~i) 
_ - ). 

(64) 

(65) 

Equations (157)-(65) cannot give a unique solution for the parameters in them. But if the 
isotropic and kinematic hardening are expected to be monotonically increased with plastic 
deformation, i.e. fl > 0, /3!0 > 0 and a!i) > 0 are required, the equations provide the 

, ( l)  (2) (1) (2) 
following e,;timation:/3 = 5.30, Rm = 29.30, ac = 3.20, ac = 1.37,/3c ~ = 12 and tic 
= 32. 

The above procedure can not be applied to estimate the parameters in the Watanabe 
and Atluri model, since the evolution equation of the kinematic hardening can not 
be integrated into such a difference form as eqns (55) and (56) when the exponential 
function of isotropic hardening is used. In the numerical implementation of the model, we 
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use/3 = 5.30, Rm, = 29.30, a~ l) = 3.20, a~ 2) = 1.37,/3~x) = 12 and/31, 2) = 32, the same 
estimated values as those in Chaboche's model, since the parameters in the two models are 
the same in number and very similar in their physical interpretations. 

In order to estimate the parameters in Dafalias and Popov's model, we use the curves in 
Fig. 2 to further specify the bounding surface. By assuming that the bounding surface is 
composed of the two parallel asymptotic lines of the curves through points D and F, it is 
found that the stress values on the bounding surface at the points which correspond to the 
loading point C and the reversal loading point E are almost the same. That suggests that 
there is almost no kinematic hardening for the bounding surface. Therefore, it is assumed 
that the kinematic hardening of  the bounding surface is zero and the isotropic hardening 
is a linear function of  plastic deformation, i.e. a6 = 0 and i = x / ~ E p b P  where Epb is a 
constant. From Fig. 2, Epb and the initial yield stress at the bounding surface ayb are 
found to be 47.60 and 13.53, respectively. Further, in the case of infinitesimal shear 
deformation, (5 = ±v~(rb - r), and eqns (25) and (47) reduce to v@/- = Ep~P and v~fb 
= Epb x/p. Thus, by using eqn (46), 

= -I-(Gb'7 p -- X/2"i') = Th(6o)6o6-o~_6"~ p 

or written in a different form, 

6 - 6o = - - - 

(66) 

(67) 

and 

'--( 
h(60) = qzTp _ 7d' 6 -/~0 - 601n . (68) 

For  the loading process AC, 

6A = (Cry b - ay) = (13.53 - 3) 

and eqns (67) and (68) give 

and 

--- 8.60 (69) 

6c = 8.60 + 47.60 • 0.132 - x/2(12.2 - v/3) = 0.08 

h(8.60) = 1 ( 0.08) 0.08 - 8.60 - 8.60 In ~ .~ , /  = 240.20. 

(70) 

(71) 

Similarly, for the loading process CD and the reversal loading process EF, it is found that 
6D = 0.0001, 6e = 5.59, 6r = 0.92, h(0.08) = 3.45 and h(5.59) = 62.98. Therefore. if 
h(6o) is supposed to be a polynomial of  degree two, the obtained three values of  h will 
yield h(6o) = 5.11-21.1960 + 5.6462. 

Beginning with the estimated values, the parameters are modified and determined 
through the numerical implementation of  the three models with the aim of  finding the best 
fit between each model and the experimental data. The final values of  the parameters are 
listed in Table 2. 
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VL E X P E R I M E N T A L  DATA A N D  P R E D I C T I O N S  O F  T H E  T H R E E  M O D E L S  

Figure 2 shows the experimental data and the three models' predictions of simple shearing 
deformation. It is found that the three models predict the experimental data well. This is 
understandable and reasonable because the data at four points C, D, E and F have been 
used to estimate the material parameters in the models. From this figure the numerical 
analysis is inferred to be accurate enough. 

Figures 3-5 give the comparisons of experimental strains with the predictions of the three 
models for the torsion-tension loadings in different directions. It is found that the predicted 
directions of the plastic strain rate depart significantly from the experimental data. 

Figures 6-8 are the results of shear stress-strain relations. It is shown that the three 
models predict the experiments well. 

Figures 9-11 show the axial stress-strain relations. It is found that experimental data 
are usually higher than the predicted curves of the three models. 

Table 2. Material parameters  in the models 

Chaboche  model  Watanabe-At lu r i  model  Dafa l i a s -Popov  model  

Rm = 3 1  Rm = 2 5  

/3 = 4.8 [3 = 6.4 Rm = 31 

a !  l) = 2.2 o~! 1) = 5 /3 = 4.8 

ot~ 2) = 1.7 a 7  ) = 1.7 Epb = 47.60 
cry b = 13.53 

/3~1) = 115 /3! 1) = 115 h = 5.11-21.196o +5.646o 2 
/3~1) = 60 /3!2) = 60 
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VII.  D I S C U S S I O N  

VII. 1. Isotropic and kinematic hardening 

The experimental data in Fig. 2 shows that after 13.4% shear deformation the annealed 
copper has a higher level of isotropic hardening as compared with its kinematic hard- 
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ening. The ratio of the two hardening is about 4 : 1. Accordingly, in Table 2 the shape- 
controlled !parameter for the isotropic hardening is much smaller than the parameters for 
the kinematic hardening. This means that at the beginning of plastic deformation, the 
increasing rate of isotropic hardening is smaller than that of kinematic hardening. 
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Chaboche's model provides an example. When plastic shear strain is 1%, the ratio of the 
isotropic hardening to the kinematic hardening is about 0.66. This phenomenon, the 
changed dominant hardening from kinematic to isotropic, has also been observed in 
experiments on other materials. Phillips and Das [1985] concentrated their study on small 
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deformat ion  and found  that  the subsequent  yield surfaces o f  commercial ly pure a luminum 
and brass move  significantly in their posit ion but  change less in their sizes in the direction 
perpendicular  to the load. Stout  et al. [1985] investigated the evolution o f  the yield surface 
o f  a luminum 1100 with deformat ions  f rom 3 to 250% and found  that  yield surfaces 
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change in size. This phenomenon seems counter to the expectation that kinematic hardening 
is related to texture development and should become larger when a specimen is increasingly 
deformed in one direction. Stout et al. [1985] suggested that this phenomenon may result 
from different micromechanisms corresponding to the magnitude of deformation. 

VII.2. The shape of the yield surface 

The yield surface changes, not only in its position and size but also in its shape, with the 
development of plastic deformation. Figure 12 shows the experimental data on the 0.2% 
offset yield surface after the specimen was deformed in shearing to 13.4% (the dash line is 
the connected experimental data). This result is found to be in accordance with the those 
by Phillips and Das [1985] and by Stout et al. [1985]. At the torsional preloading point, a 
sharply rounded corner develops while in the region opposite to the preloading point, the 
subsequent yield surface was flattened. The smaller the offset strain, the more the distor- 
tion of the subsequent yield surface. 

In the three models, the position and size of yield surface are represented by kinematic 
hardening and isotropic hardening and no variable is introduced to correspond to the 
shape distortion of the yield surface. The assumption used in the three models results in a 
departure of the predictions from the experimental data, as shown in Figs 3-11. In the 
numerical prediction, the subsequent yield surface is the Mises-type circle and passes 
through the shear loading and reversal reloading points, as shown by the dash line in Fig. 
12. Comparison of the normals of the dash and solid lines reveals that the experimental 
data have larger angles to the tensile axis than do the theoretical values. Consequently, the 
experimentally measured ratios of shear and tensile plastic strain rates are generally 
deviated positively from the theoretical results of the three models as shown in Figs 3-5. 
Meanwhile, since the distorted yield surface takes its smallest length in the preloading 
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direction, the elastic region included by the Mises-type circle is smaller than that obtained 
by experiment. That is why, in Figs 6-11, the predicted stress-strain curves are generally 
underneath the experimental data. 

From the numerical point of view, it is possible to make some of the predictions closer 
to the experimental data by using a different definition of yielding. For example, increas- 
ing the offset strain will yield a higher isotropic hardening and move the prediction 
upward toward the experimental data. But numerical results show that it is difficult to 
make all of the predictions match the experimental data. For example, increasing the off- 
set strain makes the predicted stress-strain curves in Figs 6-11 closer to experimental 
data, but worsens the predicted results of simple shearing stress-strain relation in Fig. 2 
and the directions of plastic strain rate in Figs 3-5. On the other hand, if the offset strain 
is adopted to be very small, as is expected in theory, the results in Fig. 2 and Figs 6-11 will 
be worse and those in Figs 3-5 will be better. 

The Mises-type yield surface with kinematic and isotropic hardenings is a good approx- 
imation to experimental data for small deformations as considered in most published 
papers. But for moderate deformation, e.g. 10%, the yield surface undergoes a significant 
distortion and the studied specimen will show strong anisotropic behavior. Only kinematic 
hardening may not suffice to describe the anisotropy. This difficulty opens an important 
issue of extending the three models to include the strong anisotropic behavior induced by a 
moderate plastic deformation. 

VII.3. Applications of the three models 

Figures 2-11 show that the three models are all equally capable of predicting the 
experimental data and it is difficult to designate one model superior to another except that 
for some problem due to changing loading directions in case of the two-surface model. 
The ideas for formulating the models are simple and plain that they can be easily under- 
stood and applied by engineers. 

The three models have almost the same number of parameters, which makes them 
equally easy to apply. In addition to the two parameters for describing isotropic hard- 
ening, four parameters describe kinematic hardening in Chaboche's superpositional non- 
linear model and in Watanabe and Atluris endochronic model. Five kinematic hardening 
parameters are used in Dafalias and Popov's two-surface model. 

Howew~r, each of the three models has its individual features in determining material 
pararmeters. Chaboche's model and Dafalias and Popov's model can provide an explicit 
form of stress-strain relations in simple cases such as simple tension, compression and 
shearing, so that it is easy to determine or give equations for parameters as we did in the 
third section. However, the parameters in the endochronic model must be determined by 
examining the predicted results and iterating. In this aspect Chaboche's model and the 
two-surface model seem to be more convenient for application engineering. 

In the determination of parameters for the super-positional nonlinear model and the 
two-surface model, Section III shows that some parameters are sensitive to the experi- 
mental v01ues, but others are not, e.g. the maximum kinematic hardening and the asymp- 
totic plastic modulus. The sensitivity of parameters to experimental data comes from the 
exponential and logarithmic functions which correspond to the short transient region 
from the beginning of plastic deformation to stable plastic deformation. This sensitivity 
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may produce an unreasonable situation that for the same model and the same experi- 
mental data, different methods may produce different parameters. 

For the two-surface model, there are some possibilities to improve the results. One of 
them, as Dafalias and Popov [1976] suggested in their paper, is to add kinematic hard- 
ening to the bounding surface. Another possibility is to avoid eqn (45), the Mroz method 
of prescribing the evolution of kinematic hardenings of yield and boundin~ surfaces. The 
two-surface model provides more flexibility in prediction, but realizing the model's possi- 
bilities is difficult, since improving the accuracy means increasing the complexity. Dafalias 
and Popov's [1976] suggestion is not acceptable for dealing with the loading paths with 
sharp changes in direction, i.e. when 6 < 50, 6 = 60 for the paths of 75 ° and 90 °. This is 
another open problem for the two-surface model. 

VIII. CONCLUSIONS 

In order to evaluate some typical constitutive models of elasto-plastic material, a set of 
stress-strain experimental data for fully annealed copper first under torsion to 13% and 
then under torsion-tension to 10% are presented. The data show that the 13% shear 
deformation produces a great deal of isotropic hardening while kinematic hardening is 
relatively small. This trend requires more phenomenological experiments and micro- 
mechanical analysis, since it cannot be explained by dislocation-based mechanisms of 
texture developments. 

Chaboche's superpositional nonlinear model, Watanabe and Atluri's endochronic 
model and Dafalias and Popov's two-surface model are evaluated by comparing their 
predictions with the experimental data. It is found that the three models provide fair to 
good quality predictions of the experimental data except that the two-surface model has 
difficulty with the loading paths with sharp changes of directions. 

There are two major modifications that need to be addressed in the three models in 
order to make their predictions agree better with the experimental data. One is to take the 
shape distortion of the yield surface into consideration. The other is to specify a detailed 
procedure for determining their parameters. 
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