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An efficient method for solving the spatially inhomogeneous Boltzmann equation in a two-term
approximation for low-pressure inductively coupled plasmas has been developed. The electron
distribution function(EDF), a function of total electron energy and two spatial coordinates, is found
self-consistently with the static space-charge potential which is computed from a 2D fluid
model, and the rf electric field profile which is calculated from the Maxwell equations. The EDF
and the spatial distributions of the electron density, potential, temperature, ionization rate, and the
inductive electric field are calculated and discussed. 1996 American Institute of Physics.
[S0021-897€06)09918-3

I. INTRODUCTION static space-charge electric field and imposed idealized
boundary conditions.

Recent applications of plasma in material processing, es- A “nonlocal approach” which was proposed by Bern-
pecially in the field of the semiconductor etching and depo-stein and Holstefhand Tsendif relies on the fact that the
sition, have resulted in the introduction of a new generatiorenergy relaxation length of the electrons greatly exceeds the
of plasma sources operated at low pressures 1-100 mTormomentum relaxation length and the dimensions of the dis-
Inductively coupled plasmdICP), as one type of high- charge chamber are typically less than or comparable to the
density plasma source, has been intensively studied both egnergy relaxation length. The key idea of this approach con-
perimentally and theoretically. Modeling of those sourcessists of the assumption that the trapped electron kinetics can
plays an important role in understanding the basic physicape described by a distribution function of total electron en-
properties of the plasma and supports source design. F&rgy (i.e., kinetic plus potential energyhich is determined
these low pressures, the spatially dependent description #fom a spatially averaged kinetic equation. This idea proved
the electron kinetics plays an important role. Since the electo be effective in application to various gas discharge
tron energy relaxation length typically exceeds the charactefroblems®** and has recently been applied to ICP
istic discharge dimensior(sf the order of 10 ci the spatial  Modeling!** The experimental dat&'* demonstrate that for
diffusion of electrons is a much faster process than the difthe majority of electrons the EDF is a function of total elec-
fusion in energy. Thus it has to be expected that the electroffOn €nergy only and does not depend explicitly on the coor-
distribution function is governed by diffusive electron mo- dinates. However, a relatively small fraction of electrons in
tion over whole discharge cross section, not just locafN ICP cannot be treated using the spatially averaged kinetic

characteristicd® Consequently the spatial displacement of€duation as indicated by Kolobov and HitchriThese are

the ionization rate with respect to the electric power deposil'€€ €lectrons which are capable of escaping to the chamber

tion should be accounted for and the spatially inhomogey"ans and fast electrons having an energy relaxation length
neous Boltzmann equation should be considered less than the discharge dimensions. These electrons give

The intrinsically two-dimensional character of ICP that small contributions to the plasma density but determine such

is sustained by an inductive rf electric field from a planar COiI|mportant discharge characteristics as electron direct current

: : : density and the ionization rate.
makes its modeling a rather complicated problem. A stable, N o
9 P P The present article is devoted to the kinetic treatment of

; ; Fhe ; 1 102 ~pn—3

relatively umform high densnYlOl .101 cm ) plasma gan electrons in ICP and self-consistent simulation of collisional

be created in a large volunfeStraightforward numerical . . .
ICP. The model is based on calculation of the electron dis-

simulation using Monte Carlo treatment of electrons is Bribution function(EDF) via solution of a spatially inhomo-

computationally very demanding taskThe fluid model or : . )
some hydrodynamic approaf#? which treats the electron 9c coo> Boltzmann equation coupled with a self-consistent
' solution of the ion continuity equation and electromagnetic

gas as a f|UId. characterized by density, vglqcﬂy, and meagquations for the rf field.
energy, can give only a rather crude description of phenom-
ena. Comparatively fast yet effective kinetic modeling of

ICP has recently been developed by Kortshagen and. ELECTRON BOLTZMANN EQUATION FOR ICP

Tsendin’ Their model self-consistently calculated the elec- We consider an ICP driven by the electric field from a

tron distribution function(EDF) and_electric fields_in tr_\e spiral coil placed on the dielectric roof of a cylinder with
plasma, however, leaves out some |mport§nt physics since Hetallic walls and bottonfFig. 1(b)]. The plasma is gener-
is assumed that all electrons are trapped in the plasma by §eq and heated by an inductively coupled azimuthal electric

field E. A space-charge field is built up which assists the ion
dElectronic mail: hmw@cc5.imech.ac.cn current and retards the dc electron current. In the plasma, a
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are the diffusion coefficients in space and energy, respec-
= tively. y, and v are the momentum transfer and inelastic
s collision frequenciesi, > vy ). The first term on the right-
5 hand side of Eq(3) representing the electrons which have
3 suffered inelastic collisions is written for the simplest case of
_g the excitation of levek with energye; . The last two terms
= Jo andJ.. on the right-hand side of E¢3) are the collision
T L integrals for elastic, and electron-electron interactions, re-
108 6-4-202 46 81012 spectively. The time-averaged energy gain from the rf field
radial position r(cm)

corresponds to diffusion ir. The energy diffusion coeffi-
_ _ _ , cient D, decrease rapidly with distance from the coil. The
FIG. 1. Profile of electron densitg) and schematic of the discharge and heating is therefore spatially inhomogeneous and occurs
contours of electron densityp) for Argon pressure 20 mTorr and power 500 . . . .
W. mainly in the vicinity of the coil.
The spatially dependent kinetic E() represents an el-

liptic partial differential equation which can be solved nu-
weak ambipolar space-charge field give rise to a combinatiof€rically. The boundary conditions are important for the so-

of diffusive and mobility flow of charged particles. In addi- ution of this equation. The domain of integration is not
tion, a potential drop in the sheath is set up to trap the matectangular but possesses an irregular boundary defined by
jority of the electrons and balance the total electron and iohe space potential=—ed(z,r) where the kinetic energy is
currents to the walls. For typical pressures, the electron er¢€ro, i.e.w(z,r)=0. At each boundary a boundary condition

ergy relaxation length exceeds the discharge dimension§as to 12?6 specified. We take the boundary condition as
Thus, it is useful to include the influence of the static field onfollows:

the electron kinetics using the total energy of the electron@f
e=w—e¢(zr), wherew is kinetic energy of electrorfs1°

=0, (6a)
ing by the rf field and energy transfer in collisions are SlOWaf ot QO
compared to the time scale of the spatial displacement =0, -D, ™ =vf, oyt (6b)
electrons, the total energyis approximate invariant of the Mes-ep, 7 e

electron motion.

. , fol._..=0, 6e
The Boltzmann equation is simplified by using conven- ol e~ (60)
tional two-term approximation:

_09(zr) _dp(zr)
f=fo(e,z,r)+vlv-fi(e,z,r,t), (1) ar ' r9l’ W=0 Jz ' (92 w0
where f,<f,. For the rf field E,,(z,r,t)on(z,r)ej‘”t, the af
anisotropic partf; breaks into oscillatory and steady-state =D, e . (6d)
parts: w=0
f,=1%n,2,0) +fL(v,2, 1 )exp(j ot). @) Equation(6g) is the boundary condition on the discharge

axis following from the rotational symmetry. The first equa-
Bearing in mind the above assumptions and using theéion in condition(6b), where » denotes the direction normal

total energye as an independent variable, the kinetic equa-to the wall andg,, is the potential of the wall, is the bound-
tion can be written in the forrfiz10:44

ary condition for trapped electrons corresponding to their
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reflection by the potential wall and the second equation ex- n; which is equal ton, of electron density can be de-
presses the boundary conditioneat —ed,, that obtained by duced from EDF:
imposing equality of the normal component of the electron

diffusive flux and the electron loss to the waif*® The solid ni(z,r) =ng(z,r)= fx fo(z,r,€) e+ ed(zr)de.
angleQ of the loss cone is given by —ed(zr) (12)
Q=2m1-VeAdl(e+eds], () The ionization rateR; can be given by
whereA¢ is the potential drop in the sheath near the wall. "
The electrons having kinetic energy= e+ e¢g, after last Ri(z,r):f Veted(zr)
uj—ed(zr)

scattering can overcome the potential dtog and reach the
a_lb_sorbing wall. The conditiofed) is deduced fr_om _the va- X u[e+ed(z,r) ] fo(zr, e)de, (13)
lidity of Eq. (3) on the boundaryv=0. By considering the

physical processes occurring at this boundary that there @hereu; andy are the ionization threshold and frequency.
neither a source nor a sink of electrons along this boundary ~ The solution of Eq(11) results in a potential profile in
and requiring the divergence of a diffusive flux perpendicu-he plasma as it was done by Kortshagsral”* The Bohm

lar to that boundary between the spatial and energy spadditerion, that the potential drop in the plasma over the last
must be continuout® ion mean-free path before the wall has to be equal to

kT./2e, should be fulfilled in front of all walls, i.e.,

!

Ill. ELECTROMAGNETIC EQUATIONS e|V¢(Z,r)|n)\i:%, (14)

The electromagnetic field in ICP reactor can be primary

divided in two parts: the inductively coupled electromagnetic’Vheré» denotes the direction normal to the wall ands the

field E, and electrostatic fielEs. Their resultant can be 0N mean-free path. The electron temperaffife which ap-
written asE=E, +Es, whereEq=—V¢, ¢ is the static elec- P€ars in the ion sound speed, is defined as screening
tric potential. temperaturé® Because of the symmetry, the boundary con-

The inductive fieldE, has the azimuthal componef, ~ dition on the axis leads to

only. The oscillating current in the coll=1,coswt pro- a(z,r)
duces inductive electric fiel# ;< exp(j wt). The E, compo- or =0. (15
nent satisfy equatiofsee the Appendix r=0
2 2 With the boundary conditioril4), (15), the solution of
——|r—|+—=—=5Ey+|=| Eg=jougoEy, Eqg. (11 results in a potential profile at plasma-sheath bound-
ror or 0z T ¢ ary, but the wall potentiadp,, should be defined. In the case

of metal walls, the value o#, is constant over the whole
whereuy=4mx10"" H/im, o, is the plasma electric conduc- wall surface. The wall potentiap,, is calculated from the

tivity can be derived from EDF as balance of electron and ion fluxes to the wall and from the
262 (o 1 of equality of the total volume ionization and the number of
g(z,1)=— = “%(e+ed)¥de. (9) electrons escaping to the wall. The total number of inelastic

3M J-ep vmTjo Je collisions and electron escapes to walls per unit time can be

For the ICP reactor as shown in Fig. 1, on the metallicfound from Eq.(3) by integrating that equation over the
chamber wall and the reactor axi,=0, while on the top ~Space and over the energy of ez|fth0nS capable of reaching
surface £, is determined by the currehg in the coil and the  the wall. Following Kolobovet al“* we have
inductive current in the plasmd:*°

1 f af
vD, —
s Jde od,,

1+ =
IV. FLUID DYNAMIC MODEL (16)

g
Due to the great importance of the space-charge poterWhiCh defines the wall potential, witB the available dis-
tial, it is a further task to determine the potential profile charge area boundary. The wall potential was calculated
#(z,r). We constitute it via fluid model for ions as it did by from Eq.(16) for the efficiency of stepwise ionizatiay=1/

afg
r dr dz=J vD,—| rdrdz
s Jde

6*

Ref. 23. The time average equations for the idi'is 3.
The electron temperatufg,, which is defined as mean
V-Ji=Ri, 10 electron energy, can be deduced from EDF:
where J;=— uin;Vé(z,r)—(ku;/e)V(n;T;), k is Boltz- >
mann constanty; , n;, andT; is the mobility, density, and Te=o— fo(z.r, e) eted(z,r)]¥de. (17
temperature of ion, respectively. Assuming quasi-neutrality 3Ne J—ep(zr)

condition and neglecting the thermal energy of ions in com-
parison to that of the electrons as well as their inertia, we/- RESULTS AND DISCUSSIONS

rewrite Eq.(10) as The numerical treatment comprises a number of tasks

V- [uiniVe(z,r)]=—R;. (1))  which have to be solved self-consistently. A starting poten-
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tial was assumed, which for simplicity was chosen as a para-
bolic potential. With this starting potential and some starting
value the spatial dependent EDF can be evaluated from Eq.
(3) using some standard iterative method. Then the azimuthal
component of rf electric field was calculated from E8). for

a given coil current. A new potential and wall potentig)

was calculated from the solution of Eq41) and(16). Tem-
perature of electrons was deduced from the solution of Eq.
(17). Electron density was calculated from Ed2). With

this new potential the procedure restarts iteratively. Equa-
tions (3), (8), and(11) are discretized on grids 28 times 28 in
space and 50 points in the energy, and solved via a multigrid
algorithm. Typical computation times altod h on ausual
personal computer(PC 586-processor, 100 Mbhizare
achieved.

‘oglf /n YEV%

The typical profiles for plasma density,, electron tem- & 3
peratureT,, plasma potentia, the azimuthal electric field ‘% 8
intensityE 4, and the ionization rat®; are shown in Figs. 1, fo
2, and 3. The total input power is 500 W with 20 mTorr o 43
neutral pressure. The electron density get its maximum in the § 18
vicinity of the centerFig. 1). The electrons are confined by -

the space charge potenti{#ig. 2(a)] and most of them are
trapped in the center. The electron temperatanean elec-
tron energy has its maximungabout 5.25 eVin the vicinity
of coil and drops gradually to the bottom and wHig.
2(b)]. These results seem quite close to those obtained by
experimen2t° and by the non-local simulatioh Compared FIG. 4. Normalized EDF by solution of the spatially inhomogeneous kinetic
ith th | f fluid d&¥ sh in Fi b- h equation: in radial directioriz=5 cm) (a) and in axial direction from the
with the results of flui m_o shown I.I’l ig. 2b), tl €mean  gielectric on axis(b) for Argon pressure 20 mTorr and power 500 W.
energy of the electrons is more spatially nonuniform due to
high thermal conductivity of electrons. In fluid model, the

electron temperature is very smooth. inelastic collisions occur. Depletion of the EDF tail is ob-

The inductive electric fieldFigs. Zc), 2(d)] decreases served in the highest potential region, especially in the center
rapidly from the roof to the bulk plasma due to the finite skinregion of the discharge. For a given total energy, the kinetic
depth (about 1-2 cm for 1810 cm™° plasma density  energy is maximal in the center and thus also the efficiency
The wall potential¢,,, bulk electron temperaturg,, and  of inelastic collisions. The EDF near the coil have an en-
maximum electron densitp, are about—17.3 V, 4.3 eV, hanced tail due to the rf heating. Near the wall the tail is
and 5.9<10™ cm?, respectively, which are quite close to depleted due to electron escaped to wall as indicated by
the experimental results. Kolobov et al?*

Figure 3 shows the calculated spatial distribution of the  In Fig. 5, the axial and radial distribution of the EDF are
excitation rate which have the same features as in Ref. 16hown which have the same features as those measured in
and 21. When the pressure decreases, the maximum of exehe experiment? It is seen that to good accuracy the EDF
tation rate moves from off axis and peaks near the center afoincide with each other in the elastic energy range where
the discharge where the If field is absent. As discussed bthe EDF does not depend explicitly on coordinates. In the
Kolobov and Hitchort? nonlocal approach helps us to ex- inelastic energy range, especially the EDF of free electron,
plain the difference between the experimentally observedhe EDF drops rapidly due to inelastic collisions and does
shapes of the light emission for different pressures. When thdepend on the coordinates.
pressure increases, the electron energy relaxation length be- The main conclusions of the present work are as follows:
comes less than the discharge dimensions and the fast ele&n example of strict solution of the spatial inhomogeneous
trons undergo inelastic collisions before reaching the regiolBoltzmann’s equation for electrons in two spatial dimen-
of the highest potential. sional for a low-pressure inductively coupled rf discharge is

In order to get an impression of the influence of thepresented. The EDF in present model is found self-
spatial inhomogeneity, in Fig. 4 EDFs of total energy areconsistently with the electromagnetic fields. The electron ki-
presented as a function of the radius in radial positior5 netics is coupled with a self-consistent solution of ion conti-
cm) and in axial direction from the dielectric on the axis. nuity equation and equations for rf field. The EDF is found
Note that the boundary of the curve corresponds to thas a function of total energy and two spatial coordinates. To
boundarye=—e¢(z,r) orw(z,r)=0. These surfaces exactly good accuracy, the EDF of trapped electrons does not de-
represent onsets of the EDFs of kinetic energy in differenpend explicitly on the coordinates. Spatial distributions of
radial and axial positions. The EDF reveal small deviationselectron density, temperature, ionization rate, inductive field,
from spatial homogeneity, especially in the EDF tail whereand plasma potential are obtained. The effect of the gas pres-
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Now express the current ag= —enyu,, whereu, andn,
are the electron velocityazimutha) and density. Assuming
thatE,, u,cexp( wt), Eg. (A2) becomes

10 ( 0E, ¢°E, 1 e 2E
roar " or 92 270 \¢c) T

=~ jougenely. (A3)
For simple case, the azimuthal electron velocity and electric
field satisfy the momentum equation,

du,
mﬁz—eEg—mvmug, (A4)
wherem anduy,, are the electron mass and collison frequency
for momentum transfer. By assuming,<exp(jwt), Eg.
(A4) yields,
e 1
m Untjo

Uy Eo=1eEo, (A5)

where u, is the electron mobility transport coefficient. For
the sake of generality, in the absence of a magnetic field, the
mobility u, can be written by EDF &&

e f 1 4771/36?de A6
Ke"nm ) vptjo 3 av (A6)

wherev is the electron velocity. Enter EqEA5), (A6) into

FIG. 5. The axial and radial evolution of the EDF. Labels correspond to(A3), and leto.=n.eu, we can finally get Eq(8).

radial distance from the center at a fixed axial dista@@d cm from the
dielectric window(a) and axial distance from the dielectric on axis for
Argon pressure 20 mTorr and power 500 W, (17.3 V) denotes the wall

potential.
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APPENDIX: DERIVATION OF THE EQUATION FOR E,

From Faraday’s law and Ampere’s laiin vacuun, it
can be shown that

(A1)

9 9E
—VXVXE=po— | J+ .

Eoﬁ

Here we only consider the region interior to the plasma, n
external coil currents are included dn Assuming azimuthal
symmetry, the rf field and current densiyandJ only have

azimuthal compontsE , andJ,. Equation(Al) becomes
19| 0By Ey 1 _  3)y 1 °E,
ror |\

e B =g 5
922 2 0T MO T T 2 o2
(A2)
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