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A B S T R A C T :  Based on the principle given in nonlinear diffusion-reaction dynam- 

ics, a new dynamic model for dislocation patterning is proposed by introducing a 

relaxation time to the relation between dislocation density and dislocation flux. The 

so-called chemical potential like quantities, which appear in the model can be derived 

from variation principle for free energy functional of dislocated media, where the free 

energy density function is expressed in terms of not only the dislocation density itself 

but also their spatial gradients. The linear stability analysis on the governing equa- 

tions of a simple dislocation density shows that there exists an intrinsic wave number 

leading to bifurcation of space structure of dislocation density. At the same time, the 

numerical results also demonstrate the coexistence and transition between different 

dislocation patterns. 
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1 I N T R O D U C T I O N  

Dislocation pattern [1,2] is a kind of highly ordered or organized space structure of dis- 

location distribution under the action of exterior environment. The dislocation patterning is 

closely related both to micro-mechanical characters of materials and to specific deformation 

processes. As it has been well-learned, the plastic deformation in crystalline materials is 

controlled by the motion and multiplication of dislocations. Therefore, the study of disloca- 

tion and dislocation pattern formation will improve our basic understanding to the present 

micro-plasticity theory and material performance characterization. 
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Up to now, a large number of works have been done for the bet ter  understanding of 

the behavior of a single dislocation since the Frenkel-Kontorova model and Peierls-Nabarro 

model were established in 1938 and 1940 [3~5], respectively. But, from microscopic point of 

view, there are a great number of dislocations in a crystalline body and therefore, the interac- 

tion among dislocations must be taken into account, especially in the research of dislocation 

pat tern formation. This likes a many-body problem with very complicated background. In 

general, there are three ways to deal with this problem, that  is, the continuum dislocation 

field theory, the statistical mechanics of dislocations as well as the molecular dynamical 

simulation. However, it seems that  no very essential progress has been achieved in the re- 

search of dislocation pat tern dynamics based upon these three theories. In the last decade, 

the development of nonlinear sciences brings some new hopes to researchers of dislocation 

theory as briefly described below. 

Early in 1970, comparing with the spinodal decomposition in phase transition, Holt[ 5] 

proposed a dynamical model to describe the formation of cell structure of dislocation pat- 

terns, and he successfully explained the relation between the cell size and dislocation density. 

Because the growth of dislocation density does not obey an ordinary continuity equation, 

the application of Holt 's theory seems quite limited. In 1974, Winter [7] adopted a two-phase 

model in equilibrium statistical mechanics to account for the formation and evolution of 

persistence slide band (PBS)I4]. However, the plastic deformation process which depends on 

the motion of dislocations is irreversible and far away from thermal equilibrium state. 

In 1985, Walgraet and Aifantis[ s] first used a nonlinear dynamicM method developed in 

nonlinear science to s tudy the dislocation pat tern formation. They considered the dislocation 

pat tern formation as a nonequilibrium self-organization phenomenon and made use of two 

kinds of dislocations the slow dislocation and the fast one-to mimic the interaction among 

dislocations. At one hand, they obtained abundance of results from this model and, at 

the other hand, however, this model could not provide a satisfactory explanation to the 

coexistence and the transition of the different dislocation patterns, and it can not deal with 

the relation between the dislocation pat tern and the stress-strain curve during cyclic loading. 

In 1988, Kratochvil [9] proposed a new model to connect the dislocation pat tern for- 

mation to the plastic constitutive relation. Under some reasonable assumptions, this model 

successfully predicted the vein pat tern  of dislocations at early stage of fatigue process and 

is still in development nowadays. In addition, the cell automata  technique has been used 

to simulate the dislocation pat tern formation by Kubin, Martin, et al., [9'1~ and there is 

reported the occurrence of the chaotic behavior in the process of dislocation pat tern forma- 

tion. 

In this paper, introducing the relaxation effect on dislocation density flux, the authors 

t ry  to propose a new model to simulate, and therefore to explain the dislocation pat tern 

formation. The linear stability analysis in terms of this model shows that  there exists an 
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intrinsic wave number,  which could lead to bifurcation of space structures of dislocation den- 

sity. The numerical results obtained on the system of equations suggested demonstrate the 

coexistence and transition between different dislocation patterns. This model can also show 

qualitatively the stress-strain curves, multi-slip system and the formation of cell structure 

during deformation. 

The paper will derive, at first, the governing dynamical equations on the fluctuation of 

dislocation density, and then, a linear stability analysis to the equations is carried out and 

some numerical results will be presented and the stress-strain curves will be discussed. 

2 D Y N A M I C A L  E Q U A T I O N  O F  D I S L O C A T I O N  D E N S I T Y  

Let B : (B1, B2) be the vector which describes the fluctuation of dislocation density at 

a certain space point. Corresponding the each component B~, (i -- 1, 2) there is a generalized 

conservation equation, 

OtBi + V .  Ji = f i (B)  (i -- 1, 2) (1) 

where Ji is a dislocation 'flux vector corresponding to Bi, and  f i (B)  represents nonlinear 

interactions among dislocations, including proliferation and annihilation of dislocations. The 

Eq.(1) is identical to that  of Aifantis in which there are some parameters depending on 

the average stress, strain and temperature.  To close the equations, a proper constitutive 

equation for the dislocation density flux is needed. In the above mentioned Holt and Aifantis' 

papers Is] , they both suggested the constitutive equation as follows 

Ji = - D 1  : V B i  -J- D2 : V 3 B i  (2) 

In this equation, the relaxation effect of relating the rate of flux to dislocation density 

gradients has been neglected. However, the relaxation effect sometimes plays an important  

role which should be considered in the diffusion of dislocation. Early in 1953, Crank [12] 

put the molecular relaxation effect into consideration on polymer diffusion. The diffusion of 

dislocation in crystal is reasonably supposed to be similar to that  in polymer, a dislocation 

line corresponds to a long molecule chain of polymer. The diffusion effect is also considered 

in recent s tudy on chemical diffusion-reaction dynamics [13]. Based on this consideration, we 

propose a new constitutive equation to the dislocation density flux, that  is 

~70tJi + D : V#i = - L  : Ji  (3) 

where y quantifies the relaxation time. #i represents the so-called "chemical potential" for 

the dislocated media. When y is very small and can be neglected, the Eq.13 returns to 

the ordinary form. As suggested by many authors, #i comes from the variation to the free 

energy functional of dislocation density, Hence, we have 

f #~Bidv = e f Gdv (4) 
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where G is the specific free energy functional of fluctuation of dislocation density, and 5Bi 

is the variation of the i-th dislocation density. For an isothermal process, if we choose G as 

G = g (B)  + r E ( V B i )  2 (5) 
A 

then, through (4), #i can be expressed as 

Og(B) p V 2 B  i (6) 
#i - OBi 

If g(B)  is given by 

g( S ) = -o l BI 2 (7) 

Eq.(3) becomes Eq.(2), and when 7 /=  0 and a < 0, L > 0, tha t  is the case as discussed by 

Holt and Aifantis [6,s]. 

When the dislocation density fluctuation is a slow varying function of t ime and space,the 

state of the system will be determined by the minima of the free energy functional. I f  Eq.(7) 

is chosen, the minimum of the free energy functional corresponds to the state without 

fluctuation of dislocation density. When a dislocation pa t te rn  appears, the fluctuation of 

dislocation density also exists, another  minimum of g(B)  must  exist, that  means tha t  there 

at least exist two minima. Therefore, the simplest form of g(B)  may be given as 

g (B)  = - a [ B I  2 + fl]Sl 4 (8) 

On the other hand the detail of the nonlinear te rm f i ( B )  in Eqs.(1) is not so important  

for the bifurcation analysis. Since zero is a homogeneous s tat ionary solution, the following 

condition should be satisfied 

: i ( B )  = AiBi + h i (B)  

J hi(B)lB,=O = 0 

(o) 

Thus, the Eqs(1),(3),(4),(5),(8) and (9) form a closed system. Even if the relaxation 

effect is neglected, it is clear tha t  the diffusion of dislocation does not satisfy the ordinary 

Fick law because diffusion coefficients are related to the fluctuation of dislocation density. 

DISLOCATION P A T T E R N  F O R M A T I O N  

In this section, we consider a simple c a s e :  B 2  ~- 0, B1  = B in 2-dimension problem. 

Let J2  = 0, J1  = J = (Jx, Jy), the fundamental  Eqs. (1) and (3) can be writ ten as 

OrB + OxJ~ + O~J~ = AB + h(B)  

~]OtJx + D O ~ ( - 2 a B  + 4f ib  3 - 2p(O,~ + Oyy)B) = - L J ~  

~OtJv + D O ~ ( - 2 a B  + 4fiB a - 2p(Ox, + Oyy)B) = - L J y  

0o) 
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where the parameters have reduced accordingly, a,  ~, % D, L and r /a re  supposed to be all 

positive, L and D must also be positive to ensure a positive entropy production. 

We will discuss two cases, that  is, ~] = 0 and ~/r  0, respectively. 

1) ~ = 0, the Eq.(10) can be reduced to a single equation for B 

OrB - D V 2 ( - 2 a B  + 4/3B 3) + 2LD-~PV4B = I B  + h ( B )  (10a) 

This is Cahn-Hilliard reaction diffusion equation. It is easy to prove that  the above equation 

has no wave solution. The conditions for which the space dislocation pat tern appears are 

the same as for y ~ 0 

2) n • 0  

Because zero is the homogeneous stationary solution of the equation, we have to inves- 

tigate the linear stability near the zero solution. The linearized form of (10) is 

O~B + O~J~ + OvJy = I B  

rlOt4 + n o ~ ( - 2 a B  - 2p(O~ + Oyy)B) -- - i g ~  (11) 

7lOtJy + D O y ( - 2 a B  - 2p(O~ + Oyy)B) = - L J y  

The Eq . ( l l )  is assumed to take the solution in the form 

B = V 1 exp(wt) exp{ i (g lx  + K2y)} 

J~ = U2 exp(wt) exp{i(KlX + g 2 y ) }  (12) 

Jy = U3 exp(wt) exp{ i (g lx  + K2y)} 

By inserting nq.(12) into the E%(11), the characteristic equation corresponding to Eq . ( l l )  

is obtained, 

where 

w - A iK1 iK2 

C 1 /]~d + L 0 

C2 0 ,Tw + L  

= 0 (13) 

C1 = [ 2 p D K I ( K ~  + K~)  - 2c~DK1]i 

C2 -- [ 2 p D K 2 ( K  2 + K 2) - 2aDK2]i 

The Eq.(13) can be rewritten as 

(yw + L)[yw 2 + (L - A , ) w  - AL + 2 n ( - a K  2 + pK4)] = 0 (14) 

where K 2 = K 2 + K~. If w < 0, there will be no space structure, so we only consider the 

case w > 0. For w > 0, the zero solution is unstable and the space structures will occur. For 

the critical value w = 0, we have 

= 2~D-D(_aK2 + p K  4) A (15) 
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A is a bifurcation parameter, the function 1 = A(K) is shown .in Fig.1. 
cz2D 

When K = K~ = V/-a-/2p, there is a minimum A = Ac - 2pL " Since both a and p are 

positive, there will always be a pattern-like space structure for the dislocation distribution. 

The extreme values Kc and Ac depend on a and p respectively, the following relation 

D 2 
A~ = - 2 p z K  ~ 

kc 0 

This relation is shown in Fig.2. 
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If let a be a bifurcation parameter, we have from (15) 

LtA~] (16) 
a = p K  2 + 2 D K 2  

for the case A = )% < 0. The relation (16) is shown in Fig.3. 

It  is clear that  these is a minimum ac = ~ / 2 P ~  -A~I , and another minimum K 2 = 

~ , the above two kinds of minimum conditions are equivalent. 

Since K 2 = K 2 + K 2, there exist some degenerations of wave vector, any wave vector 

that  satisfies K12 + K 2 = K 2 makes A minimum (see Fig.4). The linear analysis can not 

split the degeneration of the wave vectors. 

Three wave vectors and the corresponding dislocation structures are considered as 

follows, 

1) (K1, K2) = (Kc, 0) 

The solution of linearized equation for the fluctuation of dislocation density is approx- 

imately 

B ~ sin K c x  (17) 

this could correspond to a wall structure in dislocation patterns. 
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2) (K1, K2) = (K1,0) and (0, Kr 

For this case, we have 
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B ~ C1 sin Kcx + C2 sin Kcy (18) 

where C1 and C2 are the two arbitrary constants, this relation corresponds a rectangular 

cell structure in dislocation patterns. 
(~  ~__~) ( - 1  V~)  

3) ( K 1 , K ~ ) = K c  , ,Kr 2 ' 2 and etc. 

This is a hexagonal cell structure and 

x x / \ 
sinKo - + T y )  + -  (19) B "~ s i n K ~ ( ~  + ~ - y )  + 

when the nonlinear effect is taken into account, the above cell structures will be deformed. 

It is hard to distinguish the degenerated wave vectors in lines analysis. But,  with 

consideration in physics, the wave vector (K1,/(2)  can be chosen reasonably. As is known, 

the dislocation structures are related to the active slip systems in plastic deformation process, 

there must be a relation between wave vector and slip system, this is a very strong restriction 

on the selection of wave vectors. 

The slip systems start  to be activated when the stress exceeds a certain critical value. 
~ 2  

Since K~ = 2-7" K~ is determined by a as p is fixed, a is related to shearing strain in 

general, and in some circumstances there is a relation 

a = a0 (log 7 - log %)2(2n+ 1) (20) 

where n is a positive integer, % is a critical parameter  and its description will be given in the 

next section. As 7 becomes larger, a and kr are larger too, the corresponding dimension of 

the dislocation space structure becomes smaller. The cell structure appears more reasonably 

for large Kr 
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The above analysis can not get rid of the coexistence of different dislocation patterns,  

but  the proposed model should be able to describe this phenomenon. When ~? ~ 0, these 

is a wave motion solution, However, at present, we are not able to choose the value of 

exactly. In the following section some numerical calculations are given to demonstra te  the 

coexistence of dislocation pat terns  and to explain the transition from wall s tructure to cell 

structure. 

4 N U M E R I C A L  R E S U L T  

At first, we choose nonlinear interaction function h(B) in (10) as follows 

h(B) = AiB 2 + A2 B4 

then we present some numerical results of the Eq.(10). Since we deal with the evolution 

problem of dislocation density, both  the initial conditions and the boundary  conditions mus t  

be prescribed. For simplicity, we restrict the whole system on a torus and there is a periodic 

boundary  condition available for the simulation of an infinite plane. However, to the initial 

conditions, t h e r e  ave many  different choices. We consider two kinds of initial conditions. 

One is that  there is a small fluctuation of dislocation density in a local region. The other 

is that  the fluctuation of dislocation density is in very slow spatial variation in the whole 

region: Wi thout  loose of generality, ~ and D are set to be unity in the following numerical 

simulation. 

The numerical skill used in solving Eq.(10) is developed from a predictor-corrector 

method,  which is of absolute stability. The system of difference equations is solved by 

alternative direction implicit (ADI) method.  The differential operators are approximated 

by a central difference scheme. To the nonlinear terms, we use a simple linearization method,  

tha t  is, the old K - t h  values are used to replace the unknown ( K  + 1)-th values in nonlinear 

terms. In the numerical experiment,  we find that  for a given t ime region, the Eq.(10) is 

sensitive to the values of parameters.  For some combinations of parameters ,  the calculation 

stops due to overflow; for some other combinations of parameters ,  homogeneous solutions 

,occur, for some other specific combinations of parameters ,  many interesting pat terns  appear  

and develop with time. This fact shows tha t  the system is rich of bifurcation phenomena.  

In the following , we present three groups of the solutions with their corresponding figures. 

1) The wall structure of the fluctuation Of dislocation density. The parameters  are 

selected as 

A = -0 .5 ,  A1 = 0.0001, A2 = 0.0001 

a = 1 0 0 ,  / 3 = 5 ,  p = 5 ,  L = 9 9  

the evolution of dislocation density is shown in Fig.5(a-i) 
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Fig.5 Evolution of dislocation density 

2) T h e  t r an s i t i on  f rom wall  s t r uc tu r e  to  cell s t ruc tu re ,  if the  p a r a m e t e r s  a re  chosen as 

= - 0 . 5  A1 = 0.11 ~2 = 0.11 

= 1 0 0  ~ = 3 5  p = 3 6  L = 9 9  

T h e  evolu t ion  of  d i s loca t ion  p a t t e r n i n g  is shown in Fig .6(a- i ) ,  t aken  a t  different  t imes .  

3) O t h e r  p a t t e r n s  of the  f luc tua t ion  of d i s loca t ion  densi ty.  I f  we use 

)~ ~- - - 0 . 5  "~1 = 0.0001 A2 = 0.0001 

C~ = 100 /~ = 51 p = 49 L = 93 

Then ,  the  evo lu t ion  is shown in Fig .7  (a-i),  which show the  complex i ty  of d i s loca t ion  p a t t e r n  

evolut ion.  
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Fig.6 Wall to cell structure 

From these results of the calculation, we conclude that  the choices of the above pa- 

rameters are different, the pa t te rn  formations and the pa t te rn  evolutions are quite different, 

though the initial values are the same. 

Therefore, the above numerical examples illustrate that  the new model is reasonable 

and can bring about  rich phenomena in pa t t e rn  formation and pat tern  transition. 

On the stress-strain curve for cyclic loading. The total  free energy of the dislocation 

system should be a minimum when dislocation pat terns  are formed. This leads to 

dg(B)/dB -- 0 (21) 

If  the fluctuation of dislocation density varies very slowly with respect to t ime and to space. 

Since both  c~ and/3 are positive, (21) has a nonzero solution except the constant solution 
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Fig.7 Complexity of dislocation structure 

B = ~ (22) 

For the empirical stress-dislocation relation 

a = K o ( B  + B0) 1/2 (23) 

where B0 is average initial dislocation density, B is the fluctuation of the dislocation density. 

By plugging the expression (20) into (23), the following stress-strain relation is obtained 

T = a0[(log 7 -- log 7c) 2n+l + (log ~c)2n+l] 1/2 (24) 

where Bo is replaced by (log re) 2n+1. The relation of (24) is illustrated in Fig.8. 
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The larger n is, the longer the horizontal par t  of the curve is. The relation (24) can 

behave in a good approximation as the stress-strain curve in cyclic loading condition. 

From Kc and (22), the dimension of the dislocation pat tern,  d = 2~r/Kc, can be 

expressed as 

The r - d relation can be derived from (23), that  is 

1 
+ Bo) 1/2 (28) 

Only for large d, the above relation leads to linear characteristics of the stress-strain relation. 

5 C O N C L U S I O N  

The dislocation pat terning is one of most complicated many body phenomena.  There- 

fore, at present it is reasonable and necessary to develop a simplified model to deal with 

such labyrinthine phenomena.  In this paper,  we adopt a new dynamic model to simulate 

the dislocation pa t te rn  formation. In this model, The non-Fick effect and relaxation effect 

of diffusion of dislocations have been considered. In the numerical experiment,  It  is found 

tha t  the Eq.(10) of controlling the evolution of dislocation density and flux is sensitive to the 

selection of the values of parameters .  For some combination of parameters ,  the calculation 

is s topped due to overflow, or only gives a trivial homogeneous solution. For some other 

particular combination of parameters ,  many  interesting pat terns  occur and the transit ion 

phenomena from one pa t te rn  to another  are also found. These facts show tha t  the new model 

is rich of bifurcation. The stress-strain behavior under cyclic loading and the dimension of 

the call s t ructure are discussed briefly. There are two important  problems being left for our 

further study: how to relate the macroscopic state parameters  to the model of dislocation 

pa t te rn  formation and how the bifurcation of the dislocation system bring about  the chaotic 
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behavior. The further investigation of these problems will improve greatly our understand- 

ing to nowadays plasticity theory and enrich our knowledge to nonlinear phenomenon in 

material sciences. 
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