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A BIEM O P T I M I Z A T I O N  M E T H O D  FOR F R A C T U R E  
D Y N A M I C S  I N V E R S E  PROBLEM* 

Chen Weijiang ( ~ , ~ )  Liu Chuntu ( ~ [ ] )  

(Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China) 

A B S T R A C T :  In the present paper, based on the theory of dynamic boundary 

integral equation, an optimization method for crack identification is set up in the 

Laplace frequency space, where the direct problem is solved by the author's new type 

boundary integral equations and a method for choosing the high sensitive frequency 

region is proposed. The results show that the method proposed is successful in using 

the information of boundary elastic wave and overcoming the ill-posed difficulties on 

solution, and helpful to improve the identification precision. 

K E Y  W O R D S :  crack identification, BIEM, iterative optimization, frequency choos- 

ing 

1 I N T R O D U C T I O N  

From the point of modern engineering and technique, in order to est imate the safety 

of a structure, we not only need to determine if there exist flaws or cracks but  also need to 

decide their exact shape and location. Technically speaking, it is a problem of nondestructive 

testing; theoretically speaking, it is an inverse problem of solid mechanics. Since the problem 

is obviously of high value in practice, several theoretical and numerical methods have been 

proposed [1~3]. Besides the progress of ultrasound testing techniques, the method based on 

theory of elastodynamics has become the focus of research [1'2]. Because the precision of 

flaw detection depends on both  the quality of testing equipment and the level of software, 

to obtain a valid identification result we have to make full use of the testing information 

and analyze them correctly. This means that  the most  important  task at present is to make 

further s tudy on the theory of inverse problems. I t  should be point out that ,  although the 

Solving methods for inverse problem is closely related with those for direct problem , their 

theories are quite different and the solution of inverse problem is usually ill-posed and highly 

nonlinear. Thus to solve an inverse problem is generally much more difficult than  to solve 

a direct problem and there is not a perfect method at present. There are mainly two kinds 

of methods to solve elastodynamic inverse problems. The first one is based on the analytic 

or half analytic theories, where BORN approximation [4'5] and inverse scattering approach [6] 
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are most representative. They are very difficult in application and theory. The second one is 

an indirect method, which is based on the solution of direct problem and uses the iterative 

optimization approach to identify the unknowns. Of the two kinds of methods, the second 

one will take a lot of CPU time of computer, but  with the development of modern  computer 

techniques, it will not be a problem. In the second kind of method, as the representative 

work we can quote Tanaka [7], Nishimura [s] and Chen [9], where the Chen's Pulse-Spectrum 

Technique (PST) has been applied with some success to identify the medium parameters [9]. 

Since PST can fully use the rich information of transient elastodynamic wave, it is more 

useful in practice than the sound wave inversion [s] and the steady wave inversion [7] . 

In the present paper, based on the theory of transient elastic wave, the crack identifica- 

tion problem is investigated. Using the similar model of PST,  the inverse problem is reduced 

to solving an optimization problem in Laplace transform space, where the square sum of 

differences between the computed displacements and measured ones at selected points on 

outer boundary should be minimized. In the iterative process the new type boundary in- 

tegral equation method [l~ proposed by authors is used to solve the direct problems and is 

proved to be effective in reduction of the numerical error. In the choice of frequency spec- 

trum, a method for choosing high sensitive frequency region is proposed in this paper. The 

results show that  the method proposed can fully and reasonably use the rich information 

from the wide frequency region of the transient elastodynamic wave to obtain high precision 

identification result with less selected points and computation. The method proposed can 

be used in the development of nondestructive testing techniques. 

2 THE MIXED~-TYPE BIEM FOR DIRECT PROBLEM 

Since in the optimization method, a lot of computation has to be made on the direct 

problem in each step of iteration, one of the keys to make successful inversion of the crack 

geometry parameters is to work out an accurate and fast numerical method for the direct 

problem. In the present paper the mixed-type boundary integral equations [l~ proposed by 

authors are used to solve the direct problem. These equations are different from the regular 

boundary integral equations, where we do not need to cut along the crack and the elements 

can be generated automatically in each step of iteration. The method can be used to reduce 

the accumulated errors in iterative computation. The process is given as follows. 

For the plane strain crack problem 

shown in Fig.l ,  if the crack location and 

length are known, to solve for the displace- 

me n t  and stress fields is then a direct prob- 

lem, where the displacement ui(y, t)  must 

satisfy the governing equations 

02Ui 
#u~,kk + (A + ~)uk ,~  = p Ot 2 (1) 

f 
s~ 

a ~ Yl 

and boundary and initial conditions Fig.1 The dynamic plane crack problem 
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ui = ~ d x ,  t) x �9 S~ J - 

~,(=,t)l,=ot) = ~o(~) } 
o~(~, = ~o(=) 

Ot t=o 

�9 o + s  (3) 

where A and # are elastic moduli, p is density of material, 12 is the region surrounded by 

boundary S + F +, ni is the outward normal of boundary. Suppose the structure is static 

before transient loadings are applied, then we have ~~ = u ~  = 0. Apply the Laplace 

transform about time (t) to Eqs.(1), we obtain 

~ , k k  + (~ + #)~k,k~ -- pp2~ = 0 (4)  

where the bar denotes the Laplace transform, p is the transform parameter. The solution 

in Y2 can be expressed by Somigliana formulae 

f z k ( y , , )  = ~s[{i(~,p)Ui~(~? - y , p )  - ~t i (~ ,p)T,k(y ,  y,p)]dS(rl)- 

where Uik and 2Pik are the Green fundamental solution, 2P + = Tikln(0-1), {i and ~i are the 

traction and displacement on the outer boundary S, A~i,1 is the dislocation density function 

along crack. From Eq.(5) one can find if the traction and displacement on boundary S and 

dislocation density along crack are known, then the solution can be obtained. 

To determine the unknowns on boundary, using the techniques of Green fundamental 

solution and singularity analysis, the following mixed-type integral equations were derived 
by authors[ 1~ 

1 (y,p) = f [~(~,plO~k(~- y,p) - ~,(~, p)~,~(~, y , p l ] d S ( ~ ) -  

b[ bTik(?7 , i'~i,l(~l, P)d~l 
1 

k = 1,2 y E S (6a) 

[ ~i(?~'p)~k+ii(?~'yl'p) ~- Kik(,,yi,p)~ti(,,p)]dS(l])~- 

. . . .  + l f / I k ( ~ l , y l , p ) A a k , l ( n l , p ) d ~ l  = c tk(y l ,p)  7f 771 -- Yl 

k = 1, 2 Yl �9 (a, b) (6b) 

where, qk = ~k21L• is the loading along crack, A -- #/2(1 -v ) , / ; / ik  and 2t:/k are the known 

integrable kernels whose expressions can be found in Ref.[10]. 
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It is necessary to point out that  the above Eqs.(6a,6b) are different from the regular 

integral equations, in which the traction-type BIE(6a) along the crack are Cauchy singular 

integral equations with dislocation density functions as unknowns. Eqs.(6a,6b) can be re- 

duced to solving a set of linear equations by combining the numerical method of singular 

integral equation with the boundary element method. Since the numerical method can be 

easily used for general problems and has very high numerical precision, it is more suitable 

for the iterative calculation. 

3 T H E  I T E R A T I V E  O P T I M I Z A T I O N  M E T H O D  F O R  C R A C K  

I D E N T I F I C A T I O N  

For the problem shown in Fig.l,  if the crack location and shape are unknown and need 

to be identified by measurement and analysis, then it is an inverse problem. In the present 

paper the problem of straight line crack identification is considered. Because of the high 

nonlinear and ill-posed nature of the solution it is impossible to solve the inverse problem 

directly from Eqs.(6a,6b). In order to overcome the difficulties the indirect method is used 

in this paper, where we suppose that  the displacements at some selected boundary points 

are measured to be the identification information. These selected points are usually called 

over-prescribed boundary points whose displacement and traction conditions are known at 

the same time. By use of the numerical method of the direction problem and the iterative 

optimization, the crack identification is reduced to minimizing the square sum of differ- 

ences between the computed displacements and measured ones at selected points on outer 

boundary. Our method is illustrated as follows. 

For a two dimensional problem, only 4 parameters ~(a0, 8, x0, Y0) are needed to deter- 

mine the crack, in which a0 is the half length of the crack, 0 is the angle between the crack 

a n d  the horizontal direction, (xo,Yo) is the central point of the crack (in the coordinate 

system XOY). To identify these parameters, we choose the following objective function in 

the iterative optimization 

p N 2 

= Z ,12 - ~ ~,pk~j ( 7 )  

k = l  / = 1  i : 1  

where P is the number of selected frequency points, pk is the value of frequency. N is 

the number of selected measurement points, ~ti(Xl,pk ) is the displacement at point Xl by 

computation, ~t~(Xz ,Pk) is the displacement at point Xl by measurement. 

Now the inverse problem is reduced to determining the best parameters ~ -- (a0,8, x0, Y0) 

by minimizing the objective function W(Wmin -- 0). In order to choose a suitable conver- 

gence criterion for the iterative computation, the non-dimensional objective function is 

defined as 

p N 2 
- *  2 

k = l  l = l  i = 1  
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and the parameters ~ = (a0, 0, x0, Y0) are i terated in the following manner 

~n+l : ~(n) + ld(n) (9) 

where l is optimal step length, to improve the convergence a method of multi-constant step 

is used, in which the range of residual value is divided into el > ez > .- - > e m  > e* and the 

correspondent steps are chosen as 11 > 12 > " .  > l m .  If ej+l < Z < ej, then l : lj. d (n) is 

the vector of the search direction at the n th  iteration and can be determined as [11] 

d(n) _ grad W 
igra d Wi (10) 

where grad W = (OW/Oao, aW/O0, OW/Oxo, aW/Oyo) and the convergence criterion used 

in this paper is [7] 

z (n) < iz(=) - z(n--1)[ < e** (11) 

where e* and e** are small positive real number. The first inequality implies that  the non- 

dimensional objective function is less than a given criterion and the second one states that  

the change in the objective function is less than a given value. 

It should be point out, since a lot of computation must be carried out and the crack 

parameters are changed in each step of iteration, the coordinate system has to be chosen 

carefully. According to the numerical method in the above section, the direct computation 

is done in a local system along the crack while the objective function is calculated in the 

general system(XOY). The relation between the local system and the general system can be 

expressed as follows 

yl = ( x  - cos0 + (Y - y0)s in0 / (12) 

Y2 = - ( X  - s0) sin0 + (Y - Y0) cos0 J 
31 = ~ lCOS0-  ~2sin0 

(13) 
32 = ul sin 0 + u2 cos 0 

where ~1 and ~2 are the displacements in local system. By use of relations (12),(13) all the 

information obtained in the local system can be transform into those in the general system. 

The computation of the iterative optimization is carried out in following steps: 

(1) Input data  of the structural shape and material constants; 

(2) Assume the shape and location of a straight crack ((0); 

(3) Calculate the residual Z (~) (for initial step n = 0) and choose the optimal step 

length l(l = Ira); 
(4)  Take parameters (~(~) + A~i([A~i [ < <  1, i -= 1, 2, 3, 4) and calculate the residuals 

Z (n) + AZi, and then compute the directional vector d (n) approximately by use of difference 

method; 

(5) Take the revised parameters ~(,~+1) = ~.(~) + lind(n) and calculate the residual 
Z(~+I); 
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(6) Check convergence according to the criterion inequalities (11). If the solution 

converges, then stop iteration. Otherwise, substitute the parameters Z (n) into Z (n+l) and 

go to Step (3) 

4 F R E Q U E N C Y  C H O I C E  A N D  N U M E R I C A L  E X A M P L E S  

From the method of the above section, the identification precision is mainly related 

with measurement point Xl and frequency value Pk- Although a large number of Xz and Pk 

will offer more information, good identification precision is not always achieved and more 

computation has to be done. Thus, how to use the finite information reasonably, i.e. using 

the most effective part  of the information and achieving good result with small computation 

cost, is another key for a successful identification. In the present paper, a method of high 

sensitive frequency region choice is proposed, where the frequency values Pk are chosen only 

in the most sensitive frequency region of real half-axis (0, ~ ) .  The method proposed is based 

on the following considerations: 

(1) i t  can use the information reasonably and effectively with less computation cost; 

(2) The computation is only in real space and the complex computation is avoided. 

The following exan~ples show the method is successful and the expected aim is achieved, 

In the examples the materials constants are defined as # = 8 • 101~ Pa, u = 0.29, p : 

7800kg /m 3. The structure is a rectangle with geometry of 2 .0mx 1.0m and length and 

location of the crack are unknown. The outer boundary is divided into 30 elements. The 

measurement points (by numerical imitation) are selected at the central points of No.7 and 

No.14 elements and the impact loading is acting on the central part  of the up side or right 

and left sides. 

E x a m p l e  1 The rectangle with a central horizontal crack with a half-length of 0.1m. 

The real frequency spectrums at No.7 element are shown in Fig.2a, where the most 

sensitive frequency region is obviously between 0.25 < p/c 2 < 4.0. The frequency values are 

selected as Pk : kc2/2, k = 1,2, 3, 4, 5. The spectrums obtained by identification are shown 

in Fig.2b which is very identical with Fig.2a. The identification process is given by Fig.3 

and Table 1. 
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No. 7 1.0 Hff )  No. 14 

r e a l  

initial ~ = = =  
- . . . .  _ " - . . .  

final 

) / J  / 2 / 2 / / ' /  / / / / 2 /  
Fig.3 

T a b l e  1 T h e  n u m e r i c a l  r e s u l t s  o f  c r a c k  i d e n t i f i c a t i o n  

0 0.200 000 0 0.000 000 0.500 000 0.300 000 5.068 914 

2 0.119 545 -0.029 703 0.766 140 0.302 891 0.832 969 

4 0.108 132 -0.068 823 0.942 502 0.328 535 0.121 692 

6 0.106 923 -0.044 542 0.965 496 0.360 000 0.065 107 

8 0.105 963 -0.040 041 0.969 309 0.367 314 0.061392 

10 0.105 488 -0.037 750 0.971083 0.388 500 0.042 530 

12 0.104 587 -0.033 909 0.974 467 0.414 461 0.026 143 

14 0.102 494 -0.028 874 0.978 126 0.461344 0.009 630 

16 0.102 758 -0.023 796 0.979 136 0.469 794 0.008 426 

FINAL 0.100 869 -0.020 680 0.982 905 0.483 193 0.004 219 

REAL 0.100 000 0.000 000 1.000 000 0.500 000 / 

E x a m p l e  2 T h e  r e c t a n g l e  w i t h  a c e n t r a l  v e r t i c a l  c r a c k  w i t h  h a l f - l e n g t h  of  0 .1m.  

T h e  r e a l  f r e q u e n c y  s p e c t r u m s  a t  No .7  e l e m e n t  a re  s h o w n  i n  F i g . 4 a ,  w h e r e  t h e  m o s t  

s e n s i t i v e  f r e q u e n c y  r e g i o n  is a l so  b e t w e e n  0 .25 < p/c2 < 4.0.  T h e  f r e q u e n c y  v a l u e s  a r e  

s e l e c t e d  as  Pk = kc2/2, k = 1, 2, 3, 4, 5. T h e  s p e c t r u m s  o b t a i n e d  b y  i d e n t i f i c a t i o n  a r e  s h o w n  

in  F i g . 4 b  w h i c h  is a l m o s t  i d e n t i c a l  w i t h  F i g .4a .  T h e  i d e n t i f i c a t i o n  p r o c e s s  is g ive  b y  F ig .5  

a n d  T a b l e  2. 
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i n i t i ~ ' X / / / ~  
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real 
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Fig.5  

T a b l e  2 T h e  n u m e r i c a l  r e s u l t s  o f  c r a c k  i d e n t i f i c a t i o n  

O(o ") o(,,) n) y(o ") z(,,) (u) 
0 0.150 000 1.200 000 0.800 000 0.650 000 1.639 492 

3 0.076 313 1.251 795 0.846 663 0.621 141 0.025 909 

6 0.073 297 1.282 943 0.868 466 0.576 054 0.022 164 

9 0.085 073 1.328 672 0.900 294 0.583 952 0.012 943 

12 0.085 771 1.353 090 0.922 846 0.575 439 0.011 859 

15 0:087 221 1.389 264 0.928 520 0.558 410 0.006 631 

18 0.090 554 1.437 291 0.934 091 0.546 452 0.004 064 

21 0.093 138 1.464 812 0.935 817 0.533 296 0.002 780 

24 0.094 006 1.480 332 0.943 668 0.529 591 0.002 092 

FINAL 0.095 908 1.512 871 0.952 228 0.512 940 0.000 997 

REAL 0.100 000 1.570 796 1.000 000 0.500 000 / 

Above  example  resul t s  show t h a t  the  m e t h o d  p r o p o s e d  in the  presen t  p a p e r  is successful  

to  o b t a i n  good  ident i f ica t ion  precision.  I ts  advan tages  include:  (1) The  d i rec t  p r o b l e m  

ca lcu la t ion  reduces  the  errors  effectively; (2) The  wide f requency region is fully used and  

only  few m e a s u r e m e n t  po in t s  are  needed;  (3) T h e  mos t  sensi t ive in fo rma t ion  is used to  

reduce  the  c o m p u t a t i o n  cost  and  o b t a i n  good  iden t i f ica t ion  resul ts  by  the  m e t h o d  of high 

sensi t ive f requency  region choice. 

On  the  o the r  hand ,  accord ing  to  the  exper ience  o b t a i n e d  in th is  pape r ,  the  following 

m e t h o d s  can  be  used to  fu r the r  improve  the  ident i f ica t ion  effect and  precis ion:  

(1) Fu l ly  use the  cur ren t  t e s t ing  techniques  and  exper iences  to  improve  the  prec is ion 

of the  in i t ia l  guess; 

(2) W h e n  the  crack is small ,  increase  the  n u m b e r  of  m e a s u r e m e n t  po in ts  and  use more  

s t r ic t  convergence cr i ter ion;  

(3) Select  the  m e a s u r e m e n t  po in t s  in such a way t h a t  t hey  are  l oca t ed  a t  the  larges t  

values of sens i t iv i t ies  of f requency spec t rum;  

(4) Select  m e a s u r e m e n t  in fo rma t ion  of  mul t ip le  loadings  as the  a dd i t i ona l  condi t ions .  
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5 C O N C L U S I O N  

In the present paper a crack identification method, based on the BIEM for direct 

problem and iterative optimization technique and method of high sensitive frequency re- 

gion choice, is proposed. The results show that the method proposed is successful in using 

measurement information sufficiently and obtaining good identification effect with less com- 

putation. The results obtained in this paper are better than those in references and are 

of importance for the nondestructive technique development. It has to be point out that  

there is not a unified approach for the problems of the general flaw identification and much 

investigation is expected in the future. 
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