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Abstract-The generalized Shmuely Difference Algorithm (GSDA) is presented here to analyze the 
dynamic fracture performance of orthogonal-anisotropic composite materials, such as glass fibre 
reinforced phenolplast. The difference recurrence formulae and boundary condition difference 
extrapolation formulae are derived and programmed. The dynamic stress intensity factors (DSIF) of the 
isotropic and anisotropic centrally cracked plates are computed respectively using GSDA and compared 
with that published previously. GSDA is proved effective and reliable. Copyright (‘8 1996 Elsevier Science 
Ltd. 

INTRODUCTION 

COMPOSITE MATERIALS have been extensively employed in many fields of mechanical, aeronautical 
and aerospace industries etc., e.g. the space vehicle’s shell and the ship’s erosion resistant shell. 
Structural components such as these frequently experience dynamic loading. For their safe and 
proper service, knowledge in the mechanical performance of composite substances under high rate 
loading is of high necessity. The initiation and propagation of crack in composite materials, among 
mechanical performance of this kind, are of considerable importance, for they are crucial in 
structure failure prediction. For the dynamic crack initiation and crack propagation, the dynamic 
stress intensity factor (DSIF) plays a key role in characterizing this behaviour. Thus, the accurate 
determination of the DSIF in predicting fracture cannot be overemphasized. 

The finite difference method has evolved as an accurate numerical method for solving a wide 
class of engineering problems. The first successful application of this method to calculate DSIF 
in dynamic fracture mechanics problems is credited to Chen [I]. Among the pioneering workers 
are Shmuely et al. [2], also. Besides the finite difference method, the finite element method and 
boundary element method have also been developed for calculating DSIF successfully. For a 
detailed discussion, interested readers are referred to refs [3-51 and Fan and Hahn [4] and Israil [5]. 

While the finite difference method and boundary element method have been some what of a 
success in calculating the DSIF of isotropic bodies, none of them has been so far employed fruitfully 
for DSIF of anisotropic bodies such as composite materials. 

In the paper, the Generalized Shmuely Difference Algorithm (GSDA) is presented and applied 
to calculate the DSIF of anisotropic bodies, including the substitution of a rectangular difference 
grid for the square one, the derivation of a series of relevant difference recurrence formulae and 
boundary condition difference extrapolation formulae and the empirical establishment of criteria 
for stability of the difference scheme. The DSIF is computed from the crack tip stress 0,. Centrally 
cracked plates subjected to uni-axial tension of Heaviside-function time-dependence are analyzed 
respectively in the cases of both isotropy and anisotropy. The results obtained for the case of 
isotropy from the present analysis are compared with the available published results. The 
comparison shows GSDA presented herein is credential and applicable. The results for the 
anisotropic case are also compared with those of the isotropic one. 

tThis work was supported by the grant of the Opening Laboratory of Nonlinear continuous Mechanics in Institute of 
Mechanics of Academia Sinica. 
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FUNDAMENTAL EQUATIONS 

Strictly speaking, fibre reinforced resin-matrix composite materials are heterogeneous 
anisotropic, which can, however, be considered as homogeneous materials with anisotropy under 
many circumstances. 

The dynamic equilibrium and strain equations for orthogonal-anisotropic bodies are the same 
as the isotropic ones, with the only exception being the generalized Hooke’s Law. This law for the 
planar case can be written as [6] 

ffg = C12h + C22E,, 

where 

El, E22 

c" = 1 - V,2V?,’ c22= 1 - v,2v2, 

EIIVZ, E22v12 

c" = 1 - VI>V>l = 1 - Vl2V2l 

CH = G2 = G21, (lb) 

where E,, and Ez2 are the moduli of elasticity in the principal directions x and y, respectively; G12 
(= G2,) is the shear modulus, and v I2 and v21 are Poisson’s ratios in the xy-plane. 

The planar orthogonal-anisotropic elastodynamic equations were derived from the dynamic 
equilibrium and strain equations as well as the generalized Hooke’s Law. Here are: 

a% ah ak a% au 
“1 ax --2 + C66ayz + (Cl2 + C66)aXay = p,,, + epat 

aztl azo a2u as au 

c66,,, + '22 &? + (cl2 + C,,)m = p p + @par, (2) 

where 

au a0 
0~5 and OPT 

are artificial damp terms to make eq. (2) valid for statics problems. 8 is the so-called subjectively 
damp coefficient. Equation (2) will be reduced to the orthogonal-anisotropic elasto-dynamic ones 
without damp, providing 8 is equal to zero. 

GENERALIZED SHMUELY DIFFERENCE ALGORITHM 

Consider a centrally cracked plate as shown in Fig. 1. It is enough that only one-quarter of 
the plates is analyzed because of their symmetry (Fig. 2). When analyzing anisotropic problems, 
the square difference grid, used in the Shmuely Difference Algorithm [2,7], has not been applicable 
because of the elastic wave speed difference along the x and y axes. To solve the problem of 
anisotropy, the rectangular difference grid has supplanted the square one shown in Fig. 3 and the 
relevant difference recurrence formulae have also changed correspondingly. The so-called 
Generalized Shmuely Difference Algorithm has thus been developed. With the central difference 
discretization, eq. (2) takes the recurrence form as follows: 

U(Xv Y, t + At) = 1 + o&At H 2 1 - $$ - s)u(x, y, t) 

-(l - 0.58At)u(x, y, t - At) + ;j [u(x + Ax, y, t) + u(x - Ax, y, t)] 
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(a) (3(f) 

+2cm4 

0 t 

Fig. I. (a) Centrally cracked rectangular plate. (b) Uniform tension a(t) with Heaviside-function time 
dependence. 

c6eAt2 
+- p Ay2 b&G Y + AY, t> + u(X, Y - AY, t>l 

+ (CIZ + ca)At* 
4pAxAy [u(x + Ax, y + Ay, t) + v(x - Ax, y - Ay, t) 

- u(x + Ax, y - Ay, t) - u(.x - Ax, y + Ay, t)] 
I 

u(x,.v,t+At)= 1 

- (1 - O.%At)u(x, y, t - At) + $$ [u(x + Ax, y, t) + u(x - Ax, y, 01 

+ 
c22AT2 
p W, Y + AY, t) + 4x, y - Ay, 01 + “e,‘,;$‘* 

x [u(x + Ax, y + Ay, t) + 4x - Ax, y - Ay, t> - 4~ + Ax> Y - AY, t) 

(34 

- 4x - Ax, Y + Au, 91 , 
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Fig. 2. One-quarter of the centrally cracked rectangular plate. 

where At is the time interval; Ax, Ay, the grid interval along the x, y axes, respectively, as shown 
in Fig. 3. 

BOUNDARY CONDITIONS AND THEIR DIFFERENCE FORMULAE 

Figure 2 shows the boundary states of one-quarter of a centrally cracked plane and the 
boundary condition can be stated below: 

x = L, OIy I H: o,,=O, o,,=O 

y = 0, O<x < a: o,,=O, a, =0 

y = 0, a<x 5 L: CT~?=O, v=O 

x = 0, OIy I H: CT~!=O, u=O 

y = H, 01x < L: r~y~=O, ow=o(t). (4) 

0 
-a-9 

Fig. 3. Rectangular difference id. 
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In Fig. 4, the grid points are numbered, where the boundary has been considered as three parts: 
‘Sides”, “Angles” and “Angle-points” for the sake of the central difference format. So the 
boundary conditions [eq. (4)] can be discretized as extrapolation formulae as follows: 

The extrapolation formulae for the “Sides” boundary conditions 

Take “Side-l” for example: 

L- $,y-Ay,t )I (54 
v L+ 2,y,t -v L- 2,y,t -0.5- u L-$,y+Ay;t ( Ax )- ( Ax ) “dt[ ( )-u(L- $,y-Ay,t)] 

y = 3Ay,. . . , (n - 2)Ay. 

The extrapolation formulae for the “Angle” boundary conditions 

Take “Angle-l” for example: 

(5b) 

(6b) 

----E-- 
m-1 m 

O\ 
Angle point 2 Side 2 Angle point 1 

Fig. 4. “Sides”, “Angles” and “Angle-points”. 
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v L- $,- 2” 
( 

L?v 

The extrapolation formulae for the “Angle-points” boundary conditions 

The displacements of the four “angle-points” 

Ax Ay -- 
2’ 2’t (6~) 

(64 

Ax Ay -- ,-- - 
>( 2 2’ 

can be obtained using linear extrapolation based on the other two grid points located on the two 
grid lines orthogonal to the angular points. For instance, the extrapolation formulae for the 
“angle-point” 

are given as 

- y,t)+.(-gy,t) 

-0.5[u(-y,- y,t)-u(-$,S,t)] (7a) 

y,t)+v(-~,~,t)] 

-0.5v _+_Q+ [( >I . C’b) 
CRITERIA FOR STABILITY OF THE DIFFERENCE SCHEME 

It is necessary to provide the criteria for stability of the difference format so as to make valid 
the difference extrapolation formulae this paper presented. Via repeating computation, we suggest 
the criteria take the form: 

g & < 0.86, $j &<0.86. 

Furthermore, it is best to take 

0.80, g &=0.80. 

(8) 

(9) 

DYNAMIC STRESS INTENSITY FACTOR 

Because the singularity at the crack tip in the dynamic case can be considered as being similar 
to the static case before the crack begins to propagate, the DSIF can be defined as the same in 
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a static problem except for its being time-dependent. It can be determined as before from the crack 
tip stress rr,, [4]. Only valid for mode I: 

where 

,f’(0) = Re (lob) 

SI, s,, S?, J- with the overbar designating complex conjugates are the roots of the equation 
below: 

Due to any finite difference method being unable to represent the extremely steep stress 
gradients occuring in the neighbourhood of a crack tip, the extrapolation of the mode I DSIF R(t) 
from the stress field in the vicinity of the crack tip is used here. 

EXAMPLES 

Isotropic centrally cracked plate 

To justify the GSDA proposed, a detailed investigation was made into the isotropic centrally 
cracked plates [Fig. l(a)]. Included are comparisons with previously published results. The plate 
is loaded dynamically in the y axial direction by a uniform tension a(t) with Heaviside-function 
time dependence [Fig. l(b)] and its boundary conditions are given corresponding to plane loading. 
The various dimensions of the plate and the relevant material properties are [1]: 

2H=40mm 
2L=20mm 
a = 2.4 mm 

Young’s modulus: 

E,, = El? = 2.00 x 
G,2 = G:, = 7.69 x 

Poisson’s ratio 

\‘I? = \‘?I = 0.30 

Density 

IO5 MPa 
IO4 MPa 

p = 5.00 x IO’ kg/m’. 

The normalized mode I DSIF IG(t)/crJ- f 7ca rom the present analysis is plotted against t in 
Fig. 5(a). The published results of Chen [ 11, Maue [S], and Murti and Valliappan [9] are in Fig. 5(b). 
Through comparison, it is plain that the authors agree with their forerunners, in particular perfectly 
with Murti’s solution, but there still exists a little difference at the initial time interval. So the 
conclusion is that the GSDA is sound and reliable. 

Anisotropic centrally cracked plate 

Take an anisotropic centrally cracked plate [Fig. l(a)] with various dimensions and its material 
properties listed below [8]: 

2H=40mm 
2L=20mm 
a = 2.4 mm 
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Young’s modulus: 

E,, = 1.83 x IO4 MPa, 
Ez2 = 5.48 x lo4 MPa 
Glz = GzI = 8.79 x lo3 MPa 

Poisson’s ratio: 

VI? = 0.083, ~21 = 0.25 
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Fig. 5. (a) Normalized mode I DSIF of isotropic centrally cracked plate from GSDA. (b) Published 
normalized mode I DSIF of isotropic centrally cracked plate. (c) Normalized mode I DSIF of anisotropic 

centrally cracked plate from GSDA. 
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Density: 

p = 1.90 x 10” kg/m’. 

The normalized mode I DSIF for orthogonal anisotropic bodies is, by the GSDA, shown in 
Fig. 5(c) and compared with that of an isotropic plate. One can easily find that the K,(t) curve 
descends more smoothly for orthogonal-anisotropic than for isotropic after it passes its peak value. 

CONCLUSIONS 

The generalized Shmuely difference algorithm is proposed to investigate dynamic fracture 
problems with orthogonal-anisotropic composite materials, such as glass fibre reinforced 
phenolplast. As a result of the extent of the difference of speeds of elastic waves along the x and 
y axes in orthogonal-anisotropic materials, a rectangular grid should be applied in place of the 
square one used by Shmuely. Then the relationships between the Ax and Ay in the rectangular grid 
and Ar are established for computational stability. 

The dynamic stress intensity factor for an isotropic centrally cracked plate is obtained by 
GSDA and compared with the published ones. The comparison has confirmed the effectiveness and 
reliability of GSDA. 

Applying GSDA, the DSIF for orthogonal-anisotropic centrally cracked plates has been, for 
the first time, obtained. By comparing the DSIF for orthogonal-anisotropic bodies with that 
for isotropic ones, one can easily find that the k(t) curve descends more smoothly for 
orthogonal-anisotropic than for isotropic after it passes its peak value. 

For difference boundary conditions, this paper presented the approach of dividing the 
boundary into three portions, i.e. “Side”, “ Angle” and “Angle-point”. The theoretical analysis and 
computation demonstrate that the approach is applicable. 
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