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Real-life structures often possess piecewise stiffness because of clearances or interference
between subassemblies. Such an aspect can alter a system’s fundamental free vibration
response and leads to complex mode interaction. The free vibration behaviour of an
L-shaped beam with a limit stop is analyzed by using the frequency response function and
the incremental harmonic balance method. The presence of multiple internal resonances,
which involve interactions among the first five modes and are extremely complex, have been
discovered by including higher harmonics in the analysis. The results show that mode
interaction may occur if the higher harmonics of a vibration mode are close to the natural
frequency of a higher mode. The conditions for the existence of internal resonance are
explored, and it is shown that a prerequisite is the presence of bifurcation points in the
form of intersecting backbone curves. A method to compute such intersections by using
only one harmonic in the free vibration solution is proposed.
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1. INTRODUCTION

A piecewise linear stiffness characteristic is inadvertently present in many structural
systems. Quite often this is caused by a small gap or space between components or
assemblies. For example, clearances between structural parts in mechanical equipment are
usually incorporated for the normal operation of the equipment. Under some
circumstances such a space is taken up by excessive movement or deflection due to extreme
loads and the resulting interference between subassemblies may induce piecewise linear
response. Another common cause of this behaviour is the bottoming out of a spring when
its travel has been completely taken up under abnormal conditions. In structural
applications gaps are sometimes introduced to suit the intended manner of support
under different load situations, for instance, in the use of snubber supports against
earthquake loads. There are also cases in which the chosen means of support leads to
inevitable construction clearances, such as the use of frame supports in lieu of welded
attachments for piping systems. The existence of piecewise linear stiffness means that the
vibration of the system under dynamic loading is basically non-linear, as demonstrated
by Wong et al. [1]. Lau and Zhang [2] have used the incremental harmonic balance
(IHB) method to compute the subharmonic and superharmonic responses of a
single-degree-of-freedom spring under periodic loading.

Murakami and Sato [3] analyzed and tested the forced vibration behaviour of an
L-shaped beam with a limit stop. They used a describing function approach which is
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basically a one harmonic approximation of the response, and found that the usual
hardening behaviour is present once the maximum deflection of the beam exceeds the
clearance of the stop. The free vibration behaviour of the beam is analyzed here
through the use of the IHB method, because this approach allows the solution to be
expressed as a Fourier series. The study of free vibration is of significance, as such a
response encompasses the intrinsic dynamic characteristics of the system and therefore is
fundamental to the understanding of the problem. The formulation of the equation of
motion is first carried out and the solution process by the IHB procedure is outlined.
The structure is then shown to possess intricate internal resonances which can only
be unearthed by including higher harmonics in the assumed solution series. The
complex characteristics of modal interaction are then explained, and the conditions
for the existence of internal resonance in piecewise linear systems are examined in some
detail.

2. FREE VIBRATION FORMULATION

The formulation for the free vibration analysis of a linear structure coupled to a
grounded piecewise linear spring is presented below. The spring is represented by its
internal force in the equation of motion, which is:

[M]{d2z/dt2}+[K]{z}+ {f}= {0}, (1)

where [M], and [K] are the mass and stiffness matrices of the L beam, and {d2z/dt2}, {z}
are the normalized nodal acceleration and displacement vectors, respectively, as these are
expressed as ratios to the stop clearance zc . {f} is the force vector containing the internal
force f of the spring at the degree of freedom (d.o.f.) 7 where the spring is connected to
the structure:

{f}=[0, 0, 0, 0, 0, 0, f, 0, 0, 0, 0]T. (2)

Here 11 d.o.f.s are used to model the structure. The constitutive relationship of the
piecewise linear stiffness element is

f(z)= rAlv2
1zc8k1 + k2(z−1),

k1z,
−k1 + k2(z+1),

zq 1
=z =R 1
zQ−19, (3)

with

k1 =K1/rAlv2
1 k2 =K2/rAlv2

1 z=D/zc .

Here D is the deflection at node 7, K1 is the stiffness for D less than or equal to zc and
K2 is the stiffness for larger deflection. For ease of discussion the dimensionless quantities
z, k1, k2 corresponding to the physical quantities D, K1, K2, respectively, are introduced.
These are normalized with respect to the following beam parameters: r the mass
density, A the cross-section area, l the total L-span length, and v1 the first linear natural
frequency.

Upon introducing the non-dimensional time t=vt, equation (1) can be rewritten as

v2[M]{z̈}+[K]{z}+ {f}= {0}, (4)

where · denotes differentiation with respect to t.
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3. IHB METHOD

For free vibration analysis, the displacement {z} can be expressed as a cosine series and
the acceleration {z̈} can be obtained by differentiation:

{z}=0a0

21+ s
NH

n=1

{an} cos nt, {z̈}= s
NH

n=1

− n2{an} cos nt (5, 6)

Here {a0/2}, {an} are the series coefficients of the displacement, and NH is the number
of harmonic terms whose appropriate value depends on the desired accuracy. Likewise,
the non-linear member force f can be expanded as

f=(u0/2)+ s
NH

n=1

un cos nt, (7)

where the coefficients of the non-linear spring force at d.o.f. 7, u0/2 and un are formally
given by

u0 =
1
2p g

2p

0

f(z) dt, un =
1
n g

2p

0

f(z) cos nt dt, n=1, 2, . . . , NH, (8)

The evaluations of the integral in equation (8) depend on whether or not =z = is greater than
1 and the explicit formulae have been worked out by Lau and Zhang [2]. With equations
(2) and (7), the vector {f} can be expressed as

{f}= {s0/2}+ s
NH

n=1

{sn} cos nt, (9)

where

{s0/2}=[0, 0, 0, 0, 0, 0, u0/2, 0, 0, 0, 0]T, {sn}=[0, 0, 0, 0, 0, 0, un , 0, 0, 0, 0]T, (10)

{s0/2} and {sn} being the harmonic components of the non-linear force vector. Substituting
equations (5), (6) and (9) into equation (4), and applying the Galerkin procedure, one can
obtain the following non-linear equations:

[K]{a0/2}+ {s0/2}= {0}, [KD (nv)]{an}+ {sn}= {0}, n=1, 2, . . . , NH. (11)

Here [KD (nv)] is the dynamic stiffness matrix for the harmonic term n:

[KD (nv)]= [K]− n2v2[M], n=1, 2, . . . , NH. (12)

The dynamic flexibility matrix [H(nv)] (receptance or transfer function matrix) for the
harmonic term n is the inverse of [KD (nv)]; i.e.,

[H(nv)]= [KD (nv)]−1, n=1, 2, . . . , NH. (13)

Also, it can be seen clearly that

[H(0)]= [K]−1, (14)

The explicit formulae for [H(nv)] can be obtained by using the solution of the eigenvalue
problem [K−v2M]F= {0}, where F are the eigenvectors of the L beam.

Premultiplying equation (11) by the dynamic flexibility matrix gives

{a0/2}+[H(0)]{s0/2}= {0}, {an}+[H(nv)]{sn}= {0}, n=1, 2, . . . , NH, (15)
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Upon substituting equation (10) into equation (15), ak0/2 and akn , the displacement
harmonics 0 and n for the d.o.f. k can be written as

(ak0/2)+Hk7(0)(u0/2)=0, k=1, 2, . . . , 11,

and

akn +Hk7(nv)un =0, n=1, 2, . . . , NH. (16)

Equations (16) are the harmonic balance equations for all the degrees of freedom. Since
u0 and un (n=1, 2, . . . , NH) are functions only of the displacements a70 and a7n , one can
conclude that only the equations relating to a70 and a7n need to be solved. The other
coefficients can be found by back substitution. Upon simplifying notations by using an to
denote a7n , introducing the vectors of length (NH+1),

{c}=[a0/2, a1, . . . , aNH ]T, {r}=[u0/2, u1, . . . , uNH ]T, (17, 18)

and a (NH+1)× (NH+1) matrix

H77(0) 0 . . . 0K L
G G0 H77(v) . . . 0
G GG G[Y]= .

.

.
.
.
.

.
.
.

.

.

.
, (19)

G G
0 0 . . . H77(NHv)k l

equation (16) can be expressed in matrix form as

{c}+[Y]{r}= {0}, (20)

with the residual vector {o} defined as

{o}= {c}+[Y]{r}, (21)

for equilibrium one has

{o}= {0}. (22)

Equation (22) is a set of non-linear algebraic equations. The Newton–raphson procedure
can be used to solve for the unknowns which are the harmonic coefficients of the
displacement at the elbow of the L beam. In this process the new values {c}, v are obtained
by adding the increments {Dc}, Dv to the current values {c0}, v0. Hence

{c}= {c0}+ {Dc}, v=v0 +Dv. (23)

Expanding equation (22) as a one-term Taylor series and noting that {e} vanishes for a
correct solution, one finds

{o0}+ 1{o}/1{c}=0{Dc}+ 1{o}/1v =0 Dv= {0}, (24)

where

1{o}/1{c}= −[I]− [Y] 1{r}/1{c}, 1{o}/1v=(1[Y]/1v){r}+[Y] 1{r}/1v, (25, 26)

[I] being the identity matrix. Let

{h}=[1
2 , cos t, . . . , cos NHt]T. (27)



-     ,  1027

Then

{r}=
1
p g

2p

0

{h)f(z) dt, z= {h}T{c}. (28, 29)

The derivatives with respect to v and {c} are

1{r}
1v

=
1
p g

2p

0

{h} 1f(z)
1v

dt= {0}, (30)

1{r}
1{c}=

1
p g

2p

0

{h} 1f(z)
1z

1z

1{c} dt=
1
p g

2p

0

{h} 1f(z)
1z

{h}T dt, (31)

and 1[Y]/1v can be obtained from equations (12)–(14). Then the solution of equation (24)
can be found by the following iterative steps:

− 1{o}/1{c}=i {Dci+1}= {o0}=i + 1{o}/1v =i Dvi+1, {c}i+1 = {c}i + {Dc}i+1,

vi+1 =vi +Dvi+1. (32, 33a, b)

It should be noted that one element of {ci} or v should be fixed in performing the above
iterations.

4. RESULTS AND DISCUSSION

4.1. M I

The L beam shown in Figure 1 comprising spans l1 and l2 lies in the XY plane with d.o.f.
displacement z, rotation about the x-axis ux , and rotation about the y-axis uy . The beam’s
ends are completely fixed and there is a limit stop at the junction of the two spans l1
and l2 which inhibits movement once the deflection D there exceeds the clearance zc .
The stiffness of the stop is taken to be linear so the beam-stop structure exhibits piecewise
linear stiffness characteristics. The beam properties are as follows: Young’s modulus
E=216 000 MPa, Poisson’s ratio m=0·3, density r=8880 kg/m3, area A=50 mm2,
moment of inertia I=104·167 mm4, torsion inertia J=416·607 mm4, gap zc =1 mm,

Figure 1. L beam with a limit stop.
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Figure 2. Linear mode shapes of L beam, ——, 1st mode; - - - - - - , 2nd mode; – · – · –, 3rd mode; – · · – · · –,
4th mode.

spans l1 =0·6 m and l2 =0·4 m. The beam is modelled by using 11 finite elements and its
first four linear vibration mode shapes are shown in Figure 2. The first five actual natural
(vi ) and normalized (Vi =vi /v1) frequencies are listed in Table 1.

With k1 =0.0025 and k2 =5 to model a nearly rigid stop, 10 modes to calculate the
dynamic stiffness matrix, and five odd harmonic terms for the IHB solution, the free
vibration response of the structure has been obtained and results are shown in Figure 3.
The diagram is a plot of the normalized physical amplitudes of the ith harmonic zi at
node 7 (L junction) against the normalized frequency V=v/v1, where v is the excitation
frequency. Note that zn is actually vibrating at a frequency of nv; the shift of the abscissa
by 1/n is logical because all the harmonics are vibrating simultaneously. Clearly it can be
seen that the response is complicated with internal resonance occurring at V of about
1·02, 1·23 and 1·27 (points B, C, D respectively) which a one-harmonic solution could not
capture.

Figure 4 is a clearer view of the region around V=1 in which z5, z7 and z9 are not shown
as these values are negligible in this area. For z1 less than 1 the structure behaves linearly
and the higher harmonics are zero. For z1 equal to 1 or larger the hard spring is engaged
and z3 becomes finite but small. As V increases from 1 both z1 and z3 gradually increases
with the former being dominant and the two having opposite phases; for instance, at
V=1·022, z1 =1·163 and z3 1−0·2. The non-linear deflected shapes for the first and third
harmonics closely resemble the first and second linear modes because V and 3V are
close to the first and second normalized linear frequencies, respectively. The resultant
displacement profile is similar to that of the first linear mode as zi is significantly larger
than z3 in this frequency range. The vibration behaviour is more complicated in the range
of V from 1·023 to 1·027. As V moves past the first natural frequency (V=1), z1 and z3

would have followed smooth extensions from points A and A', respectively, in the
absence of internal resonance. However, as 3V is close to V2 the system’s propensity for
vibrating in the second mode is sufficient to cause the z1 and z3 curves to reverse to points

T 1

Natural frequencies of L beam

Mode i vi (rad/s) Vi

1 138·1 1·00
2 423·9 3·07
3 727·5 6·16
4 1223·0 8·92
5 2167·0 15·68
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Figure 3. Backbone curves for V=1·00–1·60, —— z1; - - - - - - z3; – · – · – z5; – · · – · · – z7; · · · · · · z9.

B and B' (see Figure 4), respectively, at the interaction frequency V1 1. The structure is
now vibrating in the second mode as z1 =0 and z3 =1. Furthermore, because of the
pattern traced out by these components, the displacement profile is no longer unique
and up to three different non-linear modes are possible for some V. That the point B' on
the z3 curve is precisely at V2/3 is inherent for piecewise linear systems, in contrast with
continuously non-linear ones for which this point would be offset from its corresponding
linear frequency. The seemingly complicated trajectories can be seen in a much more
straightforward light if it is recognized that points B are pivotal in this response.

As V further increases past 1·023 and 3V begins to move away from V2, z1 becomes
progressively larger and z3 correspondingly smaller, with the total magnitude z1 + z3 always

Figure 4. Amplitudes z1 and z3 for V=1·01–1·04. —— z1, - - - - - - z3.
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Figure 5. Phase diagrams for points A and B. —— A; - - - - - - B.

equal to approximately −1, signifying that the stop is engaged throughout this frequency
range. The system’s phase diagrams at points A and B are shown in Figure 5 and it
can be seen that at point A the stop is impacted four times per period T=2p/V and at
point B the hit frequency is two times per period T=2p/3V.

At V=1·232 a second internal resonance takes place; this time the interaction is between
the first and fifth harmonic. However, the solution curves in this region are complicated
by the existence of another resonance nearby at V=1·274, where the first and the seventh
harmonics participate in an exchange of energy. From Figure 6 it can be seen that as V

approaches 1·232, z1 continues its typical hardening trend of increasing at a moderate pace,

Figure 6. Amplitudes z1, z5, z7 for V=1·20–1·34. —— z1; - - - - - - z5; – · – · – z7.
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and both z5 and z7 begin to increase. The amplitudes of z3 and z9 are negligible and are
not shown. z3 decreases in this region because V is moving away from V2 and z5 increases
because V is close to V3/5. The increase in z7 is small but noticeable and is attributed to
V’s proximity to V4/7. The displacement profiles for z1, z3, z5 and z7 are similar to those
of the first, second, third and fourth linear modes, respectively. As V continues to increase
beyond 1·232, z1 reverses direction and drops to 0 at point C where V is equal to 1·232,
and this pattern is also repeated by z3 and z7. z5, on the contrary, ascends steeply to a
magnitude of 1 as the beam is now vibrating at the third normalized linear frequency.
It is noticed that in the course of its pullback z1 crosses the V axis and changes phases
at V=1·232, unlike z5 and z7 which form completely reversed loops during this interaction.
Finally there is a third internal resonance at V=1·274, a frequency equal to 1/7 of the
fourth normalized linear frequency. Accordingly the interaction is then between the first
and seventh harmonic, and the beam vibrates principally in its fourth natural mode at
point D of Figure 6.

The cases illustrated so far are concerned principally with the interaction between the
first linear mode and other higher modes. However, there are also internal resonances
involving the second mode and other higher modes, for instance as V5 =5·111V2, the
fifth harmonic tends to increase substantially in amplitude when V=3·136, because
then 5V=15·680. In this particular case the interaction is between the second and the
fifth linear mode, as V is close to V2 and 5V equals V5, the results are shown in
Figure 7.

4.2. T    

That a system’s linear eigenvalues being integer multiples of each other is not sufficient
to give rise to internal resonance is well known (see, for instance, reference [4]). It is the
presence of bifurcation points in the form of intersections of the backbone curves for the
different modes that permit modal interaction. For systems with piecewise linear stiffness
such curves can readily be computed by using the present algorithm.

Consider a linear structure idealized as a two-mode model with normalized frequencies
V1 and V2 for which the ratio V2/V1 is close to an integer n. The structure is coupled at

Figure 7. Amplitudes z1, z5 for V=3·134–3·138. ---- z1; - - - - - - z5.
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Figure 8. Schematic backbone curves for two-mode structure with a piecewise linear spring. ——, 1st backbone;
- - - - - - , 2nd backbone.

one point to a piecewise linear spring of zero stiffness for normalized displacement z
up to 1 and of stiffness k for larger displacement. Then for a deflection of less than 1 the
structure behaves linearly and the backbone curves are vertical lines at V1 and V2 on the
frequency spectrum. With increasing deflection the spring is engaged and the backbone
curves bend to the right, this being indicative of a stiffened structure. As the displacement
becomes very large relative to 1, the structure displays a nearly linear response, because
at this stage the influence of the gap is insignificant. Consequently the backbone curves
for the first and second modes would approach asymptotically by V� 1 and V� 2, respectively,
which are the normalized linear frequencies for the combined system of the structure and
a spring of stiffness k. Figure 8 illustrates this behaviour.

For a spring deflection larger than 1, the backbone curves contain higher harmonics of
iu, where i takes on integer values starting from 2. For piecewise linear systems with
symmetric force–displacement relationships higher odd harmonics would be present, and
for unsymmetric systems both higher even and odd harmonics would occur. Consider that
the two-mode structure is vibrating in its first mode near its first natural frequency V1

with the spring deflection greater than 1; then the nth harmonic would be oscillating near
the second frequency V2. For mode interaction to take place the vibrating shape of the
system would have to shift to the second mode, meaning that the structure would bifurcate
and branch out onto an alternative equilibrium path. It seems that for this to be possible
the backbone curve for the first natural frequency must intersect the second backbone
curve plotted with its frequency value divided by n, as this intersection is effectively a
bifurcation point.

Whether or not the two curves intersect depends on the value of the stiffness k and also
on the relative participation of the spring in the two modes. As seen in Figure 8, the spring
shifts both backbone curves, and the extent of the movement is a function of the aforesaid
factors. If the spring is located at a node where the displacement is principally accounted
for by the first mode and negligibly by the second mode, then the first backbone curve
is hardened substantially more than the second. Furthermore if k is sufficiently high then
the first backbone curve may be flattened enough to cut across the second curve as pictured
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Figure 9. Schematic intersection of backbone curves for a two-mode structure with a piecewise linear spring.
——, 1st backbone; - - - - - - , 2nd backbone (V divided by n).

in Figure 9. It is seen that the frequency V�1 is higher than V�2/n and that the backbone
curves intersect to yield a bifurcation point where internal resonance can take place.
The L beam can be used to demonstrate this phenomenon. With 10 modes, k2 values of
0·01576 and 0·01802, the backbone curves have been computed with one harmonic to
check for intersections, and results are plotted in Figure 10. The elbow undergoes high
displacement in mode 1 and is near an inflection point in mode 2, and so the first backbone
curve is moved considerably to the right, whereas the second curve basically remains at

Figure 10. Intersection of backbone curves for L beam for different spring stiffness k2 (NH=1). —— 1st
backbone, – · – · – 2nd backbone (V divided by 3) for k2 =0·01576; - - - - - - 1st backbone, – · · – · · – 2nd
backbone (V divided by 3) for k2 =0·01802.
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Figure 11. Amplitudes z1, z3 for L beam with different spring stiffness k2 (NH=2) —— z1 for k2=0·01576;
- - - - - - z1, – · · – · · – z3 for k2 =0·01802.

the same location. The amount of stiffening induced by k2 of 0·01576 is not sufficient to
push V�1 beyond V�2/n; however, this is achieved for k2 of 0·01802. For the latter case the
two curves meet at the frequency of about 1·026 and displacement z1 of 9·7, the bifurcation
point. The actual response computed with two harmonics necessary for picking up mode
interactions behaviour confirmed the prediction and the result is shown in Figure 11,
where z3 for k2 =0·01576 is almost 0 and is not shown.

5. CONCLUSIONS

The versatility of the IHB method has been demonstrated once again in this application
to analyze the internal resonance behaviour of a L beam. The elaborate nature of mode
interaction is seen through the response of the individual harmonics, which show how
the amplitude of one mode is diminished in favour of another as a result of the presence
of higher harmonic components. It has been shown that a rarely seen high number
of modes, five, participate in multiple internal resonances. This characteristic is
preconditioned by the existence of frequency ratios close to integer values, and by the
sufficiently high stiffness and appropriate location of the limit stop so as to cause the
backbone curves of the frequencies concerned to intersect at a point. On the later aspect
it is further revealed that if the stiffness of the limit stop is too soft no internal resonance
could occur, and hence there is a critical stiffness above which mode interactions could
take place.

It is also evident that the stop’s stiffness may be selected to affect resonance between
a linear natural frequency and the desired number of higher frequencies. Conversely,
internal resonance may be avoided or eliminated by softening or changing the placement
of the non-linear elements present. This approach can be a significant addition to the
arsenal of non-linear vibration control techniques and should continued to be developed.
A logical next step is to expound the interaction between the non-linear stiffness
characteristic and the internal resonance under the action of periodic loading, a topic
which is covered in part II of this paper [5].
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