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A low-dimensional Galerkin method, initiated by Noack and Eckelmann@Physica D56, 151
~1992!#, for the prediction of the flow field around a stationary two-dimensional circular cylinder in
a uniform stream at low Reynolds number is generalized to the case of a rotating and translating
cylinder. The Hopf bifurcation describing the transition from steady to time-periodic solution is
investigated. A curve indicating the transitional boundary is given in the two-dimensional parameter
plane of Reynolds number Re and rotating parametera. Our results show that rotation may delay
the onset of vortex street and decrease the vortex-shedding frequency. ©1996 American Institute
of Physics.@S1070-6631~96!00107-9#

The problem of the flow around a uniformly rotating and
translating circular cylinder has been investigated by several
researchers due to its engineering importance and academic
interest. Badret al.1 numerically simulated the steady and
unsteady flow past a rotating circular cylinder at low Rey-
nolds numbers Re with rotating parametera, in which Re is
based on the cylinder radiusR and the incoming velocityU`

anda5Rv/U` , wherev represents the angular velocity of
the rotating cylinder. Ingham,2 Ingham and Tang,3 D’Alessio
and Dennis4 considered numerical solutions of the steady-
state N–S equation at subcritical Re. The investigations of
the unsteady flow for supercritical Reynolds numbers are
relatively fewer than the case of the steady-state flow. Badr
et al.5 numerically studied the time-dependent flow past an
impulsively rotating and translating circular cylinder started
from rest for Re.200, while Coutanceau and Menard6 gave
corresponding experimental results. Chang and Chen7 inves-
tigated the same problem at some higher Re for 0<a,2, and
suggested there are three modes of vortex shedding existing
in wakes depending on Re anda.

Meanwhile, the research on the bifurcation structure in
an open-flow at low Reynolds numbers is of great interest.
Provansalet al.,8 Sreenivasanet al.,9 and Schummet al.10

experimentally studied the onset of 2-D vortex shedding in
the wakes behind a stationary circular cylinder and showed
that the transition from the steady to the periodic flow is
characterized by a Hopf bifurcation and can be described by
the Stuart–Landau equation. Jackson,11 Zebib12 and Noack
et al.13,14 numerically investigated the onset of vortex shed-
ding in flow past a stationary circular cylinder by applying
the linear stability analysis to an autonomous dynamical sys-
tem.

Following Noack’s work,13 a low-dimensional Galerkin
method ~LDGM! is generalized to the case of a 2-D uni-
formly rotating and translating circular cylinder. Although
the LDGM cannot compete with grid-based computational
techniques for high accurate simulations of the velocity
fields or the resolution of far-wake properties, it is confirmed
to be an ideal tool for investigations on global stability and
chaos-theoretical analysis.13,14 In the present Galerkin
method, the streamfunction is approximated by a finite ex-

FIG. 1. Transitional curve of Hopf bifurcation in wakes.

FIG. 2. Eigenvalue spectrum fora50.2. Before the occurrence of the Hopf
bifurcation ~Re540! all eigenvaluesl5p~s1iSt! have negative amplifica-
tion ratess. After the Hopf bifurcation~Re550!, a complex-conjugate pair
of eigenvalues from the spectrum has crossed the imaginary axis.

BRIEF COMMUNICATIONS
The purpose of this Brief Communications section is to present important research results of more limited scope than regular
articles appearing in Physics of Fluids. Submission of material of a peripheral or cursory nature is strongly discouraged. Brief
Communications cannot exceed three printed pages in length, including space allowed for title, figures, tables, references, and an
abstract limited to about 100 words.

1972 Phys. Fluids 8 (7), July 1996 1070-6631/96/8(7)/1972/3/$10.00 © 1996 American Institute of Physics

Downloaded¬06¬Nov¬2009¬to¬159.226.231.78.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/pof/copyright.jsp



pansion~1!, which is written as a sum of the basic mode and
perturbation modes

c5c0~r ,u!1(
i , j

ai , j~ t !Ri~r !U j~u!

i50,...,K; j52L,...,L, ~1!

where the basic mode is

c0~r ,u!5S r2
1

r D ~12e2@~r21!/dbm#!sin u1a ln r ~2!

which satisfies the no-slip condition on the body surface and
approaches to a potential solution at the far field, withdbm
5 4/ARe.13 The radical modesRi(r ) and azimuthal modes
U j (u) are chosen so that the perturbation modes satisfy all
the homogeneous boundary conditions. For a detailed de-
scriptions of the LDGM, the reader is referred to Ref. 13.
The evolution equations for the Fourier coefficientsai j in ~1!
are obtained, which are expressed as a set of nonlinear ordi-
nary differential equations~ODEs!

d

dt
ai j5ci j1(

kl
l i j ,klakl1 (

klmn
qi j ,klmnaklamn . ~3!

Using the fourth-order Runge–Kutta algorithm for these
ODEs withK56 andL54, flows around rotating and trans-
lating circular cylinder were computed. In the meantime, the
Newton–Raphson iteration was utilized to~3! in order to
obtain the equilibrium solutions of the ODEs~3! for both
subcritical and supercritical Reynolds numbers.

As we know, the equilibrium of the ODEs correspond to
steady solutions~stable or unstable!. The linearized ODEs in
the vicinity of the equilibriumai j

(s) are given as the follow-
ing:

dj i j
dt

5 (
k50,...,K
l52L,...,L

F l i j ,kl1 (
m50,...,K
n52L,...,L

~qi j ,klmn

1qi j ,mnkl!amn
~s! Gj i j ~4!

in which j i j5ai j2ai j
(s) is the perturbation of the steady so-

lutions. The stability characteristics of the ODEs are deter-
mined by the eigenvalues of the Jacobian matrix in the
neighborhood ofai j

(s). The eigenvaluesl i j and eigenvectors
ai j
(p) of this matrix are computed by the QR method. It is well
known that the occurrence of a pair of eigenvalues with posi-
tive real part implies the global instability of steady solutions
and the onset of periodic solutions. Thea-dependent critical
Reynolds numbers Recr~a! are defined as those Re with an
isolated pair of eigenvalues crossing the imaginary axis, and
the eigenvectorsai j

(p) associated with Recr~a! represent the
critical perturbations.

The validity of the code for the present method was
checked first for the case of the flow around a stationary

FIG. 3. The critical perturbations for half period~a! the streamlines for the real part of the critical perturbationsai j
(p) at Re546.8 fora50.5 ~the negative

streamlines are shown dashed!; ~b! the corresponding streamlines when the perturbations are superimposed on the steady flow.

FIG. 4. Strouhal numbers St vsa at Re560.

TABLE I. The critical Reynolds numbers vsa with larger numbers ofK
andL.

a K56, L54 K58, L56 K512, L510

0.0 45.6 55.4 45.8
0.5 46.7 55.5 45.9
0.8 48.5 56.2 46.3
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circular cylinder, namelya50. The flow pattern shows that a
pair of vortices emerges at the rear of the cylinder for Re'5.
Furthermore, linear stability analysis of the steady solution
of the ODEs predicts that the first Hopf bifurcation occurs at
Recr~0!545.6. These results are in good agreement with pre-
vious authors’ work.13,11,12

Now, the attention is focused on the bifurcation charac-
teristics of the wakes behind a rotating and translating circu-
lar cylinder with two parameters Re anda. The stability
analyses of wakes indicate that steady flows are stable at low
Re @Re,Recr~0!# for all a and steady flows become unstable
when Re exceeds Recr~a! for any fixeda. The transitional
curve describing the Hopf bifurcation from steady to peri-
odic solutions in wakes can be obtained by computing the
critical Reynolds numbers for differenta ~see Fig. 1!. It can
be seen that Recr~a! increases witha, from Recr~0!545.6 to
Recr~1.0!550.0. This implies that the vortex shedding from
the cylinder surface may be delayed by the rotating control.
A typical example of computed eigenvalue spectra at Re
540, 45.8, and 50 fora50.2 is shown in Fig. 2. The stream-
functions of the critical perturbationsai j

(p) are displayed in
Fig. 3~a! at Re slightly greater than Recr~a!. When the critical
velocity fields are superimposed on steady flows, the time
periodic vortex streets are obtained and shown in Fig. 3~b!.
Larger numbers of Galerkin modes were used to test the
robustness of Hopf bifurcations of ODEs~3! for some single
value ofa, the results withK58 andL56, and withK512
andL510 are shown in Table I.

Another effect of rotation is a slight decrease of vortex
shedding frequency, contradicting Badr’s assumption that the
Strouhal number is independent of the rotation parametera.1

Figure 4 represents the variation of Strouhal number of the
periodic flow for 0,a,1 at Re560. Figure 5 illustrates the
steady streamlines for Re548 anda50.8 ~just above the
transitional curve in Fig. 1!. Figure 6 gives streamlines of the

time-periodic flow for Re560 anda50.2, the corresponding
phase portrait and power spectral density are given in Fig. 7.

Unfortunately, we have not found any available results,
experimental or numerical, for the Hopf bifurcation study of
the flow over a rotating and translating circular cylinder
which can be compared with the present ones. Our next goal
is to examine whether the feature of transition region can be
described by the Stuart–Landau equation and to investigate
the effects on the 3-D characteristics in wakes behind a 2-D
circular cylinder with the rotating control.
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FIG. 5. Steady streamlines fora50.8 at Re548.

FIG. 6. Instantaneous streamlines within one periodT at Re560 fora50.2.

FIG. 7. The velocity portrait~left! and power spectral density vs frequency
~right! at Re560 for a50.2.
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