
ACTA MECHANICA SINICA (English Series), Vol.12, No.2, May 1996 
The Chinese Society of Theoretical and Applied Mechanics 
Chinese Journal of Mechanics Press, Beijing, China 
Allerton Press, INC., New York, U.S.A. 

ISSN 0567-7718 

S I D E W A L L  F L O W  S T A B I L I T Y  I N  T H E  M H D  

C H A N N E L  F L O W S *  

Xu Fu (~ ~) 
(Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China) 

A B S T R A C T :  The velocity distribution between two sidewalls is M-shaped for 

the MHD channel flows with rectangular cross section-and thin conducting walls 

in a strong transverse magnetic field. Assume that the dimensionless numbers 

R~ ~< 1, M, N ~ 1, and a* <~ 1 and that the distance between two perpendic- 

ular walls is very long in comparison with the distance between two sidewalls. First, 

the equation for steady flow is established, and the solution of M-shaped velocity 

distribution is given. Then, an equation for stability of small disturbances is derived 

based on the velocity distribution obtained. Finally, it is proved that theStabil- 
ity equation for sidewall flow can be transformed into the famous Orr-Sommerfeld 

equation, in addition, the following theorems are also proved, namely, the analogy 
theorem, the generalized Rayleigh's theorem, the generalized Fjertoft 's theorem arid 

the generalized Joseph's theorems. 

K E Y  W O R D S :  MHD channel flow, sidewall flow, flow stability 

The problem of sidewall flow stability of MHD channel flows with rectangular cross 

section and thin conducting walls under a strong magnetic field is discussed in this paper.  

The Cartesian coordinates oxyz are adopted. The x direction is the flow direction, and the y 

direction is the direction of magnetic field. The  walls at y = + a  are called the perpendicular 

walls, while the walls at z -- •  are called the sidewalls or parallel walls. The effect of 

viscosity is mainly limited within the boundary  layers. The thickness of perpendicular-wall 

boundary:layer  is of the order of a/M, while the th ickness  of sidewall boundary-layer  or 

side layer is of the order of b/v/-M, where M is the Har tmann  number[ !~3]. The results 

obtained from both  theory and experiments show tha t  the velocity distribution u(y=const, 
z) is M-shaped, namely, the wall jets appear  in the side layers, and under certain conditions 

the flow rate within the two side layers may even take a certain port ion of the to ta l  flow 

rate, for example, one fourth. The instability of sidewall flow has already been observed in 

experiments,  and the critical Reynolds number  Rcr has also been measured. [3] 

Assume a/b >> 1, and the problem of sidewall flow stability is solved approximately in 

the oxz plane. In fluid mechanics, the critical Reynolds number  Rer is comparat ively small 

Received 24 August 1995, revised 2 February 1996 
* The project supported by the National Natural Science Foundation of China 



98 ACTA MECHANICA SINICA (English Series) 1996 

for the velocity profile with inflection point, such as in some jets. However, in the sidewall 

flow, on the one hand the flow velocity profile has inflection points, and on the other hand the 

strong magnetic field has strong stabilizing effect on the flow, therefore, its critical Reynolds 

number may be comparatively large. The experimental data  give [3]: 2650 < Rcr < 5100 for 

2700 < M < 5400. 

1 M A T H E M A T I C A L  F O R M U L A T I O N  

Divide the space into three regions: the one occupied by the conducting fluid inside 

the channel, the one occupied by the channel walls and the one occupied by the rest of 

dielectric medium outside the walls, In the region of conducting fluid, the governing equa- 

tions are the MHD equations for the incompressible, viscous and conducting fluid flow in an 

uniform, applied magnetic field. In the region of channel walls, the governing equations are 

the equations of electrodynamics for conducting medium without the displacement current. 

Similarly, in the region of the rest of dielectric medium the equations of static magnetic 

field are the governing ones. Besides, at the two interfaces among the three regions, there 

are some boundary conditions [1,2'4] . The problem has already been solved theoretically [1'21 . 

Assume that: 

(1) All parameters of physical properties are constants, for example p, ~1, r,(=- ~I/P), #, 

e, a of conducting fluid, etc.; 

(2) The uniform, strong, transverse magnetic field is B0 -- (0, Byo, 0); 

(3) The magnetic Reynolds number of the conducting fluid Rm = #o'Uob << 1; 

(4) The Hartmann number M = Byob. ~/f~ >> 1, and the interaction parameter 

N ~176 
-- - - > > i ;  

pv0 
(5) The conductance ratio a* - awt~ - ---~ << 1 for thin conducting walls, where a~, tw are 

the electric conductivity and thickness of conducting walls respectively. Moreover, suppose 

that 

0* = O ( M  -i /2)  or M -i /2  << a* << 1 

Firstly, the equation of steady flow will be established and its solution will be given. 

Under the assumption of Rm<<l, the induced magnetic field can be neglected. The equation 

of x direction momentum is 

0/3 d2~ Byo~] 0 
Ox + 71~5z2 - aSyo [/~(z) + = 

with the boundary conditions 

~ = 0  at z = i b  

The supplementary assumption is 
0/3 

(6) Oxx is a constant and the electric field E(z) is known. 

As mentioned above, the problem of channel flow with rectangular cross section and 

thin conducting walls in an uniform, strong, transverse magnetic field has already been 
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solved, for example, in Ref.[1,2]. By the words "the electric field/~(z) is known", we mean 

that E(z)  is given as an approximation to the solution E(y,  z) obtained in Ref.[1,2]. Sub- 

st i tut ing/~(z) into the above equation, the unknown function fi(z) can then be solved, and 

based on the solved basic flow fi(z), the stability equation of small disturbances can then 

be established. Here, the velocity distribution ~(z) is also an approximation to the solu- 

tion fi(y, z) given in Ref.[1,2]. Besides, the velocity distribution fi(z) is M-shaped. Let us 

introduce the following dimensionless quantities 

u = - -  ~ = -  t =  
U0 b b 

E =  P,/(UoByo) p =  . . . . .  l o p  b = Uob 
p o x  U~ R u 

where U0 is the characteristic magnitude of velocity. 

boundary conditions are 

Then, the basic equation and the 

d2u  
dr ~ - M 2 u  + P R  - M2E(r  = 0 

u = 0 at ~ = i l  

The solution is 
P [1 chM~] [u*(~) chM~] 

~ J  + u*(1)Lu*(1) c h U  J 

where the symmetric function u* (r is 

Now, let us derive the stability equation of small disturbances. Suppose 

. = (u(r + ~(~, r t), 0, ~(~,  r 0 )  

where ~ = x/b ,  U ( ( )  is the M-shaped velocity distribution mentioned above, and fi, z~ are 

the disturbed velocities in the x and z direction respectively. Introducing r ~, t) and r  

and supposing that 
0r 0r f i _ - - - -  ~ = - - -  
0r 0~ 

r r t) = r162 exp[ia(~ - c t ) ]  

then the linearlized disturbed equation for @(~) is 

L1r  + (c + i N ) n 2 r  = 0 (M) 
Cg 

where 
] 

L1 = i--~R (D 2 - a2) 2 - U(~)(D 2 - a 2) + D2U(~) 

d 
L 2 = D  2 - a  2 and D = - -  

de 
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The boundary conditions are 

1996 

r - -  D r  --  0 at  ~ - -  =t=l (M)  

Note that, as N--0, the equation reduces to the well-known Orr-Sommerfeld equation [5]. 

2 S E V E R A L  T H E O R E M S  ON T H E  S IDEWALL F L O W  S T A B I L I T Y  

Several theorems will be proved in the following in order to discuss the problem of 

sidewall flow stability qualitatively. 

Suppose that the fluid flow is subjected to certain fictitious, unchanged, applied force 

field, and its velocity distribution is U(() of M-shape. Then, the problem of flow stability 

is reduced to the eigenvalue problem of the Orr-Sommerfeld equation 

L1r q- 6L2r -- 0 
(F) 

= De  = 0 at ~ = +1 

Analogy t h e o r e m  For the problem (M) of sidewall flow stability with velocity 

distribution U((), there corresponds to a problem (F) of parallel flow stability in fluid 

mechanics with the same velocity distribution U((). Once the problem (F) is solved, and 

the eigenvalues and eigenfunctions are found to be 

e -~ f (a ,  R) ~(~) 

then the eigenvalues and eigenfunctions for the problem (M) are 

.N 
c = f ( a ,R )  - x-- r = ~(() 

Separating the real part from the imaginary part of eigenvalues, the relations of eigen- 

values between the two flows are then obtained 

C r - - ~  
N 

c~ -- ~ i -  - -  or w---- ~ -  N cg 

where w = ac~,~ -- agi are the instability growth rates. 

By this theorem, the stability equation for sidewall flow can be transformed into the 

Orr-Sommerfeld equation. 

Now, let us discuss the case of inviscid flow (R -+ oo) of sidewall flow stability. The 

problem (M) is simplified to the problem (MI): 

(MI) 
r  at ( = q - 1  

Let ~ = c + i N/a, then the equation is the Rayleigh equation[ s] . 
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G e n e r a l i z e d  Rayleigh~s t h e o r e m  One necessary condition for the instability 

of inviscid sidewall flow is that  the velocity profile must have an inflection point r i.e., 

v"(r = 0, - 1  < ~0 < 1. 
P r o o f  Let c = c~ q: ici, and suppose ci > 0, then the equat ionof  problem (MI) has 

no singularity. Multiplying the equation by the function r the conjugate function of 

r and integrating ~ from - 1  to +1, we have 

f_{-1 fq-1 Utt(,) 
(lr 2 + ~21,~l~)dr + 1 J--X U -  (c+iN/a) I~bl2dr = 0  

The imaginary part of the equality is 

1 I U - ( c + i Y / c O I  2 1r162 

From this equality, it is inferred that  U"(ff) must change its sign at least once in the interval 

( -1 ,  +1), i.e., there is at least one inflection point ~0, satisfying U"(r = 0 , - 1  < if0 < +1. 

Since the  velocity profile of M-shape includes at least two inflection points, the sidewall 

flow already satisfies the necessary condition for instability by this theorem. 

G e n e r a l i z e d  Fjq~rtoft 's  t h e o r e m  One necessary condition for the instability of 

inviscid sidewall flow is that  at certain point ~ within the flow field, the velocity profile 

satisfies the inequality U"(ff)[U(r - U0] < 0, where U0 = U((0) and (0 satisfies U"(r -- 0, 

- 1  < ~0 < +1. 

P r o o f  The real part of the integral equality in the above theorem is 

/_+1 U".(U - c,.) f_~-a 1 [U (c+iN/a)p 1r162 (1r + ~21r162 
" 1 

Adding the following equality to the above equation, 

we have 

f_l 
"l UH(( )  

(c,~-Uo). 1 [U-(c+iN/c~)[  2[@12dr 

f_ ~l u,'(r162 - Uo] ; 1  
1 ~ ~ 7 ~ v 7 @  1r162 = - 1 (1r + a21r162 < 0 

Therefore, at certain point ~ within the flow field, we have 

u"(r  [u(r - V0l < 0 

The proof is then completed. If U(r has only one inflection point ~0, a n d  U(() is a 

monotonic function, then one necessary condition for instability is U"(()[U(() - U0] < 0 for 

certain ~, - 1  < ~ < +1, and the sign of equality holds only at the point ~ = ~0- 

Now, let us return to the problem of viscous flow. The Joseph's theorems will then be 

extended to the case of sidewall flow stability, and the estimation on the eigenvalues c~ and 

c~ will be given. Notice that,  the Joseph's theorems are only proved for the case of small 
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Reynolds number R. Therefore, we suppose beforehand that  the Reynolds number R and 

the interaction parameter  N are small in the extension. 

J o s e p h ' s  f i rs t  t h e o r e m  Is~7] Suppose e(a, R) is an eigenvalue for the eigenvalue 

problem of the Orr-Sommerfetd equation (F), then the following inequality holds 

ei < q - 1 [Ir2(r 2 + oz 2 )  

and there is no amplified disturbance (ci > 0) if the following inequality holds 

aRq < f (o  0 = max [fl(o~), f2(o~)] 

where 
q = max IV'(OI - 1 < r < +1 

fl(o~) = .x~ -2 + 2 ~/~. ~ f~(o~) = ()~3"-~ OZ2) " 71" 

Now, let us extend this theorem to the case of sidewall flow stability. We have 

G e n e r a l i z e d  J o s e p h ' s  f i rs t  t h e o r e m  Suppose c is an eigenvalue for the problem 

(M) of sidewall flow stability, then 

c~ _< 2a a R  L r 2 + 4a  2 + + M2 

and there is no amplified disturbance (ci > 0) if the following inequality holds 

_2 r,K2(Tr 2 "4- 0~) Ol 2 R < + + M 2, ] 
q L ~-2~ 4a2 ] 

N M 2 
P r o o f  From the analogy theorem, we have ~i : ci + - -  = ci + Inserting it to 

a a--R" 
the Joseph's first theorem, then the theorem is proved. 

J o s e p h ' s  s e c o n d  t h e o r e m  [5~s] Suppose ~(a, R) is an eigenvalue of the eigenvalue 

problem (F) for the Orr-Sommerfeld equation 

(1) If U"in > 0, then 

Uml, < c',- < Um~,x -I- 

(2) " " If g~i  n _< 0 < V~ax, then 

V m i  n -~- _ _  

I! 2U~ax 
7r 2 + 4a 2 

I! 2U~in 
71-2 + 4o~ 2 

< C~,. < Uma~ + - -  
I! 2U~x 

7r 2 + 4a  ~ 

(3) If U~x _< 0, then 

Umi. + 2U"in < e. < Umax 
7r 2 + 4c~ 2 

where the subscripts min, max indicate the minimum 

U(r U"(r in the interval - 1  < r < +1 respectively. 

and maximum of the functions 
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From the analogy theorem, we have cr = ~r, therefore the theorem can be applied to 

the case of sidewall flow stability directly. 

If  the MHD sidewall flow and the parallel flow in fluid mechanics have the same velocity 

profile U(r which is symmetr ic  and has inflection points, besides, if both  R and N are small, 

then owing to the stabilizing effect of magnetic field on the sidewall flow, a conclusion can 

be draw from the generalized Joseph's  first theorem, namely, the Reynolds number  R at 

which the sidex~ll flow still keeps stable is greater than  the Reynolds number  R at which 

the fluid flow still keeps stable, the value of the difference is 2M2.  
q 
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