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Abstract--In this paper, by use of the boundary integral equation method and the techniques of Green 
basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem 
is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is 
strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, 
Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is 
also investigated. By use of the high precision numerical method for the singular integral equation and 
Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated 
in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that 
the method of this paper is successful and can be used to solve more complicated problems. Copyright 
© 1996 Elsevier Science Ltd 
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1. INTRODUCTION 

FOLLOWING THE development of fracture mechanics, much attention has been given in recent years 
to dynamic fracture mechanics problems. In this kind of problem, it is obviously an important topic 
to investigate the case of impact or transient loading wherein inertia forces can no longer be 
ignored. Most of the work in fracture dynamics involves solving the initial boundary value 
problems, and studying the nature of crack tip stress and displacement fields. Due to the high 
difficulties in mathematics, only limited solutions to dynamic fracture problems in close form have 
been obtained. The solutions are usually classified as steady state or transient. Since variate time 
(t) can not be simply separated from the equations of transient state, there is not a unified approach 
for transient problems at present. Also, because it is almost impossible to obtain analytical 
solutions for finite and irregular domains, there is a clear need for the development of powerful 
theories and effective numerical techniques. Finite difference method (FDM) and finite element 
method (FEM) have been applied with some success to solve dynamic problems of cracks. But some 
difficulties in using FDM and FEM for fracture dynamics have been pointed out. A comprehensive 
review is given by Kanninen [1]. 

In the transient crack problems, the most basic one is the antiplane problem. This problem 
was firstly considered by Sih and Chen [2]. They applied the traditional Laplace-Fourier integral 
transforms and carried out dual integral equations. The method was also used by them in type 
I and II Griffith basic problems. In the 1980s this traditional method was further applied to some 
other special problems [3-6]. The boundary integral equation method (BIEM) or BEM is a 
relatively recent theory and numerical method. However, care must be exercised in application of 
the BIEM to crack problems [7]. The ordinary boundary integral equations lead to a non-unique 
formulation of any crack problem if it is not symmetric with respect to the crack. For the problems 
of transient fracture dynamics, the BIEM was firstly used by Fan and Hahn [8], and Sladek and 
Sladek [9], where crack problems, which are symmetric with respect to crack, were considered. To 
solve more general problems, Chirino and Dominguez applied the subdomain technique where the 
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domain has to be divided into subdomains by means of cuts along the crack [1 0]. Then the ordinary 
boundary integral equations can be applied to each subdomain. The compatibility and equilibrium 
conditions have to be satisfied along the new boundary between the subdomains. In the present 
paper, the antiplane problem of a crack subjected to an impact loading is investigated. In order 
to overcome the difficulties in using ordinary integral equations along the special boundary of the 
crack, some techniques of Green basic solution and singularity analysis are used in this paper. The 
problem is finally reduced to solving a Cauchy singular integral equation along the special 
boundary of the crack, where the dislocation density function between up and down surfaces of 
the crack is unknown. It means that the basic solution for a single crack of the dynamic antiplane 
problem is obtained. On this basis, there are no difficulties to solve multi-crack problems. As an 
example, the two parallel crack problem is also investigated and a set of Cauchy singular integral 
equations is easily obtained. It shows that the techniques of this paper are helpful to solve general 
problems. Since the equations of the present paper are all in the Laplace transform space about 
time. The numerical inversion method of Laplace transform must be applied to obtain the final 
results of dynamic stress intensity factors. In the last section of this paper, several typical examples 
are calculated and the stress intensity factors are obtained. 

2. THE BASIC FORMULATION 

In linear elastodynamics of the antiplane problem, the displacement field w(y , t )  must satisfy 
the equation of motion 

&2w t~Ew 1 a2w 
Oy2 + ~y22 - c22 Ot 2 , (1) 

where c2 = x / ~  is the velocity of the distortional wave, # is the shear elastic modulus, p is the 
medium density. For the Griffith single crack problem the boundary and initial conditions can be 
given as 

tr32(y,/)ly2=o = q(y, , t ) ,  ly, I < a (2) 

dw( y, t)  I,= = ~o( y)  . (3) w(y, t ) l ,=o = wo(y), at o 

Suppose the initial conditions are homogeneous, i.e. w0(y) = w0(y) = 0, and apply the Laplace 
transform to the partial differential eq. (1), the equation becomes 

632ff t~2ff, p2 
. . . .  C, (4) 8y21 + 8y22 C22 ' 

where the bar denotes the Laplace transform and p is the transform parameter. 

3. CAUCHY INTEGRAL EQUATIONS FOR THE PROBLEMS 

In this section the BIEM and some techniques are used to derive Cauchy integral equations 
for the problems. In ref. [11] one can find the basic solution for the governing eq. (4). 

w,(~l _ y ,p)  = 1H~2)( - ipr ~ = ] ~ _ ~ 0 ~ c : )  , _  f p r  (5) 

where/~2) is the Hankel function and/C0 is the modified Bessel function, r is the distance from 
point r/to point y; r = x/(~/, ' Y~)' + (~/: - Y2) 2. 

Then the solution can be written as 

f F a~(r/,p) a w * O l - y , p )  ~FO1)  ~(  Y'P) = w*(rl - Y'P) On~ - ~(r/, p) On~ 
dr+L 

(6) 
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where F + and F -  are the up and down boundaries of  the crack ( - a,a), n, is the outward normal 
of  boundary and the integral is about arc length. 

Along the boundary of  the crack, using the following conditions 

n, lr+ = - n ,  lr- - - ( 0 , -  1), dr(q)lr~ = Idq,[, 

a# I,+ a# It-, aw* It+ aw*l (7) 
an--~. = 3-Y. On. - On. "- 

solution (6) can easily be rewritten as 

f l  Ow*(~t - ~,( y,p) = _ °A~(q,, p) - ~  y'p) drlt , (8) 

where A# = ~ ]r + - ~ I r-  is the dislocation of  the crack. 
To get the corresponding integral equation along the crack ( - a,a), at first, we need to derive 

the formula of  stress o'32. According to the the equation for the basic solution 

and the physical equation 

a2w • O2w • p~ 
0,722 - Orfi + c~ w*, r/4= y (9) 

~w(y,t)  (10) o'32(y,t) = # Oy2 ' 

applying the Laplace transform to eq. (10) and using eqs (8) and (9), one can get 

f_ OW*(q--y,p)  2 f : [ f f  ] 032(y,p)= -I1 . 3 ~  Av~.,(q,,p)dq, - ~ #  . ,w*(rl*- y,p)dq~* Ak,,(q,,p)dq,, 

(11) 

where the closed conditions at crack tip A#(_+ a , p )  = 0 have been used and 
Aff~(q,,p) = OA~(rl~,p)/Oq~ is the dislocation density function on the crack. From the basic 
solution (5), if we let Iq - y --, 0, the second integral kernel of  eq. (1 1) is integrable and the first 
kernel is strong singular. To separate the singular dominant part from it, the following asymptotic 
relations are used in this paper 

1 Ow* 1 r: _ 0(rlnr) 
w* -- In r = 0(1), c%h 27r r (12) 

where r l = (r/l - yO/r, r = Iq - yl. 
Letting y ~ F ~ and using the stress condition (2) on the crack, we can obtain the following 

singular integral equation 

9 
= ~ @(y~, p )  - a < y, < a,  

where @(yj,p) is the Laplace transform of  q(y~,t). Based on eq. (12), we have 

(13) 
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so eq. (13) is a typical Cauchy singular integral equation. To solve it, the following single value 
condition of displacement is needed 

f~ aW,I - ( r / i ,p )dr / i  = 0. (15) 

Now the dynamic Griffith antiplane problem is reduced to solving eqs (13) and (15) in Laplace 
transform space. Applying the Laplace transform inversion to the solution of eqs (13) and (15), 
we can get the result of the problem. 

The above method can be used in the static problem in a similar way, where we only need 
to exchange the basic solution w* for 1/2n lnl/r  and remove the inertia part. Then the following 
Cauchy singular integral equation can be easily obtained 

1 r" mW,l(r/l)dr/l = 2q(y , ) ,  - a  < y, < a .  (16) 
n J_. r/I - -  yl # 

This is a very familiar equation to us. If we let q(yl) = - x0, then the stress intensity factor 
is given as 

KI = z0,q/~ . (17) 

Since the Griffith single crack solution has been given by the formula of the dislocation density 
function (11), there are no difficulties to solve multi-crack problems if we apply the superposition 
principle. As an example, the two parallel crack problem is considered in the present paper. 

Using the single crack solution (1 1) and the superposition principle, the stress 632 of the 
problem shown in Fig. 1 can be expressed as 

ff,2(y,p)=ff_~n~[prl f . .(pr p2 

where ff!~) and ,~,(2) -,.i are the dislocation density functions of cracks (a,b) and (c,d). 

e = x/(nl - Yl) 2 + (1 - y2) 2 f., = (nl - Yl)lf, 
F* = x/(r/t* - y,)2 + (t - y2) 2, r* = x/(q~* - y,)2 + y22. 

Letting y ~ FI (a,b) a n d  y --+ F2 (c,d) separately in eq. (1 8) and using the stress boundary conditions 
along the cracks, we can get a set of singular integral equations along two crack lines. 

l f ' [ p ~  ,r/t--yllr/'-Yl (p[r/t--yll)C2 P~ fb ( [rI*-y 'I  ] "r--"------'--r KI - K0 p dr/l* Aff(l)dr/1 
~'ql \ C2 

+ ~ J ~ L  c2 \c2 - c~J,, \ c2 -~gl l (y l ,p) ,a<yt<b,  y2=O 

Y2 F 2 c d 

i ' 
1 q2(Yl,t) 

! 
o a b 

q l (Y l ,  t) 

Fig. 1. 



Cauchy singular integral equation method 181 

-nl ~aIP~ Ir/, r/' -Y'y,I K' (Plr/' c7 y,I ) - P2c~d,,faK°(P'r/*'\ c= -'y'] )drk*] AffSa)dr/' 

PraK' c=J,, I k c2 dr/~* Ak~l)dr/,= ~12(y, ,p) ,c<y,<d,y ,=l .  (19) -- -- "~ ,xo - -  

Based on eqs (14) and (19) are also Cauchy singular integral equations. The complementary 
equations are 

Aw, (r/,, p)dr/, -~'~ = A~?)(r/,,. p)dr/, = 0 . (20) 

The static equations for the problem can be obtained in a similar way. 

1 £b Aw"'(r/' ) 11a r.' Aw(~)(r/,)dr/i = 2 ~1---~ dr/, + 7 -f ' ~q'(Y') 

a<y~<b,  y2=O 

l ffAw,2'(r /0.  + 1 ; ~  2 
. . . .  Aw{P(r/,)dr/, = q2(Y,) n r/, _ Y, Ur/l n " 

c<y,  <d, y2=l  

£bAw,l'(tlt)dr/t = f f  Aw,?)(r/,)dr/t = O. (21) 

4. T H E  E Q U I V A L E N C E  P R O O F  B E T W E E N  T H E  T W O  M E T H O D S  

In ref. [2] by use o f  Laplace-Fourier  transforms, the Griffith antiplane single crack problem 
is reduced to solving a set o f  dual integral equations as 

£ ~C(s, p)cos(sy,)ds = O, y, > a 

£7 (<Y 2 + C(s, p)cos(syt)ds = - ~# -q( y,, p), 0 < y, < a. (22) 

In the equations it has been supposed that the problem is symmetric about the y2 axis, so the 
loading q(y.t)  satisfies condition q(y,.t) = q ( -y , , t ) .  The displacement ~(y,p) can be expressed 
by the unknown function C(s, p) 

2f[ if(y,p) = -~ C(s, p)e - P.'cos(sy,)ds , (23) 

where fl = - x/s 2 + (p/c2) 2. Using the differential relation and symmetry, one can easily obtain 

C(s, p) = - ~s A~,(r/,, p)sin(sr/,)dr/,. (24) 
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In the symmetric case, eq. (13) obtained in this paper can be rewritten as 

1 I'Fp rlt-y, (plq y,[) p__ rll+yl Ki(PItI,+Y,') 
~JoL c2 In, yll gl c~ + c2 In ,+y , I  \ c2 

f Ko(a plrl~___y,[ )drl~,_ __P2I?°Ko(P[rl~xy'l)dq*]Af,lOl,,p)d~ll p2 
C22 C 2 C22 

2 = ~#(Yl,P),  0 < y , < a .  (25) 

Now we will prove the equivalence between eq. (25) of the present paper and eq. (22) of ref. [2]. 
At first we substitute eq. (24) into the first equation of eq. (22), then the left-hand-side can be 
changed into 

f0 ~ l f0° [f0~( sins(y' + r/I) s i n s ( y ' -  t/ '))ds]dr/,. (26) C(s, p)cos(syl)ds = -- ~ Ak.,(n,, p) s s 

Using the known relation 

f0 * sin(~s) ds n s = ~ , ~ > 0  

and paying attention to condition yt > a > r/l > 0 in eq. (26), one can easily observe that the 
first equation of eq. (22) is satisfied automatically. Next we need to prove the equivalence between 
eq. (25) and the second equation of eq. (22). So we substitute eq. (24) into the second equation 
one of eq. (22) 

-rcl Aff.l(r/t,p) ~ s2 2+ ~P 2sin(s~ll)cos(syOds drll = -~ q(yl, p) 
0 < y, < a. (27) 

Now we only need to prove that eqs (25) and (27) have the same integral kernel. Using the 
following integral variate substitution 

s = p sh~, ds = p ch~d~, (28) 
¢2 ¢2 

the kernel of eq. (27) can be expressed as 

s + (p/c2)2sin(srlt)cOs(syl)ds = 

P- f0~[ s - - - h ~ c 2  1 + sh,]{sin[  P(qlc~ y l ) s h , ] +  sin[ p(r/I + yl)c2 sh~]}d¢. (29, 

Using the following integral formulae of the Bessel functions 

K,(Z) = sin(Zsh~)sh~d~, /~(Z)-- cos(Zsh~)d~, (30) 
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one can easily examine the following relations 
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] P ~ K ' ( p ! q ' + y ' I )  I~sin[ P--(qt + y,)sh~ sh~d~ = c2 p__ 

c2 $ L c2 - c2 ' 

Pfo~ 1 s in [P( r /~ -Y ' ) sh~]d~  P ~ L ~ +c2ff°s~Sin[P(r/ 'c+Y')sh¢l d~dr/* 

) = -  "Ko( p[r/'*- y'[ d r ~ * - -  P (31) 
c 2 J., \ c2 c22 c2 " 

Substituting eq. (31) into eq. (29), we have 

c~ ~ + c2 Ir/, + y,I K' c: 

p2 ~ . - -  - -  a , 

where the left-hand-side is the kernel of  eq. (27) and the right-hand-side is the kernel of  eq. (25). 
Now we have proved that the method of  this paper is correct and reliable. 

5. THE NUMERICAL METHODS 

The analytical solutions to the integral equations of  this paper are not available and it is 
therefore necessary to solve the equations numerically. The equations will be reduced to a system 
of linear algebraic equations by the numerical method of  singular integral equation [1]. As an 
example, eqs (13) and (15) can be discretised as 

" 

K(r/j,yk, p)F(r/j, p) = # q( y~, p), ~ F(r b, p) = O, (33) 
J =  i ~  I 

where k = 1, 2 , . . . ,  m -  1. 

dr/f (34) 
L.'~j x 

and r/j, y, are the zeros of  the first and second kinds of  Cheyshev polynomials in ( - a,a). 

I t ( 2 j -  1) 
r/j = acos 2----m-- ' j = 1, 2, • • ", m (35) 

nk 
y , = a c o s - - , k =  1 , 2 , . . . , m -  1. 

m 

The dislocation density Aff.t is related to the function F by 

F(rb, p) = 1 ~/(a + r/j)(a - r/j)Aff,,(r b, p ) .  (36) 
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The stress intensity factors in Laplace transform space are determined by 

K'~(a, p) = - lim ~ ~/2n(a - y~)A~.~( yt, p), 
3'1 ~ a  "1 

/(~( -- a, p) = , J i m  -~ x/2n(a + y0Aff,,( y~, p). 

Using eqs (36) and (37) can be rewritten as 

/(,(+_ a ,p)  = -T- -~Vf-~F(+__a,p), 

where F(a, p) and F( - a, p) are computed by the following interpolation formulae 

(37) 

(38) 

1 m (2j 4m_l)lr F(a,p) = m ~ (  - 1)j+ ~ctg "FOb, P) 
J =  I 

m 

F( - a, p) = ( - 1)"~ ~' ( - l)Jtg (2j )~ .F(tb, p). (39) 
m j = l  

In order to obtain the solution as a function of time we have to take the inversion of the 
Laplace transform, but this can only be done numerically. There are several numerical methods 
of Laplace inversion. In the present paper we choose the method of Miller and Guy suggested in 
refs [2, 8]. This method is based on the terms of Jacobi polynomials and has been proved to be 
best for the impact loading problems. Due to the the limited space, the details of the method are 
omitted. Here we only list the formulae. 

Select a set of points on the positive real axis for the Laplace parameter p 

pk = ( f l o + k ) f , k =  1 , 2 , . . - N ,  fl0> - 1 , 6 > 0 ,  

then the dynamic stress intensity factors can be approximately computed by 

N 

KI( _+ a,t) = ~ C.P~°'Po).(2e -~' - 1), 
n = 0  

where P.~°'P°~(x) is a Jacobi polynomial defined as 

( - -  1).-1 d.-b 
P~°'~°)"(x) - 2"-~n ~ f)t (1 + x) -~0 dx._ ~ [(1 - x)"-'(1 + x)"-t+a°]. 

(40) 

(41) 
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The unknown coefficients C. are determined by the linear equations as 

t ( L  - 1 ) ( L  - -  2 ) . . - ( L  - n + 1) 

(L +-~o)CL T ~ o ~  D"~(L S-t--[3-o+n - 1) C"=6R'[ +--a'([3°+ L)61 
i 1 =  I 

L = 1, 2 . . .  N, (42) 

where k~[ + a,(flo + L)6] are the numerical solutions of  stress intensity factor in Laplace transform 
space. 

T a b l e  1. S I F  fo r  s ta t ic  l o a d i n g  q~ = - z, q2 = - z 

d/a 0.2 0.4 1.0 2.0 4.0 oc 

KUr 1.33566 1.39151 1.63836 1.72496 1.75906 1.77245 

T a b l e  2. S I F  fo r  s ta t ic  l o a d i n g  qt -- - -c, q2 = -c 

d/a 0.2 0.4 1.0 2.0 4.0 

KUz 3.64233 2 ,82858  1.93407 1.82252 1.78583 1.77245 

EFM 54.2--8 
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Fig. 5. 

6. SEVERAL NUMERICAL EXAMPLES 

To show reliability of  the method in this paper, some typical examples are calculated and their 
dynamic stress intensity factors are obtained in this section. The following numerical values are 
assigned to the constants describing the medium 

v = 0.29, p = 7800 kg/m s, # = 8 x 10 t° Pa. 

Example 1. Single crack subjected to impact loadings 

In this example, the dynamic stress intensity factors are computed for three kinds of impact 
loading. In the case of  step impact loading (Fig. 2), the result in this paper is consistent with that 

,._., 

_= 

4.0 

2.0 

d/a = 0.5 

/ . . - . ~  6) 6) ~H(t) 

/ \ ' ' - T  • "\  -~ ® ® 
/ \ 

/ d/a = l.o \ 6) 6) / ' ~ ' ~ . ~  \ , , 

[ / "  dla = 2.0 " ~  " N .  - a  ~ ~ a . . 

dla = 4.0 _ ~  _ . .~ .~ .~ . .~ .  ~ . . _ . .  

I I I I 
2 4 6 8 

c2 t /a  

Fig. 6. 
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f rom ref. [2]. In  the cases o f  in terval  and  cushion  impac t  loadings  (Figs  3 and  4) the dynamic  K 
factors  tend to zero when t ime (t) tends to infinity. 

Example 2. Double parallel cracks subjected to impact loadings 

Here the two cracks  have the same hor izon ta l  coo rd ina t e  ( - a,a) and their  vert ical  d is tance  
is d( :~ 0). 

In the first case, the loadings  on two cracks  have the same direct ion.  The static K factors  are 
given in Table  1 and  the dynamic  K factors  are  shown in Fig.  5. 

In the second case, the load ings  on two cracks  have the oppos i te  direct ion.  The  stat ic K factors  
are given in Table  2 and the dynamic  K factors  are  shown in Fig. 6. 
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