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We study phonon properties of one-dimensional nanocrystalline solids that are associated with a model
nanostructured sequence. A real-space renormalization-group approach, connected with a series of
renormalization-group transformations, is developed to calculate numerically the local phonon Green’s func-
tion at an arbitrary site, and then the phonon density of states of these kinds of nanocrystalline chains. Some
interesting phonon properties of nanocrystalline chains are obtained that are in qualitative agreement with the
experimental results for the optical-absorption spectra of nanostructured solids.

Research on nanometer-sized materials, including nano-
crystalline solids, nanostructured semiconductors, and
nanometer-sized amorphous materials, was initiated more
than a decade ago. Recently, due to developments in materi-
als processing and synthesis, it is possible to produce artifi-
cial structures with nanometer sizes whose chemical compo-
sitions and shapes can be controlled. Many types of
nanostructured materials, such as the nanocrystalline solids
Al2O3 ~Ref. 1! and TiO2,

2 nanostructured semiconductors
GaAs-AlxGa12xAs ~Ref. 3! and Si,4 nanometer-sized glasses
SiNX ~Ref. 5! and SiO2, and so on have been successfully
fabricated in the laboratory. It is found experimentally that
these nanostructured materials exhibit various interesting
physical properties caused by interface effects and size ef-
fects, which are significantly different from those of crystal-
line and glassy materials with the same chemical composi-
tions. This may be the reason why experimental studies of
nanostructured materials have been remarkably attractive.6

As for theoretical investigations of physical properties of
nanostructured solids, however, difficulties arise because
nanostructured solids are too small to behave like their bulk

parent compounds and too large to behave like atoms or
molecules. This means that it is not convenient to apply di-
rectly either molecular dynamics or crystalline dynamics to
the study of their phonon spectral properties. Based on the
fact that nanocrystalline solids consist of series of individual
nanocrystals in which the atomic arrangements are periodic
with short-range orders differing from those in crystals or
glasses, here we develop a real-space renormalization-group
~RG! scheme, which was introduced in Ref. 7, and then ex-
tended widely8 to the study of electronic and phonon prop-
erties of condensed matter, to study the phonon properties of
nanocrystalline solids. Some interesting conclusions are ob-
tained.

As one knows, one-dimensional problems are connected
with clear physical ideas and effective mathematical meth-
ods. Due to the rich physical properties of one-dimensional
nanostructured solids, such as GaAs-AlxGa12xAs ~Ref. 3!
and Si,4 we focus on a nanocrystalline chain presented sche
matically in Fig. 1~a!, which contains two types of individual
nanocrystalsL1 andL2 with N1 andN2 atoms, respectively.
The nanocrystalline chain is a periodic one with the unit cell

FIG. 1. Schematic representation of~a! the
original nanocrystalline chain,~b! the renormal-
ized periodic chain transferred by transformation
D1

~1! , and ~c! the renormalized periodic chain
transferred by transformationD2

~1! .
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L11L2 . As far as atom configurations in an individual
nanocrystal withN sites are concerned, two kinds of sites
can be distinguished: One is crystal sites which have periodic
configurations, another is boundary sites whose periodicity is
broken. Our theoretical work is mainly on phonon properties
of these kinds of nanocrystalline chains, which are clearly
related to their absorption spectra~AS! and luminescence
spectra, satisfying the vibrational equation9

SKi ,i111Ki ,i21

mi
2v2DUi1

Ki ,i11

Amimi11

Ui11

1
Ki ,i21

Amimi21

Ui2150, ~1!

wheremi andUi are the mass and the vibrational amplitude
at site i , andKi ,i61 represents the spring constant coupling

two nearest-neighbor sites. Depending on the local environ-
ment of sitei , we choose the spring constants$Ki ,i61% to
have five kinds of values$Ki% ~i51,2, . . . ,5! associated with
a nanostructured sequence, while the masses$mi% take two
valuesM1 andM2. For the sake of convenience, analogous
to defining pseudosite parameters$t i ,i61% by the five rela-
tions

t i ,i6155
T15K1 /M1

T25K2 /M2

T35K3 /M1

T45K4 /M2

T55K5 /AM1M2

~2!

we choose six other pseudosite parameters$ei% ~i
51,2, . . . ,6! given by

e i55
e152K1 /M1

e252K2 /M2

e35~K11K3!/M1

e45~K21K4!/M2

e55~K31K5!/M1

e65~K41K5!/M2

if Ki ,i215Ki ,i115K1

if Ki ,i215Ki ,i115K2

if Ki ,i21 and Ki ,i11 are K1 and K3

if Ki ,i21 and Ki ,i11 are K2 and K4

if Ki ,i21 and Ki ,i11 are K3 and K5

if Ki ,i21 and Ki ,i11 are K4 and K5 .

~3!

In addition to $t i ,i61%, these pseudosite parameters$ei% ~i
51,2,...,6! are associated with six kinds of sitesSi ~i
51,2, . . . ,6!, of whichS1 andS2, respectively, are the crys-
tal sites of nanocrystalsL1 andL2, andS3, S4, S5, andS6 are
the boundary sites of interfaces between nanocrystalsL1 and
L2 @see Fig. 1~a!#. Then Eq.~1! can be rewritten as

~v22e i !Ui5t i ,i11Ui111t i ,i21Ui21 , ~4!

which has the same form as a tight-binding HamiltonianH.
Introducing Green’s function7 G(Z)5~ZI2H!21 with unit

matrix I , one finds that the matrix elementGi j satisfies

~Z2e i !Gi j5d i j1(
k
t ikGk j , i , j50,61,62, . . . , ~5!

wheredi j is the Kronecker delta andZ5v21i01.
In order to calculate the Green’s function$Gii % at sites$ i %

of nanocrystalline chains, we first use a RG transformation
D 1

~1! to decimate all the sites except half of the sitesS6 in the
original nanocrystalline chain. The original chain is then
transformed into a simple periodic renormalized chain with
only sites of the kindS6, while the site parameterse6 and
t i ,i61 are replaced by two renormalized valuese68 and T68
@see Fig. 1~b!#. From Eq. ~5!, the set of RG equations of
pseudosite parameterse68 andT68 is given by

e685e61
T4
2~VN124Z22T3

2XN124YN224!1T5
2~Z1RN1242T3

2WN224PN124!

Z1VN1242T3
2XN124WN224

,

~6!

T685T1T2T3
2T4

2T5
2/~Z1VN1242T3

2XN124WN224!,

corresponding to the RG transformationD 1
~1! , where
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g5~Z2e1!/2T1 ,

h5~Z2e2!/2T2 , ~7!

PN5~Z2e3!UN~g!2T1UN21~g!,

QN5~Z2e4!UN~h!2T2UN21~h!,

RN5~Z2e3!PN2T1PN21 ,

SN5~Z2e4!QN2T2QN21 ,

XN5~Z2e5!PN2T3
2
UN~g!,

YN5~Z2e6!QN2T4
2
UN~h!,

VN5~Z2e5!RN2T3
2PN ,

WN5~Z2e6!SN2T4
2QN ,

Z15~Z2e5!WN2242T5
2SN224 ,

Z25~Z2e5!YN2242T5
2QN224 ,

andUN(X) is theNth Chebyshev polynomial of the second
kind, which satisfies the recursion relation

UN~X!52XUN21~X!2UN22~X!, ~8!

with the initial conditionsU22(X)521 andU21(X)50.
Correspondingly, by introducing other RG transformations
D j

(1) ~j52,3,..., andN11N2! based on the RG scheme, one
can also transform the original nanocrystalline chain into
other simple periodic renormalized chains in each of which
half of the sitesSi ~i51, or 2, . . . ,5! in the original chain
with renormalized site parameterse i8 andTi8 , remain, while
all other kinds of sites and half of the sitesSi in the original
chain are decimated. According to the geometric properties
of the presented RG transformationD j

(1), the corresponding
sets of RG equations can be obtained from Eq.~5!. For in-
stance, we can use a RG transformationD 2

~1! to transfer the
original nanocrystalline chain to a renormalized simple peri-
odic chain with only the kind of sitesS5s @see Fig. 1~c!#.
From Eq.~5!, the set of RG equations corresponding toD 2

~1!

is given by

e585e51
T3
2~Z1XN1242T5

2PN124WN224!1T5
2~VN124Z22T5

2RN124SN225!

Z1VN1242T5
2RN124WN224

,

~9!
T585T1T2T3

2T4
2T5

2/~Z1VN1242T5
2RN124WN224!,

whereg, h, PN , QN , RN , SN , XN , YN , VN , andWN are
given by relations~7!, and

Z15~Z2e6!WN2242T4
2YN224 ,

Z25~Z2e6!SN2242T4
2QN224 . ~10!

As the original chain is reduced to a simple periodic chain
with only one kind of siteSi , one can easily calculate its
physical properties in many ways. Here we present a further
RG transformationD ~2! in order to decimate the renormal-
ized periodic chain successively. Each procedure removes
half of the sites in the periodic chain~see Fig. 2!. Assuming
the pseudosite parameters are symboled bye andT, we can
also obtain, from Eq.~5!, the set of RG equations

e85e12T2/~Z2e!, T85T2/~Z2e!, ~11!

corresponding to the RG transformationD ~2!, wheree8 and
T8 are the renormalized parameters of the pseudosites in the
renormalized subchain.

After infinite iterations of above transformations, some of
a certain kind of sites in the original chain are always pre-
served with renormalized pseudosite parameters. Applying
suitable combinations of the RG transformations presented
above, a given site in the original chain should remain in a
certain renormalized subchain. It is found that the final re-

FIG. 2. A schematic representation of the RG procedure for a
nanocrystalline chain, in which half of the sitesS6 remain.

FIG. 3. The phonon DOS~arbitrary units! of nanocrystalline
chains with site parametersK15180,K25140,K35170,K45150,
K55160,M15102, andM25145, in which the frequency coordi-
nate representsv2 ~in units of K1/180! andN1/N25~a! 10/20 and
~b! 20/40.
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maining sites are almost isolated, because the pseudosite pa-
rameterTi converges to zero after successive iterations of
RG procedures. Thus, from Eq.~5!, the local Green’s func-
tion at sitei satisfies

Gii ~Z!51/~Z2e i* !, ~12!

wheree i* is the final value of the pseudosite parameter. So
we can calculate many physical properties of these kinds of
nanocrystalline chains, which are associated with the Green’s
function. For example, in order to compare with experimen-
tal results on spectral properties of AS and luminescence of
nanostructured solids, we calculate numerically the local
phonon density of states~LDOS! at certain sites, and the
density of states~DOS! of the nanocrystalline chains, which
are given by

r i~v2!52
1

p
Im Gii ~v21 i01!,

r~v2!52
1

Np
Im@( iGii ~v21 i01!#, ~13!

where Im andN denote, respectively, the imaginary part of a
complex quantity and the number of sites in the studied
nanocrystalline chain. Comparing a GaAs-AlxGa12xAs
nanostructured solid3 to the kind of nanocrystalline chain
studied here, we choose the site parameters to beK15180,
K25140, K35170, K45150, K55160 ~arbitrary units!,
M15102, and M25145 ~arbitrary units!. Two types of
nanocrystalline chains, withN1/N2510/20 and 20/30 are
studied.

Figures 3~a! and 3~b! show the DOS of the two nanocrys-
talline chains with sizesN1/N2510/20 and 20/40, respec-
tively. It is obvious that the phonon spectrum of nanocrystal-
line chains is divided into high- and low-frequency regions
between which there is a gap. In the low-frequency region,
the LDOS exhibits smooth structures. This indicates that the
spectrum in the low-frequency region is generally extended.
Similar conclusion can be reached from Fig. 4~a!, which
shows the wave function at the eigenfrequency
v253.120 184 37 of a nanocrystalline chain with
N1/N2510/20, and with periodic boundary conditions,
where the number of sites is 1500. In the high-frequency
region, however, multiple sharp peaks appear. Using the
TQLI ~tridiagonal QL Implicit! routine, we show, in Fig.

FIG. 4. ~a! The wave function at the eigenfrequency
v253.120 184 37 of the nanocrystalline chain withN1/N2510/20,
of which the total number of sites is 1500 and the site parametersKi

~i51, 2, 3, 4, and 5! andM j ~j51 and 2! are the same as those in
Fig. 3. ~b! The eigenvector structure at the eigenfrequency
v255.752 142 151 of the nanocrystalline chain withN1/N2510/20,
of which the total number of sites is 300 and the site parametersKi

~i51, 2, 3, 4, and 5! andM j ~j51 and 2! are same as those in Fig.
3.

FIG. 5. The phonon LDOS~arbitrary units! at two different sites
of nanocrystalline chain withN1/N2510/20, in which the fre-
quency coordinate representsv2, and the site parametersKi ~i51,
2, 3, 4, and 5! andM j ~j51 and 2! are chosen to be the same as
those in Fig. 3.~a! The nearest boundary siteS6. ~b! The crystal site
S2.

53 4755PHONON PROPERTIES OF ONE-DIMENSIONAL . . .



4~b!, the eigenvector structure of the nanocrystalline chain
with N1/N2510/20, wherev255.752 142 151. Owing to the
limitation of the capacity of our computer, here we consider
a system with 300 sites, and stationary boundary conditions.
One can see, from Fig. 4~b! as well as from Figs. 3~a! and
3~b!, that the sharp peaks correspond to the localized states
which are confined within a very small region. This kind of
localized states is similar to the confined states found in two-
dimensional quasicrystals,10 which are different from the ex-
tended states in crystals, the critical states in quasiperiodic
systems, or the localized states in amorphous materials. Ad-
ditionally, the positions of the highest frequency sharp peak-
sare shifted to higher frequencies as the numbersN1 andN2
decrease. In terms of the optical spectroscopy theory, the
infrared AS coefficienta~v! of matter is directly propor-
tional to the DOS:11

a~v!}uM ~v!u2r8~v!, ~14!

wherer8~v!52vr~v2! and the weight integraluM ~v!u2 of the
dipole transition is a continuous function of the frequencyv.
These facts imply that the infrared AS of one-dimensional
nanocrystalline solids are shifted to higher frequencies, i.e.,
are blue-shift phenomena, as the sizes of individual nano-
crystals decrease. This conclusion is identical to the experi-
mental results4 on nanostructured solids. Another interesting
feature in the phonon DOS of nanocrystalline chains is that
the number of sharp peaks decreases as the sizes of indi-
vidual nanocrystals decrease. It is interesting that similar

phenomena are found in experiments on SiO2.
12 Figures 5~a!

and 5~b! display the phonon LDOS at a boundary siteS6 and
a crystal siteS2 of a nanocrystalline chain. Similar conclu-
sions to those reached above can be found. Furthermore, it
can be seen from Figs. 5~a! and 5~b! that, in the high-
frequency region, there are fewer sharp peaks in the LDOS’s
of the crystal sites than in the LDOS’s of the boundary site.
This observation implies that the sharp peaks in the high-
frequency region are due mainly to the boundary sites in the
nanocrystalline chain.

In summary, we have constructed a chain model of nano-
crystalline solids. By applying a real-space renormalization-
group scheme, physical properties as well as the local
Green’s function at any given site of the nanocrystalline
chains can be calculated. As typical examples, the phonon
DOS and LDOS at several sites have been calculated nu-
merically. In the low-frequency region, nanocrystalline
chains generally possess extended states. In the high-
frequency region, however, the phonon DOS of the nano-
crystalline chains exhibit multiple sharp peaks corresponding
to localized states due to strong interface effects. As the sizes
of the individual nanocrystalline grains decrease, the posi-
tions of the highest frequency sharp peaks shift to the higher
frequency side, while the number of peaks at the high-
frequency region decreases. This shows that there exist size
effects in the nanostructured chains.
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