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Al~traet--The axisymmetric problem of an elastic fiber perfectly bonded to a non_homogeneous elastic 
matrix which contains an annular crack going through the interface into the fiber under axially symmetric 
shear stress is considered. The nature of the stress singularity is studied. It is shown that at the irregular 
point on the interface, whether the shear modulus is continuous or discontinuous the stresses are bounded. 
The problem is formulated in terms of a singular integral equation and can be solved by a regular method. 
The stress intensity factors and crack surface displacement are given. 

I. INTRODUCTION 

A CRACK in the neighborhood of a bimaterial interface may propagate towards the interface. Upon 
reaching the interface, the further propagation of the crack may intersect the interface into the 
adjacent material as a through crack or debond along the interface. Reference [1] presents a 
tentative fracture criterion which may be used in predicting the mode of the fracture propagation. 
References [1-5] have studied the plane crack problems that go through the interface of two 
bounded homogeneous layers. The antiplane shear crack problem in bonded nonhomogeneous 
plates was studied in ref. [6]. The problem of a fiber-matrix cylinder with an annular crack going 
through the interface has not been considered yet. 

In this paper, the axially symmetric problem of a fiber bounded to a nonhomogeneous matrix 
which contains an annular crack going through the interface is studied. The medium is assumed 
to be under simple axially symmetric shear stress. The mixed boundary value problem is reduced 
to a singular integral equation with a Cauchy-type kernel. By using a Gauss-Chebyshev quadrature 
formula, the singular integral equation is reduced to a system of algebraic equations. 

2. BASIC EQUATIONS AND BOUNDARY CONDITIONS 

We consider an infinitely long elastic fiber of radius a, perfectly bonded to a nonhomogeneous 
matrix, which contains an annular crack b < r < c, z = 0; b < a < c < oo going through the 
interface. The crack is subjected to axisymmetric shear stress. Due to the anti-symmetry with 
respect to the plane z = 0, only the semi-infinite domain z >i 0 is considered. 

Assuming the fiber and matrix having the elastic properties 

p~=const, 0 < r < a ;  P2=#0 rm, r > a  

and #0 is a constrant m > - I ,  the axially symmetric torsional problem may be formulated as 
follows: 

0z-----T-I--O--~-r 2-t r Or r z =0,  0 < r < a ,  

2 2 2 OUo O Uo ( l+m)Ou~ ( l + m )  
+ - -  = 

r Or r2 u 2 O, a < r < o %  

where the superscripts or subscripts 1 and 2 refer to the fiber and matrix, respectively. 

( 1 )  

(2) 
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Using Hankel and Fourier transforms, the displacements and then the 
expressed as 

;0 fo ulo(r, z)  = G(~)Ji (r~) e -¢~ d~ + 2 A( t ) I i  (rt)sin(tz) dt  
7~ 

;o o ~ ( r .  z)/~, = - ~G(~)J2(r~) e -~ d~ + _2 tA ( t )h ( r t ) s in ( t z )  dt 
g 

;o" ;o alAr. z)/ . ,  -- - ~G(~)J, (r~) e -~  d~ + 2 tA (t)I, (rt)cos(tz) dt 
g 

rr- jo u~(r, z)  ---- r-"/2 H(¢)J l  +m/z(r¢) e -~  d~ + 2 
LJo ~Z 

[fo f0 tr2(r, z)/p.o = r m/2 - ~n(~)J2+m/2(r~) e -~z d~ - - 2  o~ 

stresses can be 

(3) 

(4) 

(5) 

C 
B(t)Kl+m/2(rt)sin(tz)dt  +rl+-----g (6) 

tB(t)K2+m/2(rt)sin(tz) dt - (2 + m) r- ~ 

(7) 

rf .fo ] a~( r ,  z ) / m  = r "/2 - ~n (~ )J ,  +~/2(r~) e -~z d~ + ;Z te( t )K~ +,./~(rt)cos(tz) dt , (8) 
L do 7~ 

where G, H, A and B are functions yet to be determined, C is a constant, Jr( ) is the first kind of 
Bessel function, and L ( )  and Kv() are the modified Bessel functions of the first and second kind. 

The boundary conditions at the interface are given by 

ulo(a, z)  = u2(a, z), 0 ~< z < oo (9) 

O~(a, z) = a2(a,  z), 0 ~< z < oo. (10) 

The conditions on the crack plane z = 0 are 

tr~(r, 0 ) = - p l ( r ) ,  a < r < c  (11) 

a2~(r, 0) = -p2(r) ,  b < r < a (12) 

u0~(r, 0) = 0, O<<.r<<.b (13) 

u2(r ,O)=O, c ~ < r < o o .  (14) 

According to these boundary conditions the displacements and stresses can be determined. 

3. THE ANALYTICAL SOLUTION 

To reduce the problem to integral equations we first introduce two new unknown functions 
as follows 

1 0 [rulo(r,O)], b < r < a  (15) ~ ° ~ ( r ) = ~  r 

1 
cp2(r)=r|+mOr [rl+mu~(r,O)], a < r  < c  (16) 

and hence from eqs (3), (6), (13)-(16) it can be shown that 

q ) l ( r ) = f o  ~G(~)Jo(r~)d~, b < r  < a  (17) 

fo cP2(r ) = r -m/2 ~H(~)Jm/2 ( r~  ) d¢, a < r < c (18) 

f: G(~) = r~o~(r)Jo(r~)dr (19) 
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= f ~  r I +m/2q92(r)Jm/~(r~) dr. (20) H(~) 

It should be observed that at z = 0, the following condition must be satisfied 

u2(r,O)=O, c<<.r < oo; u~(a,O)=u~(a,O). 

We find 

C = - r I +m~o2(r ) dr (21) 

;/ a m r~oi(r) drt = C. (22) 

Equations (21) and (22) show that 

;° f: a '~ r~0t (r) dr + r i + m(0 2 ( r )  dr = 0. (23) 
b 

By substituting the boundary conditions (9) and (I 0) into eqs (3), (4), (6) and (7), then inverting 
the Fourier sine transforms, we obtain the following equations for A and B in terms of qh and ~o2. 

A (t)I1 (at) - B( t )a  -I/2K, +m/~(at) = R 1 (t) (24) 

Itl A (t)I2 (at) + ~ B(t)am/2K2 + m/2 (at) = R 2 (t), (25) 

where the functions R, (t) and R2(/) are given by 

R, (t) = K, (at) rlo(rt)tp I (r) dr + am/211 +m/2(at) r' +m/2Kr./2(rt)~p2(r ) dr (26) 

R~(t) = --I~lKl(at) rlo(rt)q~l(r)dr + #2a-maI2+m/2(at) r'+m/2K~/2(rt)tp2(r)dr, 
db 

+ [2.1 -- (2 + m)itoa m] fa 
(~-)i Jb r~p, (r) dr. (27) 

Solving eqs (24) and (25), A and B can be expressed as 

, ( t)  . A2(t) f~ A3(t) C" 
A( t )  rlo(rt)tp,(r)dr + ~ - ~ J , ,  r'+m/2Km/2(rt)q~2(r)dr + A-~--~ J b rtpl(r)dr (28) 

B(t) = ._.~. j~B(t)ff r lo(r t ) tp , (r)dr+ B2(t)A(t) Ja fcr l  +m/2Km/2(rt)q92(r)dr+ B3(t)A(t) .JbfartPl(r)dr' (29) 

where 

A(t) = Itoam/211(at )K2 +m/2(at ) + Itl a -m/212(at )K 1 + m/2(at ) (30) 

A, ( t ) = Itoam/2Ki (at )K2 + m/2(at ) - #, a -m/2K2(at )K 1 +m/2(at ) 

A2(t) = Itoll +m/2(at )K2 +m/2(at ) + ItoI2 +~/2(at )Kl +m/2(at ) 

A3(t) - [2itl - (2 + m)itoam]a -m/2K, +m/2(at)/(at) 2 (3 la-c) 

B1 (t) = - I t ,  11 (at)K2(at) - It, 12(at)K, (at) 

B2(t ) = Itoam/2 lt ( at )I2 + m/2 ( at ) - It, a -m/212 ( at )I  l + m/2 ( at ) 

B3(t) = [2It, - (2 + m)Itoam]I, (at)/(at) 2. (32a-c) 

By substituting eq. (5) into eq. (11) and eq. (8) into eq. (12) we have 

fo 2fo  p,(r) -- ~G(~)Jl(r~)d~ + -  tA( t ) [ l ( r t )d t  = - - - ,  b < r < a  (33) 
~z It, 
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[ fo ~ 2fo° ] p2(r) r-m/2 _ ~ H ( ~ ) J i  +m/2(r~)  d ~  + - t B ( t ) K I  +m/2(r t )  d t  = a < r < c. (34) 
7z flo rm ' 

Substituting eqs (19) and (28) into eq. (33), and eqs (20) and (29) into eq. (34), and after some 
lengthy manipulations, we obtain 

I~(r,s)~p~(s)ds + 2  I2(r,s)%(s)ds +2_ I3(r,s)~p2(s)ds = -~,Pl(r) b < r  < c  (35) 
n zt la~ 

f f  2 f f  f :  p2(r) Ll(r,s)tp2(s)d s + -  i_,2(r,s)q)2(s)d s + 2  L3(r,s)~p)(s)ds = - ~ ,  a <r  <c, (36) 
7C lr /10 r m 

where 

/,(r,s)= J lzs '-r2 \ r ] '  

7 ~---z7 ~ - i <  7 '  

s < r  

s > r  
(37) 

. , ) .  ( .')] ' ' > r  
[ ( r 2 )  s2 ( r2)] 

F(cx) 1 -2F, ¢,fl, Y,~5 +s2-T"~-~2Fl ~x- l ,  fl, Y,~5 , s > r  (38) L,(r,s) = r (~ ) r ( y )  r 

( , m  l m) 
~=~+~,~=g,~ =l+ 5 

I2(r,s)= ~(r , s , t )d t ,  ~ ( r , s , t ) = t  SIo(st)Ii(rt)+t sIl(rt) (39a, b) 
dO 

f &(r, s) = ~(r , s , t )d t ,  ~ ( r , s , t ) = t  s'+m/2K,.n(st)It(rt) (40a, b) 

fo 2 -=/2 B2(t) L2(r, s) = L2(r, s, t) dt, L2(r, s, t) = r t - - ~  s I +m/2Km/2(st)Ki +.,/2(rt) (41a, b) 

fO ° - m12 B1 (t) r - m/2t B3 (t) sK) (rt); L3(r, s) = ~3(r, s, t) dt, L3(r, s, t) = r t ~ SIo(st)K l +,,/2(rt) + A(t) + ,)n/2 

(42a, b) 

K() and E() being the complete elliptic integrals of the first and second kind, 2F~() being a 
hypergeometric function. 

It can be seen that/1 (r, s) and LI (r, s) have Cauchy-type singularities. The singular nature of 
other terms must be investigated. Since the functions ]?2, ]?3, ~2 and L 3 are integrable at t ~0  and 
bounded elsewhere, any possible divergence in ]?2, ]?3, L2 and ~3 must be due to the asymptotic 
behavior of I 2,/3, L2 and L3 as t-)oo. By analysing the asymptotic behavior, we have 

/~(r, s) = Iif(r, s) + I#(r, s), (i = l, 2) (43) 

Li(r, s) = Lif(r, s) + L#(r, s), (i = 1, 2), (44) 

where 

A- (s~l/2 e-i(2= . . . .  )]de, 
I2I(r,s)= fo I 7 2 ( r , s , t ) - 2 , r  I 

13f(r,s)= f ; [ 7 3 ( r , s , t ) _ ~ t ' s \ m l e f s \ ' 1 2  q ta) tr )°+OJd,,  

2 /sV/2 

i -  - &fshm/Vs~' /L.  
• /r) '"- '> 

(453, b) 

(46a, b) 
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2 [S~ l12+ra/2 -] 
t i t ,  

f; I 21 ['a'~m/2/S'~ 1/2 . ,7 
L3/(r,  s )  = Z3(r, s, t) + - - / - /  / - /  e- ' t ' -~ ' /dt ,  

2 \ r ]  \ r , ]  J 

Lz~(r, s )  = ~ /(s  + r - 2a) 

(47a, b) 

2, a m/2 ~ 1/2/( r 
t 3 s ( r , s ) = - - ~ ( )  ( ) -s ) ,  

(48a, b) 
where 

2 - /z2(a) - /z l  21 = 2/~1 , 22 = 2/~2(a) 
#2(a) + U,' u2(a) +/Zl #2(a) +/z," 

By separating the Cauchy-type singularities from It (r, s) and L~ (r, s) we obtain 

1 1 1 
Ii (r, s ) -- rc (s _ r---~) + -~ Ii /(r,  s ), I l f(r ,  s ) = rdm (r, s ) -- --s _ r (49a, b) 

1 1 1 
Ll  (r" s ) -- Tr(s --  r----~) ~- -~ L l f ( r '  s )' L l f ( r '  s ) = TtLm (r' s ) - - -  - r (50a, b) 

By substituting eqs (43)-(50) into eqs (35) and (36), we obtain the following system of singular 
integral equations: 

1 
ds  + 1  2 L ~ ( r , s ) ~ p l ( s ) d s  + 2 1 3 , ( r , s ) q h ( s ) d s  

It s -- r ~ rc 

if, f] Pl(r) + -  [ i v ( r , s )  + 212f (r , s ) ]~ol (s )d  s + 1  2 1 3 f ( r , s ) q h ( s ) d s  = - - - ,  b < r < a (51) 
7[ 7[ /.L 1 

1 ~ tP2(S ) ds  + 1 2Lz~(r, s)tP2 (s) ds + - 2L3,(r, s)q h (s) ds 

+ -  [ L v ( r , s ) +  2L2 / ( r , s ) l~o2 ( s )d  s +1_ 2L3 / ( r , s )~o~( s )ds  = , a < r  < c .  (52) 
lZ 7Z d b I-lO rm 

In eqs (51) and (52), the first three terms have Cauchy-type singularities, the others are 
Fredholm kernel integral terms. 

4. SOLUTION PROCEDURE AND RESULTS 

To examine the behavior of tp 1 and tp 2 around the irregular points, we assume that the 
unknown functions may be expressed as 

gI(s) 
~pi (s ) = (s - b ) ' (a  - s )  ~ (53) 

g~(s) 
~p2(s) = (s --  a)a(c --  s )  r (54) 

0 < Re(a, t ,  T) < 1.0, 

where a, t ,  ~ are the powers of singularity at the three irregular points. The functions gl and g2 
satisfy the H61der condition in the closed intervals b ~< s ~< a and a ~< s ~< c, respectively. Following 
the technique described in refs [1, 4], we obtain the following system of equations: 

gl (b) 
(a - b )  p c t g n a  = 0 

2(_~) ctgn~ = 0 ( - )  

g, (a) 22 --g2 (a) ( - c o s n f l + 2 ) ( a _ b ) "  + ( c - a )  ~ = 0  

--,~1 (g-~(ab --~)) -t-(2 q - c o s • f l ) , g 2 ( a t = o ,  (55a-d) 
t c  - a )  
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gi(a), g~(b), g2(a) and g2(c) are non-zero constants. Thus, eqs (55a-d) give the following 
characteristic equations: 

ctglt~t = ctgny = 0 (56) 

cos 2 rcfl = 1 (57) 

#t q~l (a) =/~2(a)tp2 (a). (58) 

By eq. (56) the acceptable roots are ct = ? = 0.5, which is the well-known result. By eq. (57) it is 
shown that fl = 0. This result indicates that at the irregular point r = a the unknown functions q~l 
and qh, and hence the stresses will have no power singularity. The possibility of a weaker (i.e. 
logarithmic) singularity must also be investigated. Following the procedure described by ref. [2] 
or the technique in ref. [5], it can be shown that q01 and ~2 have no singularity at r = a and stress 
trod(r, 0) is bounded at this point. 

From eq. (58) it is clear that tpl (a) and q~2(a) are not independent and are related. By defining 

~ , ,f#~q~l(r~, b <r  < a  
~o(r) = ~/~2(a)q~2(r), a < r < c (59) 

eqs (51) and (52) may be expressed as 

r 1 tip(s) d s + l  K(r,s)q~(s) - p ( r ) ,  b < r < c ,  (60) 
s - - r  7~db 

where K(r, s) and p(r) are known bounded functions given by 

Ipl(r), b < r  < a  

p ( r ) = ~ ( a ~  p2(r), a <r  < c  (61, 
l \ r l  

K(r, s) = ( 

I i:(r,s)+ 212(r,s), b < ( r , s ) < a  

213(r,s)#l/l~2(a), b < r  < a , a  <s  < c  
2L3(r, s)~2(a)/~l, a < r < c, b < s < a 
Lly(r, s) + 2L2(r, s), a < (r, s) < c. 

The single-valued condition (23) becomes 

a '~Ia  ----7--7, 1 I i  - -  rq~(r) dr r 1 
la, Jb +#2ta) 

+rncp(r) dr ~ 0 .  

It may be expressed further as 

f ~ r • h(r )~o(r ) dr = O, 

where 

(62) 

(63) 

(64) 

tii  b<r a h ( r ) =  m #1 (65) 
#2(a)'  a < r < c ,  

Thus, the going through crack problem reduces to a Cauchy-type singularity integral equation 
and can be solved using a regular method. First normalizing the equation by defining 

s = a l z + b l ,  r = a l p + b l  

q~(s) = F(z)(1 - z2) -1/2 

p(r) = Q(p), L(p, z) = alK(r, s) 

s .  h(s) = g(z), (66) 

where al = (c - b ) / 2 ,  bl = (c + b)/2, then eqs (60) and (64) become 

- + L ( p , ¢ )  ---{-~)ll~UZ = - Q ( p ) ,  - 1  < p  < 1 (67) 
n I z - - p  (1-- 
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f_ F(z) i g ( z )  (1 - z2) 1/2 dz = 0. (68) 

The function F(Q can be obtained numerically by means of a Gauss-Chebyshev type 
quadrature formula [7]. 

The stress intensity factors are defined by 

K ( b )  = lim x / ~  - r)alo2( r, 0) (69) 
r ~ b  

K ( c )  = lim x / ~  - c)a~2(r, 0). (70) 
r ~ c  

They can be expressed further as: 

K ( b )  = lim x/2(r - b)q~(r) = x/C~F( - 1) (71) 
r ~ b  

K ( c )  = - lim x/2(c -- r) tp(r)  = - F ( +  1), (72) 
r ~ c  

where al = (c - b)/2. 
When the crack penetrates through the fiber, i.e. b = 0, we need to extend the functions and 

kernels which appear in the singular integral equations (51) and (52) that are defined for positive 
variable values only into the symmetric negative range. For this circular crack problem, the stress 
intensity factor at the crack tips is defined by eq. (70). 

The half crack circumferential displacements u~ and u02 are related to the density functions qh 
and tp2 through eqs (15) and (16). Noting that u~ = 0 for r ~< b and u~ = 0 for r >/c, after evaluating 
cp~ and cp:, the half displacements may be obtained from 

u~(r, 0 )=- I  I r s ~ l ( s ) d s ,  b < r < Z a  (73) 
r Jb 

u~(r,O) = 1 I c -rl+---- ~ , sl+m~2(s) ds, a < r  <c .  (74) 
dr 

Equations (60), (64), (71)-(74) show the effect of nonhomogeneity on the stress intensity 
factors and crack surface displacement. 

It is shown that at the going through interface crack tips, the stresses are square-roots and 
not affected by the nonhomogeneity of the shear modulus, whether the shear modulus at the 
interface is continuous or not. It is also shown that at the irregular points on the interface the 
stresses are not singular and are bounded. 
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