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Abstract. A complete development for the higher-order asymptotic solutions of the crack tip fields and finite 
element calculations for mode I loading of hardening materials in plane strain are performed. The results show 
that in the higher-order asymptotic solution (to the twentieth order), only three coefficients are independent. 
These coefficients are determined by matching with the finite element solutions carded out in the present paper 
(our attention is focused on the first five terms of the higher-order asymptotic solution). We obtain an analytic 
characterization of crack tip fields, which conform very well to the finite element solutions over wide range. 

A modified two parameter criterion based on the asymptotic solution of five terms is presented. The upper bound 
and lower bound fracture toughness curves predicted by modified two parameter criterion are given. These two 
curves agree with most of the experimental data and fully capture the proper trend. 

1. Introduction 

The development of the HRR solution by Hutchinson [1] and Rice and Rosengren [2] for planar 
crack problems is a milestone in the area of elastic-plastic fracture mechanics, demonstrating 
that the strength of the singularity in a power law hardening material is uniquely determined 
by the J-integral defined by Rice [3]. Since that time, using these theoretical developments 
as a foundation, much work has been done to determine the conditions under which the 
near tip fields will be dominated by the HRR singularity field. Results show that the HRR 
singularity field can characterize the high triaxiality elastic plastic field near the crack tip, but 
for the low triaxiality case, the situation will be different. High triaxiality is only one of many 
possible states. Even though a crack tip field could be of a high triaxiality state during the 
initial loading stage, it will be changed gradually into low triaxiality as load increases from 
small scale yielding to large scale yielding, and the HRR solution will deviate from the finite 
element solution (O'Dowd and Shih [4]). The cases of a single-edge shallow crack (Ai-Ani 
and Hancock [5]), center cracked panel and double-edge cracked panel etc. (O'Dowd and Shih 
[4]) are examples of the low triaxiality states. In order to develop the more effective elastic- 
plastic fracture criterion, two parameter approaches were developed. Li and Wang [6] first 
derived the second order asymptotic field, in which the first term was the HRR singular field, 
the coefficient of the second term was determined by matching the asymptotic solution with 
the finite element full field solution. The second order asymptotic solution obtained in such a 
way was a great improvement on the HRR solution. Sharma and Aravas [7] also completed 
the second order analysis taking account of possible elasticity effects. Recently, Yang et al. [8] 
carded out a second-order asymptotic analysis for mode I and mode II cracks in detail, and 
published the exponent values of higher-order terms. They utilized the two term expansion 
solution to establish the size and shape of the zone dominated by the HRR field. Xia et al. 
[9] derived five terms of the asymptotic field for n = 3 and four terms of an asymptotic field 
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for n = 5, 7, 10. Five (or four) terms of asymptotic series for stresses had three independent 
coefficients, and appropriate choices of the latter two coefficients (the first coefficient can be 
expressed by J-integral) could reproduce near tip fields representative of a broad range of 
crack tip constraints in moderate and low hardening materials. O'Dowd and Shih [10, 11] 
developed a two term solution in which the first term was also the HRR singularity field, and 
the second term, including function form and its coefficient, was determined by matching 
this two term solution with the finite element full field solution. They developed a J - Q 
two parameter criterion dominating crack initiation (Q characterizing stress triaxiality ahead 
of crack tip). Betegon and Hancock [12] and Ai-Ani and Hancock [5] presented J - T two 
parameter characterization by carrying out finite element calculations for weakly hardening 
materials. Here, T was the uniform tension stress parallel to the crack faces and associated 
with the second term of Williams' expansion. 

In this paper, we study the elastic-plastic fracture criterion strictly based on the higher- 
order asymptotic field. Our attention is focused on characterizing the elastic-plastic field near 
the crack tip and developing a modified two parameter criterion. Dominating parameters are 
selected from the coefficients of the asymptotic solution. The evolution of parameters with 
loading are determined by matching higher-order asymptotic solution with finite element 
solutions during various loading stages. For this purpose, we carry out the finite element 
calculations for two representative cases which are the bend cracked panel (BCP) and the 
center cracked panel (CCP). Furthermore, the fracture toughness curve is predicted and 
compared to that from the experiment. 

2. The higher-order asymptotic solution 

A widely used uniaxial stress-strain relation is the Ramberg-Osgood form 

e _ a + a , (1) 
60 Cr0 

where a0 is an effective yield stress, e0 = ao/E  is the associated elastic strain with E as 
Young's modulus, a and n are parameters chosen to fit experimental data. n is the strain 
hardening exponent. 

Generalizing (1) to multiaxial states by J2 deformational plasticity theory, one obtains the 
stress strain relation 

l + u  1 - 2 u  ( ~n- ,  
eij -- E 8ij + T ~ykk6ij + 3 ~60 ff_..~e 8i__~j (2) 

\ ~rO / CrO 

in which, slj is the deviatoric stress, ae = ~/3sijslj /2 is the effective stress, u is Poisson's 
ratio, i, j = 1,3. 

For the plane strain ease, (2) can be further simplified, and equilibrium relations earl be 
expressed by a stress function ¢ in cylindrical coordinates (r, 0) as the following 

1 ( 0 ¢  0 2 ¢ ~  02¢ 0 ( 0 ¢ )  
~rr = -  + , ao= a r O = - - -  • (3)  oo2) Or2' 
For the plane strain case, the compatibility equation can be written in strain components 

with cylindrical coordinates as 

1 0 2 1 0 2 1 0 2 0 2 
r Or if(re°) + -~-~-ffer r Or s~ r 2 Or O0 (re~°) = 0. (4) 



Fracture criterion based on the higher-order asymptotic fields 41 

Traction free conditions on crack face require 

0 4 _ 0 ,  w h e n 0 = T r .  (5) 
4 -  00 

Symmetry conditions are 

0 4 034 
- - 0 ,  w h e n 0 = 0 .  (6) 

00 003 

The form of higher-order asymptotic solution of (2 ) (6)  is usually taken as 

= cro(KlrSl+2~l(O ) + K2rS2+2q52(O) + I(3r83+2~3(0) 

+K4rs4+2~4(0 ) + K51"ss+2~5(O)) , (7) 

where Sl < s2 < s3 < ,34 < 85 are referred to the stress exponents; K~,~i(e) (i = 1,5) 
are coefficients of the asymptotic solution and the angular distribution functions of the stress 
function. 

Substituting (7) into (3), (2), (4), (5) and (6) in sequence, and by comparison of various 
order exponents of r, we arrived at the nonlinear governing equations and boundary conditions 
on $i for the various (five) order problems. 

The first order problem corresponds to solving homogeneous nonlinear governing equa- 
tions with an independent eigenvalue (singularity exponent Sl). This problem was solved 
early by Hutchinson [1] and Rice and Rosengren [2]. The solution is well known as the HRR 
singularity solution. 

Both the second order and fifth order (n = 3) or fourth order (n = 5, 10) problems are to 
solve homogeneous linear equations with an independent eigenvalue (s2 for second order, .34 
for fourth order n = 5, 10 and .35 for fifth order n = 3). The forms of equations and boundary 
conditions of both order problems are the same. Their solutions correspond to two different 
eigenvalues (.32 < s4, or .32 < ss). The amplitudes of the solutions of above problems are 
unknown. 

The other order problems correspond to solving non-homogeneous linear equations with 
known exponents (s3, ss). The amplitudes of their solutions depend on that of previous 
solutions. 

Solving these goveming equations in sequence, we obtain the results of angular distribution 
functions. The solving process of higher-order asymptotic fields adopted in the present paper 
is similar to that of Xia et al. [9]. Readers are referred to that paper for detail. 

In the present research, we derive the five terms of the higher-order asymptotic solution for 
n = 3, 5, 10. It is worth pointing out that we can adopt the governing equation and boundary 
conditions of the second order problem to search for all possible independent eigenvalues. By 
numerical calculation, we find only three independent eigenvalues within the range (.3 l, 2) for 
n = 3, 5, 10, so the large range will cover the first twenty terms of the asymptotic solution. 
Therefore, we discover immediately that only three coefficients are independent within the 
first twenty terms of the higher-order asymptotic solution. We also point out that the fifth term 
of the asymptotic solution is important to the characterization of the crack tip field. The five 
term asymptotic solutions are shown as follows. 
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When n = 3: 

tri__LJ = 

O" o 
- - 0  013 ~ (k2/kl)~O.224(;rij3(O) klf-°'250~ijl(O) + k2r " trij2(0) + 

+ (1 /ak l  )r°'25°(rij4(O) + k s r ° ' 3 8 2 ~ i j 5  ( 0 ) .  (8) 

When n = 5: 

aij = k l  r__O.167_aijl(O) + k2rO'O54~ij2(O) + (k2/kl)rO'276(Tij3(O) 
cro 

3 2 -0.497 ~ +k4~O'341~ij4(O ) + ( k 2 / k  1 )r tTijS(O ). (9) 

When n = 10: 

O'ij 
cr 0 

- - 0  091 ~ -0  070 ~ -- k l r  " tYijl(O) + k2r " crij2(O) + (k2/kl)r°'23°(Tij3(O) 

3 2 -0.391 - +k4r°'27°~ij4(O ) + ( k 2 / k  1 ) r  (7ij5(0), (10) 

in which ~ = r/(J/tro),  ki = Ki(J/tro) s~ (i = 1, 2, 5 for n = 3 and i = 1,2, 4 for n = 5, 10), 
three independent coefficients (or parameters) are J, k2, k5 for n = 3 or J, k2, k4 for n = 5 
and n = 10, #ij are angular distribution functions and their variations are shown in Fig. 1.1 
The first term of the asymptotic solution is the HRR singularity field. The kl is formulated 

1 
with material constants: kl = 1/(aeol,~)-~4r, in which I,, is a constant dependent on the n. In 
is calculated by the first order angular distribution functions of the stresses and displacements 
(here, subscribt 1 is neglected): 

= f [  { ~ + 1  6 ~ + l c ° s 0 -  [ s i n 0 ( # ~ (  ~°-0~T~017 ] 

-, To @+ oo j) + }dO. (11) 

J-integral is determined by annulus integration around the crack tip which depends on the 
external loads. 

In later sections, we shall apply higher-order asymptotic field to the characterization of 
the elastic-plastic field near the crack tip. The other two independent parameters k2 and k5 
(n = 3) or k2 and k4 (Tz -- 5, 10) will be determined by matching with the finite element 
results. Based on the higher-order asymptotic solution, we shall develop an elastic plastic 
fracture criterion. 

3. Finite element analyses 

In this paper, we develop a two-dimensional elastic-plastic finite element program. This 
program, based on the J2 flow theory of plasticity and adopting the 8-nodal isoparametric 
element and the tangential stiffness method, was shown to be reliable by calculations of 
typical examples. Firstly, we calculated the elastic-plastic solution near the crack tip under 

z Note that the third order stress angular distribution functions ~q3(0) given in [9] is incorrect. Recently, Xia 
et al. found an error in their program; after rectifying, they obtained a corrected result which is completely in 
conformity with our result. 
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small scale yielding and mode I condition. The deviations of J-integral values obtained by 
integrations along the different contours are within one percent. This shows conservation of 
the J-integral. The difference of both J-integral values calculated by the contour integration 
and directly by the external K field is also within one percent. Secondly, we calculated the 
elastic-plastic fields near the crack tip for single edge cracked panel under tension. The result 
was in good agreement with that presented by Shih and German [13] for the same problem. 

The program is designed according to ,]2 flow theory of plasticity. The incremental relation 
of multiaxial stress and strain is 

E (~Si.~jn + v 9#w ] 
do'ij - 1 + v ~ -  v '5ij'5'~'~ - (6# +-2-H)a~siJSm~j ~ dem,~, (12) 

in which # is the shear modulus and H is the tangential modulus of plasticity, which by (1) 
is 

. - - -  - ( 1 3 )  
d ~  naeo \  ro,/ 

while parameter w is as the following 

1 on the loading surface and sijdeij  > 0 

w = 0 otherwise. 
(14) 

We carry out the finite element calculations for BCP specimens with n = 5 and n = 10 and 
for CCP specimens with n = 3 and n = 10 from small scale yielding to large scale yielding. 
During the calculations, the ratio of the crack length (a) to the specimen width (W) is taken 
as 0.5 for various cases, and the other material parameters are taken as E / t r  o = 500, v = 
0.3, a = 1. The adopted finite element mesh is shown in Fig. 11. 

4 .  C h a r a c t e r i z a t i o n  o f  c r a c k  t i p  f i e l d s  

First, the finite element results of small scale yielding carded out by O'Dowd and Shih 
[10] were adopted here to facilitate the comparison with the present higher-order asymptotic 
solution. Only two coefficients k2 and k4 need to be determined (here n = 10), In this study, 
the 'point matching' is enforced at r / (J f i ro)  = 2 and 0 = 0 for (O'rr/O'0)di ff and (O'00/O'0)diff, 
in which (.)dill is the difference field of the finite element result from the HRR solution. 
Finite element solutions are carded out corresponding to six T stresses (MBL loadings, see 
[10]). The results for the higher-order asymptotic solution are plotted in Fig. 2. Included 
in Fig. 3 are the finite element results given in [10]. Comparing Figs. 2 and 3, it is very 
clear that higher-order asymptotic field characterizes the elastic-plastic fields near the crack 
tip completely, the full range of difference fields in [10] can be reproduced by the present 
higher-order asymptotic solutions. The higher-order terms collectively describe a spatially 
hydrostatic stress of adjustable magnitude. 

In the following figures, the comparison of the higher-order asymptotic field with the finite 
element solution calculated by the present paper is given. Two independent parameters k2 and 
k 5 (or k4) are determined by matching the asymptotic solution with the finite element solution 
for a00. Here, we take matching points of tr00 for both solutions within the fracture process 
zone 0.5 < r / r e  < 3.0. For completing this purpose, we adopt the weighted residual method. 
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Fig. 3. Difference field from finite element analysis for n = 10 (O'Dowd and Shih [10]). Distributions corre- 
sponding to six MBL loadings are shown. 

The parameter rc describes a characteristic scale of  the material microstructure. The physical 
significance of  rc was given by Ritchie et al. [14], it will  also be introduced in the next section. 
In the present paper, we take r~ /a  as 0.01. 

In Fig. 4, the variations of  ~r00/a0 for three kinds of  solutions are shown. From Fig. 4, 
the HRR singularity field (i.e. first order asymptotic solution) deviates from the finite element 
solution remarkably. Especially for CCP specimens, the deviation is very large. The higher- 



46 Yueguang Wei and Tzuchiang Wang 

5 
. ~ BCP 

4 - FEM 
'~,, o o o o o  HAS 

3 -  • •  * • ° • ° °  
tIRR 

J/(W~o)=O.OO 1 

o I 

r ~ T  o 

8 

6 -  

CCP 
**% • r t= lO 

e•  • • o i1 • • 

J/Or~o)=O.OO7 
i I I I i I i I i 

2 4 6 8 10 

~/(J/~o) 
Fig. 4. Stress solutions in three cases for BCP and CCP specimens (# = 0). 

5 

:1 
0 

'i1 ! 0.007 
2 0.003 

"] o 3 0 . O O t 5  
~ S - ~  4 0.0007 

. t ~ , , , ~ _  5 0.0004 

n=5 5 
OI , t , , , 

0 f 2 
r , / r  , 

2 -  

O l  
0 

a/(rv~o) = 
! 0.0075 
2 O. 0030 
3 0.0015 
4 0.0007 

5 
n= 10 
e I i i i 

! 2 3 

Fig. 5. Comparison of higher-order asymptotic solution (solid line) with finite element solution for BCP specimen 
(O = 0). 

order asymptotic field of five terms (HAS) is, however, completely consistent with the finite 
element solution. 

In Figs. 5 and 6, the distributions of aoo/tro along O = 0 ahead of the crack tip for BCP 
specimens and CCP specimens and for different material hardening exponents under different 
load levels are given. It is seen from the figures that the higher-order asymptotic solutions 
conform well to the finite element solutions. The variations of o'rr/a0 and effective plastic 
strain ~° /ae  along O = 0 ahead of the crack tip for BCP specimens and CCP specimens are 
given in Figs. 7 and 8, respectively. The finite element solutions, the higher-order asymptotic 
solutions and the HRR solutions are shown simultaneously in three figures. It is clear that the 
higher-order asymptotic solution is a good simulation for the finite element solution. 

Figure 9 shows the variation of coefficients in the higher-order asymptotic field with 
increase of loading. In Fig. 9, P is the external point load for BCP specimen. 

5. Fracture toughness locus 

Kirk et al. [ 15] have measured cleavage fracture toughness for A515 steels at room temperature 
over a broad range of crack tip constraints (the strain hardening exponent n of A515 steel is 
about 5). They tested edge-cracked bend bars with thicknesses B=10, 25.4 and 50.8 mm and 
various ratios of crack length to width. The measured toughness data (Jc) are related to Q. In 
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here, we can convert the relation dc - Q into dc - k2 according to the relation d c -  Q from 
[4]. The experimental data so converted are shown in Fig. 10. 

Constraint effects on fracture toughness can be predicted by using the higher-order asymp- 
totic solution in conjunction with a fracture criterion based on the attainment of  a critical 
stress, ao0 = ac, at a characteristic microstructural distance, r = rc [14]. Suppose that rc is 
within the J - Q  annulus (1 ~< rcao/Jc <~ 5). Now consider the RKR fracture criterion in the 
higher-order asymptotic field 
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- -0  167- -0 054- crc k l r  c " oijl(O) n t- -t-k 2 /  1) c ij3t ) - -  = k2r  c" aij2(O) rk21k  ~0.2766. ¢0"~ 
cr 0 

-0.341 ~ 3 2 -0.497- 
q-k4r c trij4(0) q- ( k 2 / k l ) r  c trij5(0). (15) 

Therefore, we can solve for Jc as a function of kz and k4 for selected values of  ac and 
rc (noting the relation of  ~c = rca0/Jc) .  With Jff, k~ and k~ denoting the corresponding 
quantities with the remote loading away from the crack tip by K field (T = 0), 



Fracture criterion based on the higher-order asymptotic fields 49 

300" 

Expe r imen t s  
by Kirk et at  ~ / 2 5 0 - ( 1 9 9 1 )  / / 

1oo • o,oW • / 

• * • A / 

5 0 ' ,'/" ..... " ! k4--k4,~o= 
. . . . . .  2 k 4 - -  ~C4ntilt 

0 ' I ' I 

0.00 0.05 O. 10 O. 15 

ke 
Fig. 10. The comparison of higher order asymptotic solution with experimental results 

Fig. 11. Finite element mesh. 

Jr [ ~ / ~ o -  n(k~,a) F +t 
+-T = t £ ~  J ' 

(16) 

in which 



50 Yueguang Wei and Tzuchiang Wang 

k ~0.054~. rO ~ : k 2 / k  ~F0.276~. rO x ~~(k2, k4) = 2 c ij2~ )-[-~, 2/  1) c ij3~ ) 

k ~0.341~ r0~ 3 2 -0.497- 
4 c ij4[ ] +  (k2/kl)7"c oij5(O). (17) 

We take J and k2 as dominating parameters to develop a fracture criterion, k4 is taken 
as a modified parameter. Using the last two relations, the lower bound toughness and upper 
bound toughness curve of Jc - k2 are plotted in Fig. 10 for trc = 3.5tr0, Jff = 40 Kpa.m 
and n = 5, corresponding to the maximum value and minimum values of k4, respectively. 
The maximum and minimum values of k 4 corresponding to that for small scale yielding are 
k4max = 0.1, k4min = --0.1. From Fig. 10, it can be seen that the upper bound and lower bound 
of predicted toughness curves agree reasonably well with the experimental data. 

6. Concluding remarks 

A complete development for the higher-order asymptotic solution of the crack tip fields up 
to five terms for mode I loading of hardening materials in plane strain has been performed. 
At the same time, by numerical test, an additional conclusion is deduced, namely that in 
the higher-order asymptotic solution (to the twentieth order) for n = 3, 5, 10, only three 
coefficients are independent. They are: the first term, second term, fourth term (n - 5, 10) or 
fifth term (n = 3). By appropriate choices of the two coefficients, the higher-order asymptotic 
solutions accurately match the near tip fields generated by MBL analyses over the full range 
of loadings, and completely describe the near tip fields generated by finite element analyses 
over a wide range of crack geometries and external loadings. 

Since only three parameters can be independently adjusted in the higher-order asymptotic 
solution, we consider establishing a modified J - k2 two parameter fracture criterion based 
on the higher-order asymptotic solution. The third parameter k 4 or  k 5 is taken as a modified 
term. The bound curves of J - k2 are calculated when the third parameter is taken as its 
maximum value or minimum value in the critical state of crack initiation (here, troo = crc, 
when r = re, 0 = 0). 

The upper bound and lower bound fracture toughness curves predicted by a modified two 
parameter criterion were given. These two curves agree well with the experimental data and 
fully capture their trend. 
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