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Abstract 

A three-dimensional finite element analysis has been used to determine the internal stresses in a three-phase composite. The 
stresses have been determined for a variety of interphase properties, the thicknesses of the interphase and the volume fractions of 
particles. Young's modulus has been calculated from a knowledge of these stresses and the applied deformation. The calculations 
show that stress distributions in the matrix and the mechanical properties are sensitive to the interphase property in the 
three-phase composites. The interfacial stresses in the three-dimensional analysis are in agreement with results obtained by an 
axisymmetric analysis. The predicted bulk modulus in three-dimensional analysis agrees well with the theoretical solution obtained 
by Qui and Weng, but it presents a great divergence from that in axisymmetric analyses. An investigation indicates that this 
divergence may be caused by the difference in the unit cell structure between two models. A comparison of the numerically 
predicted bulk and shear modulus for two-phase composites with the theoretical results indicates that the three-dimensional 
analysis gives quite satisfactory results. 
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1. Introduction 

This paper is concerned with the micromechanical 
analysis of  three-phase particulate-reinforced com- 
posites, which consist of  particles as one phase (inclu- 
sions), coatings as a second phase (interphase) in which 
thickness depends on the chemistry and processing 
conditions of  the particles and a third phase, the ma- 
trix. The interphase, generally a low modulus elas- 
tomer, is added to solve the problem of the two-phase 
composites which, when containing a certain volume 
fraction of  high modulus inclusions, exhibit an increase 
in overall modulus and tensile strength but a consider- 
able reduction in toughness, and thus are expected to 
develop the mechanical property of  the two-phase com- 
posite. 

For  the particulate-reinforced composites in the ab- 
sence of interphase, many investigators have made con- 
siderable efforts to analyse the stress fields of  
composites and to determine the mechanical properties 
of  this kind of material. Hashin [1] and Christensen and 

Lo [2] used the composite sphere model to present this 
material and give its effective shear and bulk moduli by 
the self-consistent scheme. Weng [3] and Luo and Weng 
[4], on the basis of  the "average stress in the matrix" 
concept of  Mori and Tanaka [5], developed a useful 
modified Mori Tanaka  method to predict the overall 
moduli of  the composites. Agarwal and Broutman [6] 
gave a three-dimensional finite element solution for the 
stress fields of  constituent phases, stress concentrations 
at the interface and a prediction of the mechanical 
properties. However, there are only a few solutions 
available for composites in the presence of an inter- 
phase. The earlier Matonis and Small [7] solution, 
which was an extension of Goodier 's  work [8], applies 
only to the case of  a single inclusion with coating layer 
in an infinite matrix. The theory ignored the interac- 
tions between particles. The recent Qiu and Weng [9] 
solution determines the effective elastic moduli of  
thickly coated particle and fibre-reinforced composites 
on the basis of  the models of Hashin [1] and Hashin 
and Rosen [10]. Benveniste et al. [11] also give a 
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solution for the stress fields in the fibre-reinforced 
composite with coated inclusions by the modified 
Mor i -Ta na ka  method. 

As a result of  the presence of interphase, the matrix 
plastic deformation is restricted by the particles and 
interphases. The magnitude of this restraint is complex 
and is a function of  interparticle spacings, volume 
fractions of particles, aspects of the interphase and the 
elastic properties of  the matrix, particle and interphase. 
Thus a micromechanics analysis is needed to under- 
stand the influence of these factors in the behaviour of  
the materials. Here, we use the finite element method to 
determine the three-dimensional elastic stress distribu- 
tion of the heterogeneous composite structures. The 
internal stress is used to predict elastic properties such 
as modulus and Poisson's ratio. The results are com- 
pared with the values predicted by an axisymmetric 
analysis. 

packing and structure of the axisymmetric cell, in which 
the cube becomes a solid circular bar. The particle is 
embedded in an axisymmetric solid. The corresponding 
finite element mesh is shown in Fig. 3(b). 

The boundary conditions and solution procedures 
used follow those of  Agarwal and Broutman [6]. The 
unit cell as shown in Fig. l(b) is subjected to a uniaxial 
tension in the z direction and no tractions in the x and 
y directions. By symmetry, the shear stresses r~y, r,=, r . ,  
on all the faces of the cube must be zero, and thus the 
faces ABFE, E F G H  and BCGF of the cube remain 
parallel to their original position while the faces ABCD, 
ADHE and D CG H  remain fixed. In addition, no exter- 
nal forces are acting on the faces ABFE and BCGF, so 
that 

f a~ = on x = r (4) dA 0 

2. Material model and boundary conditions 

In a real composite, particles are randomly dispersed 
in the matrix. The mechanical behaviour of  the com- 
posite is dependent on the physical properties, relative 
amounts and packing geometry of  the constituent 
phases and on the condition of  the interfaces between 
these phases. For convenience of  studies, the con- 
stituents are assumed to be isotropic. Perfect bonding is 
assumed at the interfaces between particle and inter- 
phase and between interphase and matrix. Spherical 
inclusions are assumed to be packed in a cubic array, as 
shown in Fig. l(a). Because of  the assumed symmetry 
for the packing of  the spherical particles, we need only 
to analyse one-eighth of the sphere embedded in a cube, 
as shown in Fig. l(b). The unit cell model and one of  its 
finite element grids used in the present work are shown 
in Fig. 2. The grid shown is for the case where the 
composite contains a filler volume fraction of  23.56% 
(rl/r = 0.7663). The filler volume fraction, thickness of 
interphase and interphase volume fraction in the model 
are given by the following: volume fraction of particles, 

v~ = ~  (1) 

thickness of  interphase, 

h = r 2 - -  r I (2) 

volume fraction of  interphase, 

3 

v,. = g - (3) 

Here r is the cell length, r1 the particle radius and r2 the 
outer radius of  interphases depicted in Fig. l(b). For  
the sake of comparison, we also carry out an axisym- 
metric analysis of  the composite. Fig. 3(a) shows the 
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Fig. 1. (a) Packing of spherical inclusions in a composite. (b) A 
three-dimensional unit cell analysed. 
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where A is the area of  the plane ABFE or BCGF. Eqs. 
(1), (5), (8), (9) and (10) allow for the evaluation of 
Poisson's ratio as 

"2 

v:., = Ik,I, [k21 

The modulus of  elasticity is defined as 

E = #,/?,: 

( l l )  

(12) 

Fig. 2. Three-dimensional mesh for r I/r = 0.7663. 

fA0. v = on y =  r (5) dA 0 

These boundary conditions are satisfied by the superpo- 
sition of three separate stress analysis problems. In the 
first problem, the model is given zero displacement on 
all boundaries except for the face ABFE which is 
subjected to a unit (positive) displacement in the x 
direction. In the second, the cell is subjected to zero 
displacements on all faces except for the face BCGF 
which is given a unit displacement in the y direction. In 
the third, stresses and displacements are calculated 
when the face E F G H  is subjected to a unit normal 
displacement in the z direction while other faces are 
given zero displacements. Then the stresses and dis- 
placements predicted in the above three cases are super- 
imposed by 

a = k la  I + k20. 2 q- 0" 3 (6) 

U = kl UI + k: U2 + U~ (7) 

where ks and k2 are determined such that boundary 
conditions (4) and (5) are satisfied: 

fA (ks a,q + k20"x2 + 0"x3) dA 
BFE 

= A ( k l f , q  + k 2 # ,  2 + # v 3 )  = 0 ( 8 )  

fB (kl 0.yl + kz0.y2 + 0"v3) dA 
COF 

=A(kl#, , t  + k2#y 2 + #),3) = 0 (9) 

so 

ks = # y 2 # x 3  - #x2(~v3 k 2 = # X I # y 3  - -  #Yl #'>"3 (10) 
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Fig. 3. (a) Packing of the axisymmetric cell in composites. (b) 
Axisymmetric mesh for r~/r = 0.7663. 
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where ~ is the strain in the z direction. The stress & is 
calculated as 

~ ;A o-~ dA 
A A a_Ai (13) 

t '= l  

where a. is the stress in an element and Ai is the area of  
the element on the face E F G H  and n is the total 
number of such elements. In this paper Eqs. (4)-(13) 
are taken from Ref. [6]. 

In order to appreciate better the magnitude of  the 
triaxial stresses acting locally in the composite which 
can induce deformation, the yon Mises equivalent stress 
ac is calculated as 

(7" e ~--- {1[(0-1 - -  0"2) 2 -F (0"2 - -  0"3) 2 q- (0-3 - -  0"1)2]} 1/2 (14) 

where 0-~, 0"2 and a3 are the principal stresses. In 
addition, the hydrostatic component of  the stress is also 
calculated at the interfaces: 

0-m = (0-1 ~- 0-2 "~- 0"3)/3 (15) 

3. Internal stresses 

The internal triaxial stresses were calculated through- 
out the volume of representative three-phase composite 
for a variety of interphase properties, interphase thick- 
nesses and volume fractions of particles. The following 
component property ratios were assumed: Young's 
modulus, Ei(inclusion):Er(interphase):Em(matrix ) = 35: 
0.05:1; Poisson's ratio, vi:vr:v m = 0.23:0.48:0.40• These 
property ratios are equivalent to the experimental val- 
ues reported by Lu et al. [12]. 

3.1. Stress distributions in the matr ix  

The stresses 0-1, 0-e represented here were normalized 
by Em~ for the convenience of  comparisons. Because of  
the geometrical symmetry of  the unit cell, only the 
stresses on the x = 0 plane (CDGH) are chosen in this 
analysis. Fig. 4 shows the maximum principal stress 
contours in the matrix predicted by the three-dimen- 
sional analysis (Fig. 4(a)) and the axisymmetric analysis 
(Fig. 4(b)) for Vi = 30% and h = 0.015r. Fig. 5 shows 
the corresponding von Mises stress contours in the 
matrix for two analyses. The figures show that the two 
analyses give almost identical stress distribution trends 
in the polar region, even though the values of the stress 
0-i in the three-dimensional analysis are slightly higher 
than those in the axisymmetric analysis, 5.4 vs. 5.1. In 
the matrix near the equatorial area as shown in Fig. 4, 
it is clear that a local stress island, that is, a local stress 
unevenness, exists in the stress al contour predicted by 
the axisymmetric analysis, but the solutions of  the 
three-dimensional analysis are smoothly changed along 
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Fig. 4. Compar i son  of  the max imum principal stress cr~ contours  in 
the matrix on the x = 0 plane predicted by (a) three-dimensional 
and (b) axisymmetric analyses for V i = 30%, h =0.015r .  Ei:Er:Em= 
35.0:0.05:1.0, vi:vr:V ~ = 0.23:0.48:0.4. cr~ was normalized by Em~ ~. 

the interface. Comparing Fig. 5(a) with Fig. 5(b), one 
can also see that the stress values of the three-dimen- 
sional analysis in the matrix near the side surface of the 
axisymmetric bar (right upper area in the figures) are 
slightly larger than those of the axisymmetric analysis, 
0.9 vs. 0.7. The facts that an axisymmetric cell is only 
part of  the three-dimensional cell, and thus a part of 
the matrix effects is neglected (for example, when r2/ 
r = 0.7813, 9% of the matrix is ignored), and because of 
the structure of the axisymmetric cell a free force 
boundary condition is acting on the side surface of the 
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axisymmetric solid, make it reasonable to conclude that 
these stress differences in the matrix may be attributed 
to the difference in the unit cell structures in which the 
axisymmetric cells are not an actual repetitive unit but 
are related in their dimensions to the interparticle spac- 
ings 2 ( r - r  0. However, stresses at the interface be- 
tween interphase and matrix are almost the same in the 
two analyses as shown in Fig. 6. 

3.2. Interface stresses 

In this 

Z 0 

section and Section 4, for considering the 
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Fig. 5. Comparison of von Mises stress G~ contours in the matrix on 
the x = 0 plane predicted by (a) three-dimensional and (b) axisymmet- 
ric analyses for Vi=30%, h=O,Ol5r. Ei:Er:E,,~=35.0:O.05:l.O, 
vi:Vr:V m = 0.23:0.48:0.4. ~ was normalized by Er~:. 

6.00 

3 - D i m e n s i o n a l  ~ . ~  
4.0o * * * * * A x i s y m m e t r i c / 2  ~ 

2.00 ~ ,  

b 0"° 

0.00 

-2.00 
o '1'6" ?~":3'~"~.'6" ~'8" ;'d" ~'d"~'d . . . . . . .  90 1% 

an~ le  "0 in  degrees  

Fig. 6. Comparisons of stresses a~, c%, at, a,~ in the matrix along the 
interface between interphase and matrix for the two analyses in Figs. 
3 and 4. 0 varies from 0 ° to 90 ° as shown in Fig. I(b). 

effect of the interphase property on the stress distribu- 
tions and mechanical properties of  the composite, sev- 
eral different values of Young's modulus and Poisson's 
ratio of the interphase were assumed. Because of the 
geometrical symmetry of the unit cell, we only consider 
the stress on the x = 0 plane (CDGH). The stresses are 
represented as the ratio tr~/6., except for the case 
indicated, where 6z is the average stress applied to the 
composite. At interfaces, the radial and tangential 
stresses are defined as 

1 G ar = ½(or + ~ry.) + :( v - tL) cos(20) + z v z sin(28) (16) 

a~ = ½(tr: + ~>.) - ½(ay - 0:) cos(23) - L.z sin(20) (17) 

In a composite with a lower modulus interphase, the 
stresses around the interface between the interphase 
and the inclusion are shown in Fig. 7 for V~ = 23.56%, 
h=0 .015r ,  where the hydrostatic pressures are the 
characteristic of the stress concentrations, and reach 
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Fig. 7. Comparisons of stresses (r~, ~r¢, (rr, a~ in the interphase along 
the interface between particle and interphase for r~/r=0.7663, 
h =0.015r. 9 varies from 0 ° to 90 ° as shown in Fig. l(b). 
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Fig. 8. Comparisons of stresses a] ~., cs,, a,.~ in the interphase along the interface between particle and interphase with difl'erent interphase 
properties for r~/r =0.7663, h =0.015r. 3 varies from 0 ° to 90 ° as shown in Fig. l(b). 

maxima at the pole and minima at the equator. The 
calculations show that the stress distributions around 
the inclusions are weakly related to the interphase 
aspect ratios but very sensitive to the interphase prop- 
erty. Fig. 8 shows the stress distributions around the 
inclusion for different interphase properties. With the 
increase in elastic modulus of interphase, the stress 
contributions around the interfaces in three-phase corn- 

posites are very similar to those in two-phase com- 
posites. It can be concluded that when the mechanical 
property of the interphase approaches that of the ma- 
trix, three-phase composites become similar to two- 
phase composites. 

Fig. 9 shows the matrix stress distributions around the 
interface between the interphase and matrix for differ- 
ent interphase properties. Great changes occur in the 
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Fig. 9. Comparisons of  stresses an, ,7~, ~,., ~,,~ in the matrix along the interface between interphase and matrix with different interphase properties 
for r j / r =  0.7663, h = 0.015r. 0 varies from 0 ° to 90 ° as shown in Fig. l(b). 



320 Y. Wu, Z. Dong / Materials Science and Engineering A203 (1995) 314 323 

v 

3.00 

2.00 

1.00 

0.00 

3.00 

= : : : ' ~  h=0 .0075  , ~  
: - "  : : - :  h=0 .015  / , q r / ' -  ,.--., 

2 0 0  

b 
1.00 

EI:F_.¢: E,.= 35:0.05:1 
i i i i i i i t i i i i i i i i i i i i i t i i I 0 . 0 0  

0 20 40 60 80 1 O0 
angle ~ in degrees 

: : : : :  h=0 .0075  
: : - ' : :  h=Oi015 / . / "  

~:~:F-.m=35:0.05:1 
~ l l  i i i i i I l l l l ~ l l  I I I I | I ~  I 

0 20 40 60 80 1 O0 
angle ~ in degrees 

3.00 

2.00 

t~ 
1 .oo 

0.00 

- 1 . 0 0  

3.00 

= : : : z ~  h=0 .0075  
z. z..:.:. ~ h=0 .015  l l / / ~  ,__, 

2.00 

1,00 

b 

0,00 

El:E.f:Em=35:0.05:1 
t t  i l l t l i J l t l l l l t i l l l t i t t  I - - 1 . 0 0  

20 40 60 80 100 
angle ~ in degrees 

'~ : :  : "  h=0 .0075  
• :. :- =.:--:. h=0 .015  
~ :. ,~ ;, ;, h=0 .045  

l l l l l l l l ~ l l l l l l l l l l l | l l l T  I 

0 20 40 60 BO 1 O0 
angle ~ in degrees 

Fig. 10. Compar isons  of  stresses a~, 6e, at, ~,9 in the matrix along the interface between interphase and matrix with various thicknesses of  
interphase for r]/r= 0.7663. ,9 varies from 0 ° to 90 ° as shown in Fig. l(b). 

von Mises stress and tangential stress along the inter- 
face. With the increase in the interphase modulus, the 
saddle-backed O-e distributions for the low modulus 
interphase overturn the parabolic distributions for the 
high modulus interphase. The stress O-e decreases both 
at the pole and at the equator. The tangential stress 
increases at the pole and decreases at the equator as the 
interphase modulus increases. 

The stress concentrations along the interface between 
the interphase and matrix are also modified with the 
changes in the aspects of the interphase and inclusion. 
Fig. 10 shows the stress distributions for various thick- 
ness of the interphase. With the increase in the thick- 
ness, ae increases, but a~, ar and a~ all decrease in the 
polar region, and, in the equatorial area, all of these 
stresses increase rapidly except ar which has a minor 
increase. Fig. 11 shows the stress distributions around 
the interface between the interphase and matrix for 
various volume fractions of the inclusions. A great 
increase of the stresses occurs in the polar region when 
the filler content is up to 45%, that is ri/r = 0.9508. This 
high polar stress concentration at the interface may be 
attributed to the strong interaction between adjacent 
particles for a high volume fraction of inclusions. 

4. Elastic constants 

Because the exact solution for the effective shear 
modulus is not available for the coated-particle-rein- 
forced composite, although there is considerable infor- 
mation available on its bounds, we can only compare 
our results with Qiu and Weng's solution [9] of the 
effective bulk modulus for the material. To obtain the 
correct theoretical solution, it is necessary to let Cl and 
c2, the phase volume fractions defined in Ref. [9], be 
equal to Vi and Vf defined in Eqs. (1) and (3). Tables 1, 
2 and 3 show the predicted moduli of elasticity as a 
function of the interphase property, the thickness of the 
interphase and the volume fraction of inclusions respec- 
tively. For the given inclusion and matrix material, the 
elastic modulus of composites increases as the inter- 
phase property and the filler content increase but de- 
creases as the thickness of the interphase increases. The 
calculations show that the bulk moduli predicted by 
three-dimensional analysis give a satisfactory agreement 
with the theoretical results. 

Fig. 12 shows the bulk moduli obtained by three- 
dimensional analysis, axisymmetric analysis and Qui 
and Weng's solution as a function of filler volume 
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Fig. 11. Comparisons of stresses a~, (7 e, O'r, O',~ in the matrix along the interface between interphase and matrix with various volume fractions of 
particles. ,9 varies from 0 ° to 90 ° as shown in Fig. l(b). 

Table 1 
Predicted modulus of  elasticity and bulk modulus of  a three-phase 
composite as a function of interphase property for h=0.015r ,  
V i = 23.56%, Vf = 1.411%, and El:Era = 35.0:1.0, vi:v m = 0.23:0.4 

EF/E m vr Present results 

Elastic modulus Bulk 
ratio modulus 
E/Em k/Em 

Qiu and Weng's 
bulk modulus 
k/Em [91 

0.05 0.48 1.4321 2.0737 2.0877 
0.5 0.48 1.8654 2.2545 2.2715 
1.0 0.40 1.9306 2.2237 2.2458 

35.0 0.23 2.0265 2.2683 2.2905 

Table 2 
Predicted modulus of  elasticity and bulk modulus of  a three-phase 
composite as a function of  interphase thickness for V, =23.56%, 
Ei:E,.:E m = 35.0:0.05:1.0, vi:vr:v m = 0.23:0.48:0.40 

h/r V r Present results 

Elastic modulus Bulk 
ratio modulus 
E/E m k,/Em 

Qiu and Weng's 
bulk modulus 
/,- ,' E m [9] 

0.075 0.699'7,,  1.5668 2.1457 2.1625 
0.015 1.41 I% 1.4321 2.0730 2.0877 
0.045 4.399% 1.1962 1.8375 1.8478 

fraction. In the axisymmetric analysis, we take the filler 
volume fraction as Vj = 2(rl/r)3. It should be noted that 
the definition of V~ in an axisymmetric analysis is 
related to the packing structure of the axisymmetric 
cells and a different arrangement gives a different defin- 
ition [6]; however, such defined filler volume fraction is 
always larger than that defined in Eq. (1). From Fig. 
12, it is clear that the three-dimensional analysis agrees 
very well with the theoretical solution, but a great 

difference between the three-dimensional analysis and 
the axisymmetric analysis exists for larger volume frac- 
tions. To understand better this difference between two 
analyses, the moduli of elasticity predicted by the three- 
dimensional and axisymmetric analyses have both been 
plotted in Fig. 13 as a function of the ratio q/r as 
suggested by Agarwal and Broutman [6]. It is seen that 
the results of the two analyses are quite close at lower 
volume fractions; however, at higher r,/r ratios, the 
moduli ratios predicted by the axisymmetric analysis 
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Table 3 
Predicted modulus  of  elasticity and bulk modulus  of  a three-phase 
composite as a function of volume fraction of inclusions for 
h = 0.015r, Ei:Er:Em = 35.0:0.05:1.0, vi:vr:vm = 0.23:0.48:0.40 

V i Q.,'r Present results 

Elastic modulus  Bulk 
ratio modulus  
E,,' E,1 k ,,' E,, 

Qiu and Weng's  
bulk modulus  
k.,'En, [91 

10% 0.5759 1.1256 1.8091 1.8114 
23.56% 0.7663 1.4321 2.0730 2.0877 
30% 0.8306 1.6546 2.2292 2.2490 
45% 0.9508 2.5571 2.7215 2.7269 
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~ 2 . 0  
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1 . 5  
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Fig. 13. Comparison of modulus  of  elasticity of  the three-phase 
composite vs. r~/r predicted by three-dimensional and axisymmetric 
analyses. 

Table 4 
Predicted modulus  of  elasticity of  a two-phase composite as a func- 
tion of Q/r for E i = 60.4 × 1061bf 'm-~-, E m = 11.8 × 1061bf in 2, 
v i = 0.257, v m = 0.197 

r t/r Present modulus  of  Agarwal and Broutman 's  
elasticity ( x 106 lbf in -2) results [6] ( x  106 lbf in 2) 

0.714 15.63 16.06 
0.870 20.21 20.57 
0.952 24.55 24.96 

Fig. 12. Compar ison of bulk modulus  of  a three-phase composite vs. 
filler volume fraction predicted by three-dimensional and axisymmet- 
tic analyses and Qui and Weng's  solution for h=0 .015r ,  and 
Ei:Er:E,, = 35.0:0.05:1.0, t'i:Vf:Vrn = 0.23:0.48:0.4. 

are much higher than those obtained by the three- 
dimensional analysis. The calculations show that the 
difference in moduli ratios is caused by the difference in 
the average stress 6z predicted by the two analyses. This 
happens because the boundary area used to predict the 
applied stress ffz in the axisymmetric analysis is smaller 
than the area in the three-dimensional analysis, and the 
stress 6z calculated from the three-dimensional model is 
lower than that from the axisymmetric model. The 
higher the volume fraction, the larger is the difference 
in the stress 6z in the two analyses, If in the axisymmet- 
ric analysis the boundary area is extended into the same 
area as used in the three-dimensional analysis, and a 
proper stress 6: is added in the extended part, we find 
that the results of the two analyses can gain a satisfac- 
tory agreement. 

5. Comparison with theoretical results from Refs. [2,4,6l 

To investigate the present model more thoroughly, 
we simply compare our results with the theoretical 
solutions obtained from Refs. [2,4,6] for two-phase 
composites. The component properties are taken from 
Ref. [6]: Ei = 60.4 x 106 lbfin -2, v i = 0.257, and Em= 
11.8 x 1061bfin -2, Vm= 0.197; the interphase property 
is taken as equal to that of the matrix. Table 4 gives the 
comparison of the predicted modulus of elasticity be- 
tween our results and Agarwal and Broutman's results. 
A small difference in the elastic modulus exists and it 
may be caused by the difference in dividing forms of the 
three-dimensional mesh of the cell. Fig. 14 shows the 
comparisons of the bulk modulus and shear modulus 
between our results and the theoretical results obtained 
from Refs. [2,4]. The results show that there is a very 
good agreement among the three results in bulk mod- 
ulus, but a great divergence exists in the predicted 
values of effective shear modulus. Because the determi- 
nation of shear modulus is related to the approach 
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Fig. 14. Comparisons of the predicted (a) bulk and (b) shear moduli of a two-phase composites vs. volume fraction V, of inclusions obtained in 
three-dimensional analysis and theoretical solutions for Ea = 60.4 x 106 lbf in-Z, Em= 11.8 x ] 0  6 lbf in 2, v, = 0.257, v m = 0.197. 

used, our results which lie between the two theoretical 
solutions may be considered to be reasonable. 

6. Conclusions 

The results of the three-dimensional analysis and the 
axisymmetric analysis for stresses around the interface 
agree very well, even though a few differences exist in 
some local stress values and stress distributions. The 
predicted bulk modulus in the three-dimensional analy- 
sis agrees well with the theoretical solution for three- 
phase composites but presents a divergence with the 
predicted modulus in axisymmetric analysis for high 
volume fractions of inclusions. An investigation of the 
unit cell structures in the two analyses indicates that 
this divergence may be attributed to the difference in 
the unit cell structures between models for high volume 
fractions of inclusions and can be reduced by properly 
modifying the structure and stress distribution of the 
axisymmetric unit cell; the axisymmetric analysis can 
then give satisfactory results. 

The numerical analyses show that the stress distribu- 
tions around the two interfaces for the three-phase 
composite are sensitive to the interphase property. The 
changes in aspect ratios of the interphase and inclu- 
sions can also affect the internal stress concentrations 
and mechanical properties of the material. 

A simple comparison of our results with the theoreti- 
cal solutions [2,4,6] for two-phase composites indicates 
that the numerical results of the three-dimensional 
analysis are reasonable. The predicted bulk modulus 
agrees very well. Because the determination of shear 
modulus is related to the approach used, the predicted 
shear modulus lies between the theoretical results, 
which can be considered to be reasonable. 
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