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Abstract--ln this paper, a dynamic damage model in ductile solids under the application of a dynamic mean 
tensile stress is developed. The proposed model considers void nucleation and growth as parts of the damage 
process under intense dynamic loading (strain rates E/> 103 s - z). The evolution equation of the ductile void 
has the closed form, in which work-hardening behavior, rate-dependent contribution and inertial effects are 
taken into account. Meanwhile, a plate impact test is performed for simulating the dynamic fracture process 
in LY 12 aluminum alloy. The damage model is incorporated in a hydrodynamic computer code, to simulate 
the first few stress reverberations in the target as it spalls and postimpact porosity in the specimen. Fair 
agreement between computed and experimental results is obtained. Numerical analysis shows that the 
influence of inertial resistance on the initial void growth in the case of high loading rate can not be neglected. 
It is also indicated that the dynamic growth of voids is highly sensitive to the strain rates. 

1. INTRODUCTION 

DYNAMIC DUCTILE fracture such as spallation, tensile failure of smooth or notched bar specimens, 
and adiabatic shear bands is concerned with the nucleation, growth and coalescence of microvoids 
in ductile solids. Under the dynamic loading, especially the intense dynamic loading (strain rate 

/> 10 3 s- l), the behavior of damage and fracture in ductile materials is quite different from that of 
static or quasi-static loading. The major factors of influence on the process of dynamic damage are 
strain rate, inertial effects and thermal effect from plastic deformation work. Experimental 
observations show that the problem of dynamic frature is more complex than that of static fracture. 
Much attention has been given to static fracture; the dynamic problem has remained relatively 
unexplored. Meyers and Aimone [1] pointed out that the rate dependence, inertial effects and effects 
of temperature from local plastic deformations in the materials greatly influenced the process of 
dynamic damage and fracture in solids under intense dynamic loading. 

Grady [2] studied local inertial effects in dynamic fragmentation. He pointed out that the inertial 
effects played an important role in the dynamic fracture behavior of materials. After studying the 
inertial effects in a tensile test at a high rate of loading in detail, Regazzoni et al. [3] concluded that 
at high strain rates (g/> 10 3 s- l) inertia and strain rate sensitivity led to effects of the same order of 
magnitude. Tvergaard and Needleman [4] obtained the same result that inertial effects were an 
important factor during the growth of voids in porous ductile materials under very high strain rates. 
Johnson [5] discussed this problem qualitatively, but the inertial effects were neglected in his ductile 
void growth model. 

In this paper, the mathematical model of dynamic ductile failure under the application of 
dynamic mean stress is developed. The effects of material rate dependence, inertial effects and work 
hardening are investigated in detail. To simplify the theoretical analysis, some assumptions are 
employed that the matrix material is incompressible and the spherical geometry is maintained during 
the growth of voids. In addition, when dealing with void growth, the initial elastic and elastic-plastic 
phases of the process are neglected and it is assumed that all of the matrix material is in the plastic 
state. Although this assumption is not always reasonable, it is at least suitable for cases where the 
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plastic response dominates. These assumptions afford a great simplification in the theoretical 
derivation. 

As an application of the model of dynamic ductile failure proposed in this work, the process 
of spallation in LY12 aluminum alloy is simulated. Comparison of calculations and experimental 
results is reasonbly good. 

2. A MODEL OF DYNAMIC DUCTILE FRACTURE 

Nucleation and growth of voids are included in the failure model presented in this work. Define 
a damage variable, 4, called porosity as • = Vh/V, where Vh denotes the volume of the void, V 
denotes the volume of the solid plus Vh. The fracture criterion of the material is • >i ~c,t, where ~c.t 
is the critical porosity of fracture. We suppose that the porosity rate • is composed of two parts 

where " • "  denotes differential of time t, ~n is the contribution from the nucleation of voids, ~bg is 
the contribution from the growth of existing voids. 

2.1. Nucleation of  void 

Curran et al. [6] pointed out that because of the variety and complexity of the specific nucleation 
mechanisms, it was suggested that a priori quantitative derivations of analytical models of microflaw 
nucleation in structures are an unrealistic goal. They considered that the major factors to influence 
microflaw nucleation were stress, strain and temperature. Chu and Needleman [7] gave a description 
of void nucleation that followed a normal distribution about some mean stress. This idealization is 
employed in the present study, 4), is given by [7] 

a m "[- }O'k k - -  O'n O'm'2t - IO'kk - -  O'n > 0 f~ exp - Sn ' 
A =  

L 0 ,  am "~ lO'kk - -  O'n ~ 0 

where tTm is the microscopic effective stress in the matrix material, ~t~kk is the macroscopic mean stress 
and & is the current value of the effective plastic strain rate which represents the actual microscopic 
strain state in the matrix material. To describe a spallation type failure, we neglected the nucleation 
rate due to plastic strain, namely, B = 0. f~ is the volume fraction of void nucleating particles, s, is 
the corresponding standard deviation and a, is the mean nucleation threshold stress. 

2.2. Growth of  void 

We assume that the porous ductile material is statistically homogeneous and isotropic so that 
it can be effectively modeled by a homogeneous isotropic solid material. Moreover, we assume that 
the volumetric behavior of this effective homogeneous material is described by the PVE~ relation 
and a pore-collapse relation that depends on the properties of the matrix material. In addition, we 
assume that the spherical geometry of the void is maintained during the growth of a void. 

With numerical analysis Carroll and Holt [8] remarked that the elastic and elastic-plastic phases 
of a void growth are small compared with the plastic phase during the void growth. When dealing 
with the void growth in materials, we can neglect the initial elastic and elastic-plastic phases of the 
process and go immediately to the case of fully plastic deformation around the void. The assumptions 
of matrix incompressibility during pore collapse are adopted, which leads to great simplification of 
a thorough analysis of the pore collapse of our spherical model. 

A simplified model of the porous element is assumed. Consider a single spherical void of radius a 
in a sphere of radius b subject to external stress P(t) (Fig. 1). A damage variable, the distention 0t, 
is introduced for the description of the damage of fracture in the ductile materials. = is defined as 

b 3 
- b3 _ a3. (3) 
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Fig. 1. Porous ductile material model. 
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Consider the matrix material and void to be a system, work done by the applied external pressure 
P ( t )  is equal to the change of the system energy, namely, 

AEK + aEs + AE~ = W, (4) 

where AEK, AEs and AEi denote the changes of the kinetic energy, the surface energy of the voids 
and the internal energy in the system, respectively. W denotes the work done by the applied external 
pressure P ( t ) .  

As mentioned in the previous section, we neglect the initial elastic and elastic-plastic phases of 
the process and begin to consider fully plastic deformation in the solid around the void. 

Johnson's results [5] are used in this work, 

r ~ = r 3 o - B ( t ) ,  B ( t ) = a ~ ° - - ° ~  
So - 1 

B ( t )  ~o - ~ B ( t )  ~o - o~ 
a 3 o t -  1 ' b 3 o~ 

(5) 

(6) 

_ B ( t )  
3r 2 , (7) 

where " ° "  denotes the differential with respect to time t. r is the Lagrangian radial position 
coordinate in the solid surrounding the void and a0 is the initial radius of the void. 

Consider AEK, AEs, AE~ and W, respectively. AE~ is given by 

AEK = EK(~) -- EK(e.o), (8) 

where 

~n b 1 2 2 EK(a) = ~ f p s 4 n r  d r ,  (9) 

ps is the density of the matrix material. 
Using eqs (5)-(7), we have 

F 41ra°3 
EK(~) = [_9(~o----1)] 2(~---a]P' 1) ( ~ ° - ~ ) m [  1 -  ( ~ - - ~ ) m ]  ~2" (10) 

EFM 52/6-43 
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We can also obtain the expression for AEs 

AEs = Es(~) - Es(~0), 

where 

(11) 

Es(o0= [ 41ra~ ]9(OCo- ,/3 9(~o = 1)J ao 1) y (ct - 1) 2/3, (12) 

y is the surface energy expended per unit area during the hole expanding. 
The problem studied in the present paper is mainly concerned with the dynamic growth of  a 

spherical void under the intense dynamic loading. The process of the dynamic growth of a ductile 
void can be approximately considered as an adiabatic process. In addition, we suppose that there 
is no heat source in the system. With these assumptions, the change of  the specific internal energy 
is given by 

1 1 
dei = p SjkdE[ = p crede p, (13) 

where Sjk are deviatoric stress tensor components, E[ are plastic strain tensor components, ae and e p 
denote the effective stress and effective plastic strain in the matrix material, respectively. 

The matrix material is assumed to be rate sensitive, linear work hardening and visco-plastic. The 
constitutive relation is supposed to be 

ae = Yo + H~ v + r]~ p, (14) 

where I10 is the yield stress of  the matrix material, H is a linear work-hardening coefficient, r/is the 
material viscosity. ~P is the effective plastic strain rate. Since we assume a plastic deformation process 
with spherical symmetry, the equivalent plastic strain ~P is given by Johnson and Meller [9] 

E p = 2In r .  (15) 
r0 

The change of  internal energy in the system is 

AEi=l;Ifo'Pae(e)dEl4rcprZdr.  (16) 

By means of eqs (5)-(7) and (14), we finally have 

AEi = 9(~-~---- 1 V3(~) + r , (~ )  + r , ( ~ ) a  , (17) 

where 

F3(~)=2Yo ln..-7--~ + ~ l n - -  ~oln 
~ -  1 ~ o -  1 

(18) 

2 In ~ (19) 

fj ' ln(h + I) dh (20) 
F(~) = h 

o 

h o -  a o - a  h , =  ~ o - ~  
c x - l '  o~ 
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Fs(~)= 2 r / (  l n ~ - I  + l n a  ~o-~° )1" (21) 

Functions F3(a), F4(a) and Fs(~) denote the influence of the yield stress of the matrix material, 
the linear work hardening and material viscosity on the increment of internal energy, respectively. 
The change of work done by the applied external pressure P(t) is given by 

d W = - 4nb2P(t)db, (22) 

where P(t) is negative in tensile and positive in compaction. 
From eqs (5) and (6), the following expression can be obtained 

W = 4~ a ~  P(t)dc~. (23) 
3 ~ - 1  

0 

The applied external pressure P(t) can be considered as a function of distention a by means of 
the equation of state in the solid surrounding the void, namely [10], 

e(t) = e [ ~ ( t ) ] .  (24)  

In terms of eq. (24), eq. (23) becomes 

W = 4n a~ P(~)d~. (25) 
3 a o - 1  

0 

This expression is conveniently used in numerical simulation of dynamic ductile damage and fracture 
in solids. Substitution of eqs (8)-(12), (17) and (23) into eq. (4) gives 

Fl(00~ 2 + Fs(a)~ + FT(a) = 0, (26) 

where 

pal ( ~ ) ' / 3 1 1 _ ( ~ a l ) ' / 3  ] 
r , ( ~ ) -  2(~0 Z 1) (27) 

Ii P(fl)dfl FT(~) = F2(~) + F3(a) + F , ( : )  + 3 - F,(a0)~ - &(~0) (28) 

1 [dF2(a) dF3(a) dF4(a) 7 ~ ( : ) ~ < - ~ [ _ ~ +  ~ + ~ j "  

1 
-- 2Fl(~) { --Fs(~) + x/[Fs(~)] 2 - 4FI(a)FT(e)}. 

If the inertial effects are neglected, from eq. 26, a is reduced to 

= - [FT(a) - rl(ao)~l/r,(ot). 
When the void grows, namely, a ~> 0, the following inequality must be satisfied 

Equation (26) is the relationship from which we obtain the rate-dependent response of the void 
growth under dynamic loading. The terms in eq. (26) have a clear physical significance. The first term 
FI(~)~ 2 - Fl(~0)~02 on the left-hand-side of eq. (26) represents inertial resistance to the void growth. 
The second term Fs(a)a denotes the influence of the material viscosity on the void growth. The third 
term FT(~) is the sum of the total effects of the applied external pressure, the change of the surface 
energy of the voids, work hardening and yield stress in the solid surrounding the void on the void 
growth. These effects can also be isolated and studied in great depth. From eq. (26), the void growth 
rates ~ can be given by 

(30) 

(31) 

(32) 

F2(~)- 9(ao-  1)'/3~ ' ( ~ _  1)2/3. (29) 
ao 
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With the help of eqs (18), (19) and (29), inequality (32) becomes 

1V6~ (~°-1~' /3 - ~  F(~) - + 
8H ~o- 1 at-1 ~t ] 
3 ~ 1  l n ~ - ] - I  +2Yoln _ - - ~ ] .  (33) 

Let 

pon,(o,) - -  - i )  + 
8H ~o-  1 in a t -  1 ot 1 
3 ~---1 ~ +2Y°In~--S-T-1 ' (34) 

where Pc,t(0t) is the threshold stress for the dynamic growth of voids. The critical condition that the 
applied external pressures P(~) must satisfy for the void growth is 

P(~) < e~,(~). (35) 

The threshold stress Pent(or) is associated with the distention and material parameters. Carroll 
and Holt [8] obtained a similar result, but they did not consider the influence of the change of the 
surface energy of the voids and material work hardening. 

The condition of the threshold mean stress [eq. (35)] implies an interesting fact that the threshold 
stress for the void dynamic expanding is not associated with the loading rates, only with the distention 

of the porous ductile material as well as the material parameters, i.e. for the condition of either 
dynamic or quasi-static loading, the threshold stresses for the void growth are the same. 

2.3. Numerical analysis 

To investigate the effects of inertia, the material viscosity, under the different rate loading, we 
numerically analyse the analytical eqs (30) and (31) previously developed. In order to simplify the 
analysis, the material is assumed to be subjected to a linearly increasing hydrostatic pressure 

P(~) = P0 + Got, (36) 

where P0 = P~t(~0) and G are constants. 
In this section, pure copper is selected to be the material for the numerical analysis. The major 

material parameters used for calculations are listed in Table 1. 
Theoretical analysis and experimental observations [5, 6, 11, 12] have evidenced that the 

material viscosity (rate-dependent sensitivity), especially in the high strain-rate range, has a great 
influence on the process of damage and fracture in solids. The mathematical model of dynamic 
growth of a void presented in the present work also shows the same result. In general, the material 
viscosity r/is considered to be proportionate to 1/x//~, namely [11, 13] 

1 
r /~ ~-~ . (37) 

" v  

This means that the higher the strain rate in the material is, the lower the material viscosity is. We 
may estimate that for ~ ~ 103 s-~, r /~  1.0 (GPa.#s) and for ~ ~ 105 s-~, ~/~ 0.1 (GPa.#s). In Fig. 2, 
two sets of curves are given in terms of eq. (30). Profiles show the changes of distention rate a along 
with ~ for different viscosity values r/under the different rates of the applied external pressure. Figure 
2 is for G = 0.3, 0.1 (equal approximately to the loading rates of 10.0 GPa//~s and 1.0 GPa/#s) 
respectively. It is obvious that the effects of different viscosity r/on the change of 0~ along with u is 
great. The change becomes larger as the loading rates increase. These important results indicate that 

Table 1. Material parameters for pure copper-like material 

p (g/em 3) y 0 /m 2) Yo (GPa) H (GPa) r/(GPa.#s) 

8.92 0.09 0.26 0.23 0.1 
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Fig. 2. Influence of material viscosity r /with different values on the increment of  distention rate ~ under 
different loading rates. (a) G = 0.3, (b) G = 0.1. 

the material viscosity plays an important role in the behavior of dynamic ductile damage of the solids, 
especially for the high loading rates (~/> l03 s-  1). 

The inertial effects are investigated through the numerical analysis of the evolution eq. (30), in 
which the influence of inertia is included, and eq. (31), in which the influence of inertia is 
neglected. The results of the comparison of the void growth obeying eqs (30) and (31) with the 
different external loading rates are shown in Fig. 3. The profiles in Fig. 3 indicate clearly that the 
inertial effects on the dynamic growth of voids are significant. The smaller the material viscosity is 
[namely, the higher the strain rates are due to eq. (37)], the greater the inertial effects are. It also shows 
that the inertial effects become much greater as the distention ~ increases. Moreover, an important 
conclusion is obtained that when the strain rate ~ ~> 103 s-~, the inertial effects may almost be 
neglected, i.e. the influence of inertia is a special phenomenon under the case of intense dynamic 
loading. 

The coalescence of voids is found to have two modes, i.e. direct impingement and 
concerned by mierocracks which are composed of much smaller microvoids. The behavior of 
coalescence of voids is extremely complex. In general, it is assumed that coalescence takes place 
when distention ~ reaches some value ~c,t, called critical distention which can be determined by 
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Fig. 3. Influence of inertia on the increment of distention rate ~ under different loadings. (a) G = 0.3, (b) 

G = 0.1; for both (a) and (b), ~/= 0.1 (GPa-ps). 

experimental measurement. For pure copper, 0~¢rit ~ 1.43 [12]. The calculation stops when 
0t ~ ~ c f i t .  

3. NUMERICAL CALCULATIONS 

3,1. Plate-impact test 

As an application of the foregoing theory, a spallation experiment on LY 12 aluminum alloy was 
simulated. It is a plate-impact experiment in which a 5.28 rnm-thick LYI2 aluminum alloy plate 
strikes a 9.92 mm-thick LY12 aluminum alloy target. Specimens were machined into circular plates 
70 mm in diameter, The experiment was performed with a 101 mm bore single-stage light gas gun. 
The schematic arrangement for the experiment is shown in Fig. 4. The impact velocity is 0.35 mm/#s. 
The specimen was soft recovered with a specially designed catcher to prevent any secondary damage. 
The recovered specimen was finally sectioned along the diameter into two parts for measuring the 
distribution of postimpact porosity along the symmetric axis of the spalled LY12 aluminum alloy 
sample by means of  quantitative metaUographic examination. Measured pressure-time history is 
shown in Fig. 5. 
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Fig. 4. Plate-impact apparatus for spall study. 

3.2. One-dimensional finite-difference calculation 
The one-dimensional flow equations in terms of the Lagrangian position coordinate x are 

f & 3u 

N + ~ x  = o  

Ou Oa 
p0 Ot Ox = 0 (38) 

dE Ou 
p0~- - a~x = 0, 

where 

e----- 1-- po, 
P 

t is the time, p is the density (p0 is the initial density), u is the particle velocity in the x direction, tr 
is the longitudinal stress component and E is the internal energy per unit mass. 

The material constitutive equation is written in terms of the macroscopic mean stress (pressure) 
P and the deviatoric stress components Sg. In the model described here, void growth is only related 
to the mean stress P. The deviatoric stress components depend on the shear modulus p and yield 
strength Y, which are both functions of the porosity #. The plastic yield condition for the solid is 

3&S ~ ~< II2. (39) 

No attempt is made to include work-hardening and rate-dependent terms of the type used in 
eq. (4) for calculations of the wave profiles. These effects are still poorly understood themselves and 
do not greatly influence the fracture process. This treatment can simplify the calculation greatly. 

In the elastic region (3SuS U < 2 y2) the stress deviatoric rates are given by 

2 /dEe 1 6dE'~ (40) 

It is assumed that the function which relates pressure specific volume and specific internal energy 
for the matrix material in the porous state is the same as that which relates these quantities for the 
matrix material in its nonporous state. With this assumption, the P - #  model gives the pressure in 
the porous material as a function of specific volume, specific internal energy and porosity. The form 
of this function is determined by the pressure-specific volume specific internal energy (PVE) function 
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Fig. 6. Comparison of stress record from manganin gage in PMMA behind LY12 aluminum alloy with 

computed stress. 

for the matrix material in its nonporous state. We use the following PVE relation for the porous 
material [10] 

P = (1 - 40Ps{(1 - ~)V,E}, (41) 

where V is the specific volume for the porous material which is defined as V = po/p, the specific 
internal energy for the matrix material is the same in the porous and nonporous conditions, and the 
specific internal energy of the porous material is that of the matrix material, i.e. the surface energy 
of the pores is neglected. The PVE relation of the matrix material is given by [10] 

E' l Ps{( l  - ~ ) V , E }  = Ko (1 - ~ ) V  1 + rpsE ,  (42) 

where K0 is the adiabatic bulk modulus at zero pressure, F is the Gruneisen coefficient and here psF 
is assumed to be a constant given by its low-pressure value poFo. 

The relation between the macroscopic yield strength Y and porosity ~ is given by [10] 

Y = (1 - ¢)Y0. (43) 

The shear modulus is assumed to be degraded by the presence of voids. The relation between 
the shear modulus/a and porosity • is suggested by Mackenzie [14] 

# =/as(1 -- ~)(1 
6K0 + 12#s "~ 
9K0 + 8/as + # ) '  (44) 

where/as is the material shear modulus in the solid surrounding the void. 
The relation between ~s and a is given by 

(45) 

Table 2. Material parameters for spallation calculations 

Aluminum PMMAt 

po (g/em 3) 2.79 
Ko (GPa) 86.2 
Fo 1.7 
Yo (GPa) 0.33 
,us (GPa) 37.5 
r/(GPa.,us) 0.001 
#, (GPa) 1.7 
O~t 0.28 

1.185 
8.13 

tPMMA is treated in these calculations as a fluid (no shear strength). 
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A 

Fig. 5. Stress record from manganin gage in PMMA behind LY12 aluminum alloy specimen. 
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An application of  the dynamic failure analysis to the problem of  time-dependent spallation in 
LY12 aluminum alloy gives a very good representation of  the data (Fig. 6), with the material 
parameters  listed in Table 2. Comparison of the calculated final porosity, or void volume, with the 
experimental measurement is shown in Fig. 7. The computed distribution is reasonably good. 

4. S U M M A R Y  

A dynamic ductile failure model is developed in which the nucleation and growth of voids and, 
especially, inertial effects are taken into account. The closed form of  the evolution equation of  voids 
is obtained. Numerical calculations show that the inertial effects appear  to resist the growth of  voids. 
The higher the strain rates are, the greater the inertial effects are. It  is suggested that the inertial effects 
should not be neglected in the whole process of  spall fracture. It  is also indicated that the dynamic 
growth of voids is highly sensitive to the strain rates. Spall fracture of  LY12 aluminum alloy for 
plate-impact conditions is successfully described with the model. 

Note: LY12 aluminum alloy is the same as 2024 aluminum alloy. 
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