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A B S T R A C T :  A coupled map lattices with convective nonlinearity or, for short, 
Convective Coupled Map (CCM) is proposed in this paper to simulate spatiotemporal 
chaos in fluid flows. It is found that the parameter region of spatlotemporal chaos 
can be determined by the maximal Liapunov exponent of its complexity time series. 
This simple model implies a similar physical mechanism for turbulence such that the 
route to spatiotemporal chaos in fluid flows can be envisaged. 
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I. I N T R O D U C T I O N  

The Coupled Map Lattices [1] (CML) has become a fruitful approach to the intuitive 
understanding of spatiotemporal complexity in spatial distributed systems, like turbulence 
in fluid flows. The CML is advantageous not only in numerical simulation due to its explicit 
spatial and temporal  discretization, but  also in direct application of the low-dimensional 
chaotic theory to circumstances of higher dimensions. For example, Liapunov exponents of 
complexity time series are suggested to characterize spatiotemporal  chaos [2]. Therefore, a 
variety of CML models have been constructed to investigate the mechanisms of the corre- 
sponding physical phenomena. The construction of a CML model generally proceeds in the 
following steps[2]: 

(1) Take a (set of) field variable(s) at each site. 

(2) Decompose a complicated phenomenon into independent physical processes (e.g., 
convection, reaction, diffusion, and so on). 

(3) Replace each process by possibly simplest parallel dynamics at each site, that  is, 
the next state on each site depends on nonlinear evolution of the present state itself and of 
suitable chosen neighbours due to coupling. 

(4) Carry out such dynamical process in succession for a lattice chain. 

One of the well-known CML models is the Coupled Logistic Map Lattices (CLML) 
consisting of a local nonlinear function and a coupled term among the nearest neighbour 
sites. According to the above steps of constructing CML, we take local nonlinear function 
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as f ( u ~ ) ,  where f ( x )  = 1 - a x  2 (0 < a < 2) is the Logistic m a p ,  and the coupled term as a 
diffusive process 

e ~ 0 2 f  
~[f(uk+l)  + f (u~_ l )  -- 2f(u~)] oc Ou 2 

which, more or less, is something like what happens in a reaction-diffusion process. Com- 
bining these two physical mechanisms together, we can write CLML in  the form of 

u~ +I = (i -- ~)f(u~) -4- ~/2. [f(u~+l) 4- f(u~_l) ] "~ 
(1.1) 

J U~ : U~V U~ t : U~f+l 

where n is a discrete time step and i is a sequential number for any site ( i = 1, 2 , . . - ,  N,  
where N represents system size). 

Although CLML looks rather simple, there indeed exist much rich and complicated 
spatiotemporal  pat terns in it beyond our imagination. Kaneko has found the following two 
routes from spatiotemporal  order to spatiotemporal  chaos (weak turbulence) in CLML by 
numerical simulation and visualization of their patterns.  Qualitatively, these two routes can 
be stated as follows[2]: 

(5) The first route ( for large ~ and increasing a): 
Pat tern  Frozen => Pat tern  Selection ~ Pa t te rn  Intermittence ~ Spatiotemporal  chaos 

(6) The second route (for small c and increasing a): 
Pa t te rn  Frozen ~ Defect ~ Diffusion of Defect ~ Spatiotemporal  Chaos 
from which it is evident that  CLML will e v e n t u a l l y  exhibit spatiotemporal  chaos with in- 
creasing a even for large ~. 

Let us come back to fluid mechanics: turbulent  state may exist only for large Reynolds'  
number, that  is, either for large inertia force or for small viscosity. Consequently, spatiotem- 
poral chaos should correspond to larger nonlinearity a and less diffusivity ~ if we actual ly  
a t tempt  to find some similarities between CML and turbulence. However, the behaviours of 
CLML, where spatiotemporal chaos (weak turbulence) may exist even for large diffusivity, 
happen to be contrary to those of turbulence. Therefore, CLML is not suitable for mod- 
elling turbulence. Other CML models such as boundary layer coupled map lattices [3] and 
turbulence coupled mapI4] seem to possess the same shortcoming. 

The reason for this lies in the lack of convective nonlinearity. The above mentioned 
CML models contain only local nonlinearity and not any coupled nonlinear term, tha t  is, 
they have no convective terms. It  is commonly known that  the convective term is the main 
source of nonlinearity in hydrodynamical  equations like the Burgers equation. Based on 
this equation, a new model of CML involving convective term is constructed in the present 
paper (see II). Nevertheless, our objective is to find an appropriate nonlinear coupling term 
in CML rather  than to design a difference scheme of Burgers equation. In section III, we 
show that  CCM do exhibit the mechanism of turbulence to a certain extent.  

I I .  A C M L  M O D E L  I N V O L V I N G  C O N V E C T I V E  M E C H A N I S M  

As is well known, the Burgers equation includes both  the convective and diffusive 
terms. We consider this equation with periodic boundary 

Ou Ou 0 2 u  
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where  u s tands  for a veloci ty  componen t ,  v the  kinetic viscosity., t t ime,  and  x one di- 
mens iona l  Car tes ian  coordinate .  As usual,  we discretize the  spa t ia l  der ivat ive  by  upwind  

scheme 

d u i / d t  4- (ul  - u i - 1 ) u i / h  = Y(?Aiq-: + u i - :  - -  2?Ai)/h 2 (i = 1, 2 , - " ,  N )  

where  h is a space  step,  and  define 

U = (?A:,..., ?AN) T 

g(?A,,u,_:)=-(?A~ -?A~-:)?A, Ih 

G ( U )  --- [g(?A1, ?A0),""", O(?AN, ?AN-:)] 

12 E=-~ 

- 2  1 0 . . .  0 1 

1 - 2  1 . . .  0 0 

�9 o . �9 

0 1 ". ". ". 
�9 . . . . 

". "* "* ",  O 

0 0 0 " ' .  " ' .  1 

1 ---  0 - - ,  1 - 2  

then  the  discret ized Burgers  equa t ion  can be wr i t t en  as 

d V / d t  -- G ( U )  + E U  

In t roduc ing  the  t r an s fo rma t ion  

(2.1) 

T ~ T ~ 
= v~(1 - "~'v i ) + ~ v  i v~_: 

_= p(v~, v?- : )  

Subs t i tu t ing  t ~- n T  and t ---- (n q- 1)T respec t ive ly  into Eq.(2.4),  and  combining  Eq.(2.5) 
lead to  

T ?A~+: = p(?A;~, ?AL:) + 121Sp(?A~, ?A?-:) 

(2.5) 

�9 U = exp{( t  - t , ~ ) E } V  (2.2) 

where  tn -- n T  (n -- 0 , 1 , 2 , . - . )  wi th  T as the  t ime  step,  and  subs t i tu t ing  Eq.(2.2)  into 
Eq.(2.1),  we ob ta in  

d V / d t  = e x p { - ( t  - t n ) E } a { e x p [ ( t  - t n ) E ] V }  (2.3) 

Not ing  E is a quas i - t r id iagonal  ma t r ix ,  E k is a (2k -t- 1) quas i -d iagonal  mat r ix .  Since the  

effect of  the  i t h ' s  neares t  ne ighbour  la t t ices  on the  i t h  la t t ice  is only  considered,  U in Eq.(2.2) 

can be  reduced  as 

V = Y § (t  - t n ) E Y  (2.4) 

According  to the  rule of  coupl ing a m o n g  the  neares t  ne ighbour  lat t ices  and  Eq.(2.4),  we 
discretize Eq.(2.3) a t  t ime  tn  = n T  

v? +: = v? - T .  g ( ~ ,  ~ - 1 )  
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h n where A is a discretized Laplace operator.  Let u~ ---= ~ z ~ ,  t h e n  

T 
z~ -I-1 = [ z ~ ( 1 ,  g~) + z~zin_..1] --~ -~1). /~ [z~(1 - z~) --~ z~z,n_..1] (2.6) 

We see from Eq.(2.6) tha t  a CML model, which can properly simulate turbulence, should 
include the following two physical mechanisms: 

(1) The local nonlinearity and coupled nonlinearity due to the convective term: the 
former comes from the Logistic map f ( x )  = A x ( 1 -  x) with a nonlinear parameter  A, whereas 
the latter is a nonlinear coupled term like zinzi_l" 

(2) The diffusion of nonlinear terms due to the viscosity: we only consider the diffusion 
of the local nonlinear term like A f ( x  i) and ignore the diffusion of coupled nonlinearity 
because of its strong smoothing effect. 

Combining the above two mechanisms together, we can construct a CML model in- 
volving convective mechanism 

OL n n n 
a~ n + l  = (1  - -  OL --  / 3 ) f ( x ~ )  + ~ [ f ( X i _ l  ) + f ( X h l ) ]  + / 3 X  i X i _  1 ( 2 . 7 )  

= = 

where c~,/3 E [0, 0.4]. In order to compare it with CLML, we would rather  choose the local 
func t ion  f ( x )  in an alternative form of Logistic map: f ( x )  = 1 - ax 2, in which a is a 
nonlinear parameter.  For the sake of convenience in numerical simulation and theoretical 
analysis, we further assume ~ = /3  = ~, and then Eq.(2.7) is t ransformed to a simpler form 

x n + l  ---- (1 -- 2 E ) f ( x ~ )  -I- ~ [ f ( x~ .+ l  ) -I- f ( x ~ _ l )  ] -I- Ex~x,n__l 
(2.8) 

The above model with both  nonlinear convection and diffusion is called Convective Coupled 
Map (CCM). It is necessary to emphasize that  CCM is proposed for investigating mecha- 
nism of spatiotemporal complexity in fluid flows, but  not for simulating Burgers equation. 
Actually, CCM is not a suitable difference scheme for Burgers equation. 

I I I .  C H A R A C T E R I Z I N G  S P A T I O T E M P O R A L  C H A O S  F O R  C C M  

In the present section, the temporM and spatiotemporal  chaos is characterized by the 
maximal Liapunov exponent and the maximal Liapunov exponent of complexity time series 
respectively. The corresponding parameter  regions can also be demarcated by the discussion 
on the critical one of them. 

Let us begin with the maximal Liapunov exponent of CCM. Assume 

= 

to be a small perturbation,  which satisfies the following linear equations 

6X,~+l = A ( n ) 6 X n  = ~ I  A ( j )~X1  
j = l  

where A(n)  is the Jacobi matr ix of Eq.(2.8) at X n  = (x '~, . . .  ,X~v ). Denote the maximal 
n A " eigenvalue of YIj=I (3) by pn- Then,  the maximal Liapunov exponent turn ou t  to be 
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= limn--.oo ~ log Ipnl, which is calculated by the Resband algorithm[ 5]. The main point of 
this method is the way to estimate the magnification of normalized per turbat ion vectors: 

= - l o g  II, jll 
n - " ' *  O 0  n 

j=l  

where a j  = II Xjll. Dividing the ranges of the nonlinear parameter  a from 1.5 to 2 by a step 
0.025 and Of the diffusion parameter  e from 0 to 0.4 by a step 0.02, a topography map of the 
Liapunov exponents versus parameter  pair (a, c) and the contours of zero Liapunov exponent 
are shown in Fig.1 and Fig.2. It  can be found from Fig.2 that  the Liapunov exponents are 
positive to the left of the line vertically cutting across a-~ plane. And they are negative to 
the right of it. Evidently, there exist a few chaotic windows within the regions enclosed by 
these contours. As a result, we can conclude that  the exponents are positive for small c, 
whereas they vanish or even become negative as ~ increases. 

0.55 , ~  

0.I2~ ~ 

-O.30~ 

2 . 0 0 ~  

1.90" 

1. 

o " %  

, O.lO . . . . .  1.50 
0.00 

0.00 
2.00 

1.90 

1.80 

1.7{] i 

1.6G t 

1.5C 
0.00 

0.10 0.20 0.30 
' \ 

i 

0.10 0.20 0.30 

0.40 
2.00 

1.90 

1.80 

1.70 

1.60 

1.50 
0.40 

Fig.1 Surface plot of L-exponent Fig.2 Isogram plot of L-exponent 

Now we are further concerned with the spatiotemporal  chaos. As rand0m-like evolution 
of spatial patterns,  spatiotemporal chaos is for the first t ime defined as sensitivity to initial 
pat tern,  thus leading to unpredictability of evolution of spatial patterns.  To depict a pat tern  
for spatially extended systems quantitatively, we should introduce a concept of complexity 
borrowed from Ref.[5] as follows: 

Let S be a symbolic string consisting of 0 or 1 with a certain length l (S)  and substring 
set v(S) .  Q is an alternative string. A new string R is produced by connecting them, 
such tha t  R = SQ. If Q e v(SQTr) = v(RTr), such a string connection is  called a copy, 
otherwise, an insert, in which RTr represents an operation of truncating the last symbol in 
R. Furthermore,  the number of inserted substrings required to generate R is represented 
by L Z ( R ) ,  i.e. so called L Z  complexity. Then, the complexity of R is defined as C(R)  = 
L Z ( R ) / [ l ( R ) l o g  2 l(R)], whose denominator is L Z  complexity of random symbolic string 
consisting of 0 or 1 with the same length l(R). Finally, we find that  the complexity of a 
String R is a relative complication of R to L Z  complexity o f  the random symbolic string 
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with the same length l ( R ) .  The larger is C(R),  the more complicated is the symbolic string 
R. 

It is time for us to start  characterizing sPatiotemporal chaos for CCM by the maximal 
Liapunov exponent of a complexity t ime series. The procedure of its computat ion is divided 
into the following steps[S]: 

(1) A special string X~ = (x~,- �9 �9 x~)  produced at each iteration step is coarse-grained 
and turned into a symbolic string S~ = ( s ' ~ , . . . , S ~ v ) ,  i.e. if x~ > 0.5, s~ = 1; otherwise, 

n n s k = O. In this way, we obtain a symbolic string S~ = ( s ~ , . . . ,  s~) ,  in which elements sj 
are either 0 or 1. Physically, this kind of procedure represents the kink-antikink structures 
of the largest scale in CCM. 

(2) Using the above mentioned techniques, we calculate the complexity Cn = C(S,~)  of 
a symbolic string, and the corresponding complexity time series C~ for pat tern evolution. 

(3) The maximal Liapunov exponent of complexity time series for CCM is obtained by 
Taken's embedding and Wolf's approachIT]. 

If the maximal Liapunov exponent of complexity time series for CCM is positive, 
it means nothing but  spatiotemporal  chaos, that  is, CCM is sensitive to initial pattern.  It 
should be noted that  the positive maximal Liapunov exponent instead of that  of a complexity 
t ime series does not imply spatiotemporal chaos. As a mat te r  of fact, it merely means a 
temporal  chaos. 

By now, we have obtained the maximal Liapunov exponent of complexity time series 
and contours of zero Liapunov exponent (see Fig.3, Fig.4), from which we can see that  if 
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Fig.3 Surface plot of L-exponent Fig.4 Isogram plot of L-exponent 

for complexity series for complexity series 

is small, they gradually increase from negative to zero and eventually become positive 
as a is growing. On the other hand, they ult imately become negative as e is growing no 
mat te r  what a is. Hence, the spatial pat tern of CCM evolves from spatiotemporal  order to 
spatiotemporal  chaos as a is increasing for less e. In this case the corresponding maximal 
Liapunov exponents of complexity t ime series vary from negative to positive. However, if e 
is large enough, the spatiotemporal  pa t tern  will become regular or even an equilibrium state 
of homogeneity in space. For this case, the corresponding maximal Liapunov exponent is 
negative and the maximal Liapunov exponent of complexity t ime series is also negative. 
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I V .  C O N C L U S I O N  

According to the foregoing discussion, all models of CML available so h r  are incapable 

of modelling turbulence mechanism. The reason for the si tuation is tha t  the convective term, 

which nonlinearity in the Navier-Stokes equation comes from, has not been included in t hose  
CML models. In contrast,  CCM proposed in the present paper  includes the convective t e rm 

indeed, and exhibits some behaviours of turbulence in fluid flows at least in the following 
two aspects: 

(1) As a measurement  of spat io temporal  chaos, dependence of the  maximal  Liapunov 

exponent for complexity t ime series upon nonlinearity a and  diffusive coefficient ~ to a certain 
extent reflects dependence of turbulence upon the Reynolds '  number.  

(2) There is an analogue of spat iotemporal  pa t te rn  obtained by numerical simulation in 

CCM to those in fluid flows, namely, competi t ion,  intermit tence and spat io temporal  chaos 
in realistic fluid flows may occur in CCM as well. 
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