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Abstract. The dynamic stress intensity factor histories for a half plane crack in an otherwise unbounded elastic 
body are analyzed. The crack is subjected to a traction distribution consisting of two pairs of suddenly-applied 
shear point loads, at a distance L away from the crack tip. The exact expression for the combined mode stress 
intensity factors as the function of time and position along the crack edge is obtained. The method of solution is 
based on the direct application of integral transforms together with the Wiener-Hopf technique and the Cagniard- 
de Hoop method, which were previously believed to be inappropriate. Some features of solutions are discussed 
and the results are displayed in several figures. 

1. Introduction 

The elastodynamic transient response of a body containing a crack poses a difficult analytical 
problem. Both stationary and constantly propagating semi-infinite cracks in a homogeneous, 
unbounded solid or along the interface of two half-planes have generally been considered. 
Freund [1], [2] developed important analytical methods to solved the elastodynamic tran- 
sient problems in a two-dimensional geometric configuration. In recent years, Achenbach 
and Gautesen [3], [10] investigated elastodynamic steady-state response for a semi-infinite 
crack under 3-D loading. Freund [4] dealt with the case of incident stress-wave loading, and 
some extensions have also been considered by Ramirez and Champion [5], [6]. All of  these 
problems possess no fixed characteristic length and hence the solutions exhibit some dynamic 
similarity. A three-dimensional configuration of particular interest is that of a pair of opposed 
collinear concentrated loads acting on the crack faces at a fixed distance from the crack edge. 
Attributed to the existence of the characteristic length in loading, it was long believed that 
the Wiener-Hopf technique could not be directly applied. Recently, Kuo and Cheng [7], [8] 
proposed a solution procedure, which directly applies the Wiener-Hopf technique to analyze 
the elastodynamic fields for crack problems with characteristic lengths in loading in two- 
dimensional situations. Li and Liu [9] investigated the elastodynamic stress intensity factor 
histories for three-dimensional elastodynamic crack problems. 

In this paper, the dynamic stress intensity factor histories for a half plane crack in an other- 
wise unbounded elastic body are considered. The crack is subjected to a traction distribution 
consisting of two pairs of suddenly-applied shear point loads, at a distance L away from the 
crack tip. The exact expression for the combined mode stress intensity factors as the functions 
of time and position along the crack edge is obtained. Some features of the solutions are 
discussed and the results are displayed in several figures. 
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2. General formulation 

In vector notation the Navier equation governing the displacement vector u for an isotropic 
elastic solid is written as 

ii = C2V(V.u)  - C ~ V x ( V x u ) ,  (2.1) 

where Cd and Cs are the dilatational and shear wave speeds, respectively. 
In terms of the Lam6 constants A and # and the mass density p, the wave speeds are given 

by 

C2 = A + 2 ,  

P / " (2.2) 
c 2 u 

P 

It is also useful to introduce the dilatational and shear slownesses a and b, where a = 1/Cd 
and b = 1/Cs. Furthermore, the Rayleigh wave speed of the elastic material is denoted by 
CR and its corresponding slowness by e. 

A standard approach when solving (2.1) is to introduce the displacement potentials ~o and 
~b through the Helmholtz decomposition of the displacement vector, i.e. 

u = V~ + Vx¢ ] 
(2.3) 

f v . ¢  = 0 

The scalar dilatational wave potential ~ and the vector shear wave potential !b = 
(~bx, ~bu, ~bz) satisfy the uncoupled wave equations 

202~ } 
V2~ = a - ~ -  . (2.4) 202~b 

The two potentials are coupled through the boundary conditions that characterize the 
problem to be described. 

Consider the elastic body containing a half plane crack depicted in Fig. 1. The body is 
initially stress free and at rest. The material is characterized by the shear modulus #, the 
Possion ratio u, and the mass density p. A right-handed rectangular coordinate system is 
introduced such that the z-axis coincides with the crack edge, and the half plane crack occupies 
y = 0 for x < 0. Equal shear traction on the two crack surfaces produces an antisymmetric 
displacement field. Thus attention can be restricted to the upper half space y>~0. The complete 
set of boundary conditions to be satisfied by the stress wave fields is: 

%y(z,O, z , t )  = 0 

axy(x,0,  z,t)  = Pl5(x + L)5(z)H(t) 

Cryz(X, O, z, t) = P2~(x + L)~(z)H(t) 

u x ( x , O , z , t )  = 0 

Uz(x,O,z,t) = 0 

for - c ~  < z < c ~  and t>~0 

-cx~ < x < oo 

-cx) < x < 0  

- - ~ < x < 0  

0 < x < ~  

0 <  x<cx~ 

(2.5) 
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Fig. 1. Geometrical configuration of the elastic solid. 

Note that Eqns. (2.5) are defined only on half of the range of x. In order that the two-sided 
Laplace transform can be applied, the boundary conditions must be extended to apply the full 
range of x. Thus, the boundary conditions can be rewritten as 

%y(x,  0, z, t) = 0 

~x~(z,o,z,t) : ~L(x ,z , t )  + oL(x ,z , t )  
auz(x ,O,z , t  ) = a;z (X ,z , t  ) + a+z(X,z,t) , (2.6) 

u x ( x , O , z , t ) =  u~ (x , z , t )  

Uz(~,O,z,t) = Uz(X,z,t) 

for the full range - ~  < x, z < ~ ,  0 < t < oo. 
Obviously, the superscripts "+"  and " - "  are used at this point to indicate on which half of  

the x-axis a superscripted function is nonzero. The notation is carried over into the transformed 
domain. 

The initial conditions are expressed in terms of the displacement potentials by 

O~'( z' } ~(~,y,z,O)=O ~ y,z,O)=O 
, (2.7) 

°¢ (x, o) o ¢(~,y,z,O) o -by y,z, = 

for y > O. Likewise, the boundary conditions (2.6) can be replaced by their corresponding 
representations in terms of ~ and ¢. 

3. M e t h o d s  o f  so lut ion  

Transform techniques are now used to determine elastodynamic stress intensity factors ka and 
k3. The following equations are written in terms of the dilatational wave potential ~o - the 
shear wave potential may be treated in a similar manner. 

First, the one-sided Laplace transform over time is introduced. The parameter is s, and the 
transformed function is denoted by a superposed hat. Thus, 

5 ~ ( x , y , z , s )  = ~ ( x , y , z , s ) e - S t d t .  (3.1) 

Next, the dependence on z is suppressed by taking a two-sided Laplace transform with 
parameter s(.  The transform function is denoted by a superposed bar, i.e. 

/5 -~(x ,y , ( , s )  = ~(x ,y , z , s )e -S~Zdz .  (3.2) 
o o  
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Finally, a two-sided Laplace transform over x is taken with parameter s~?. The transformed 
function is denoted by a capital letter, i.e. 

~(7, Y, ~, s) = -~(x, y, ~, s) e -snx dx. (3.3) 
o o  

The governing equations for the potential ¢ and ¢ are now transformed, leading to the 
ordinary differential equations 

d2~ 820t2t~ = 0 I 
dy 2 

d2~ 82"/02"1,I / = 0 
dy 2 

where 

O~2 __ a 2 _  1-]2_~2 / 

r2 b 2 _  72_~2  f "  

as 

(3.4) 

(3.5) 

General solutions in the transform domain, which are bounded as Y-+oo, can be written 

4i,(7, y ,~ ,s  ) = A e x p ( - s a y )  ) 

• (7, v, ~, ~) = B exp(-~/~u) / " 
B = (S~,By,Uz) 

(3.6) 

The complex z/plane is cut along real axis so that Re(a))O and Re(/3))0 for each value for 
~. The Laplace transformation of the boundary conditions and (2.3b) provide six equations, 
i.e: 

where 

u;- 

u;- 

(/32 - 72 - ~2)A - 2~/3Bx + 2~tS.Bz = O, 
1 + 

- 2 7 a A  + ~r/Bz + ~¢3By + (f12 _ 72)Bz = _~(a,y(rl, ~, S) + a~v(7, ~, S))/s  2, 

- ( 2 ~ A  + (/3 2 - ~2)B~ + 7~B~ + ¢7Bz) = ~('~+z + %)/~2,  

7A - ~B v - t3Bz = U~ /s, 
~a + 7By +/3B~ = U~ /s, 
7Bx  - ~3.By + ~Bz = O, (3.7) 

:/2 
:/2 
:L 

2 fV~(x, z, s) exp(-s(~z + 7z)) dzdx, 

f 2  Cz-~(x, z, s) exp(-s(~z + 7x)) dzdx, 

f_~ &+v(x, z, s) exp(-s(~z + 7x)) dzdx, 
(>o 

f ~°~r+~(z, z, s) exp(-4~z + Vz)) dzdz. 
o o  

(3.8) 
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If A, B~:, B u, Bz are eliminated from the above equations, two algebraic equations will be 
obtained 

. T _  = + , 
O'y z 

(3.9) 

E = -47?23fl - ~2~2 _/32(2 _ (/32 _ r/2)2 ] 

F -4~0a/3 + r]~(fl  2 -- ~2) _1_ /]~/32.4_ ~f](f l2 _ ?.]2) / " (3.10) 
G _4~2o~f i  _ (fi2 _ ~2)2 _ 02fl2 _ 02~2 

In order that the Wiener-Hopf technique can be applied, one hopes the left-matrix can be 
transformed into a diagonal matrix. After some manipulation, one may obtain 

g + z ) + ( a z ~ ) } =  [ ~  /3] [ ~ _ ~ r / ] {  U~- } (3.11) 
- o  U 7  " O'y z 

If we set ~ = iu and u is a real, then the matrix notation is 

2 + + 2 -  = - 0 2 ~ S u 2 X ( , ) D Q I ) X ( , ) U  - ,  (3.12) 

where 

R(r/, u) = (f12 _ rlz + u2)2 + 4~/3(7/2 _ u2), 

a = ~ / a 2 - o 2 + u  2, f l = ~ / b Z - 0 2 + u  2, 

.r>'u' 0] 0 x(r/) = r/ D(r/) = , iu ' ] /3b2 

Eqns. (3.12) are called Wiener-Hopf equations. 

4. Wiener-Hoof technique 

Introduce a new function S(r/, u) by defining 

n ( o , u )  
S(O , u) = k(c2 _ r/2 + u2 ) k = 2(52 - a2). (4.1) 

The function S(0, u)--+l as ]0]--+oo and it has neither zeros, nor poles in the finite r/ 
plane. The only singularities of S(r/, u) are the branch points at r/ = +v/-~ + u 2 and at 
~/ = +v/b 2 + u z which are shared with R(r/, u), and it is single valued in the 0-plane cut 
along v/a 2 + uZ<,.IR~(o)]<...v/b 2 + u 2, I,~(0) = 0. The property that S(~, u) = S(0, u) for the 
restricted range of u may be exploited to show that 

S±(,, u) 

= exp { _  1.  / b  tan_l ( 4 ~ 2 ~ ~ ~  ~d~ } ,  (4.2) 
~" Ja ~ (b 2 -  2~2) 2 ] ~ ( +  X/~ 2 + u24-~/) 
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where the overbar denotes complex conjugate. The functions S+(7, u) and S-(7,  u) are 
analytic and nonzero in the half planes R~(r/) > - v ' ~  + u 2 and R~(7) < v ' ~  + u 2, respec- 
tively. 

The function 3 may be factorized as 

3 : ¢ b 2 - r l Z + u 2 =  [¢VZ~+u2+7]+ [¢v/-~+u2-r?]_,  (4.3) 

thus 

D(7) : D+(7)D-(7). (4.4) 

Here 

D+(7) = 

D - ( 7 )  = 

b (V/~ + U 2 + 7)1/2 

0 

v ~  ( 4 J  + ,,2 _ 7 ) s - ( 7 , u )  
b (x/~ + U 2 -- 7) 1/2 

0 

0 

~/%/~ -~- U2 q- 7 

o ]. 
C v ~  + u 2 - 7 

Therefore, (3.10) can be solved to yield in matrix notation 

E + + E-  = -#sA+A-U - 

(4.5) 

(4.6) 

(4.7) 

where: 

A + - (~ + lu l ) - l x (w)D+(7)  "[ 

A- (7-lul)-~D-(7)X(7) f" 
To solve (4.7), one first observes that 

(A+) -1 = (7- - lu l )  -1B+ B + = [D+(7)]-lx(7), 

(4.8) 

(4.9) 

and 

(A-)  -1 = ( 7 +  l u l ) - * B  - B -  : X(7)(D_(~)) - l .  

Matrix multiplication of (4.7) by (A +)-1, then gives 

s 1--(7 - lul)-IB+E- + 10?-s lul)-l{B+~'+- (B+E+)'=Iul} 

= - # A - U -  - ! ( 7 - l u l ) - l ( B + E + ) v = l u l  . 8 
One may easily know 

1 1 
(7 -  lul) -1B+E- - 

s 77 - lu l  

1 G ( 7 )  

(V#~ + u 2 + T/)l/2(.pl?'] + iP2u) 

v ~ / b ( v ~  + u2 + 7)s+ 
1 

( , /~  + u2 + 7)~n(fliu - P27) 

es~TL 

(4.10) 

(4.11) 

_ (4.12) 
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From the above expression one can find that the pole must be removed at r/ = [u[, so 
that 

1 llu((a(r/)_ Co ) 1 1 {B+E + _ (B+E+),7=I~,I} + 8 2 r /_  
r/-lul 
= - # A -  U -  1 1 (B+y+)o=l~l 1 Go 

r/ lul ~2 r/_ lul" 
(4.13) 

Here 

Go = G(rl)In=M. (4.14) 

Since the function (G(r/) - Go)JQI - lul) is analytic and goes to zero as M ~ o ¢  in the 
strip -v/b-2~--~ -2 < Re(r/) < ~ ,  it can be expressed as the sum of the two functions 
a+(r/) and C_(r/). 

1 /B G(Z)-Go dZ } 
G+(r/) = - 2 r i  r z - l u l  z -  r/ . 

a _ ( r / )  = (a( ,7)  - a o ) / ( r / -  I~l) - a + ( r / )  

(4.15) 

Substituting for G+ (r/), G_(r/) in (4.13), one obtains 

_ 1 
1 1 {B+Z + - (B+E+)n=Iul} + ~-G+(r/) 

r/ lul 
= -#A-U- 1 1 (B+F+),~=Iu I 1 Go 1 

r/- lul s 2 r / -  lul ~ 2 G - ( r / ) "  (4.16) 

The left-hand and right-hand sides of (4.16) are clearly regular in the overlapping half planes 
Re(r/) < lul and Re(r/) > - v / ~ - +  u 2, respectively. Consequently, by analytic continuation, 
both sides represent one and the same entire function E (~7). According to Liouville's theorem, 
a bounded entire function is a constant. After some analysis one gets E(r/)_=0. Hence: 

lul(B+S+ ) = 1 s + 

(4.17) 
Go 

1 ( ~  _ - - ~ ( B + E + ) ~ = I u l  G_(r/))  -IzA-U- = ~-2 + - - r / -  I"1 + " 

The one remaining unknown quantity B + E  + at r/ = lul, follows from the requirement 
that the pole must be removed at r /=  - lu l  in order that U -  is analytic in the left-half plane, 
i.e. 

1 1 [ ~ : B + E + ~  ] -~U-=8-i~+lulB-[~_lul( ).=J~,l + / 3+ , 

/3+ - G___~0 + G_(r/).  
r/- lul 

(4.18) 

After a careful analysis of the right hand side of (4.18), one may find the determinant of 
the matrix X(r/), defined by (3.13), vanishes at r /=  +lul and consequently X(r/) has rank 1 at 
that point. 
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As a consequence B +, defined by (4.9), also has rank 1 at ~ = lul, and maps all vectors 
into a vector proportional to 

el = (D2, iD1 sgn(u)). 

Hence, B + E  + at r /=  lul can be expressed as 

(B+E+)n=lu I = gel,  

where g is a constant which involves linear combinations of the value of E+ at ~ = lul. The 
constant g must now, however, be chosen such that the residue from the pole is zero. That this 
is possible follows from the observation that at ~ = - lu l  the matrix B -  is singular and maps 
the vector el into the zero vector. In particular, we have 

D2 (3+),7=_M) 0, (-D2, iDlsgn(u))(( iDlsgn(u) ) sg 

*g = 2lul e2"(3+)'7=-Iul 
el .e2 

from the above expression and one can find that 

, (B+E+),7= M _- 2lUle~e2eV(3+),=_l~,l, 

where 

ex = (D2, iDl sgn(u)) 

e2 ~--- ( - D 2 ,  iD1 sgn(u)) 
D2 = (v/b 2 + u 2 + lu[) l/z 

v ~  (v'7 + u2 + lul)S+(l~l, u) 
D1 = 

b ( v ~  + ,z2 + lul),/2 

therefore 

E+ = 1A+ ( 21ul el e2 . (3+) ,=_M_G+( r / ) ' ~ ,  
s \ 7 / -  [u[ el'e2 / 

1 B -  ( 2lul ~.1 e ) 
u -  = - s 2 ~  + lul ~ - F u l e  • 2 e2"(3+)'7=-Iul 3-/3+ " 

(4.19) 

(4.20) 

(4.21) 

5. The stress intensity factor histories along the edge 

Stress intensity factors k2 and k3 can now be concluded. It is expected that 

~ k2 ( z ,  t) 
~(x,o,z,t) ~ ~-~o+. 

t) k3(z' t) ~z(X,O,~, 
(5.1) 
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Fig. 2. The integration Bromwich path. 

The transformed stress intensity factors may be written as 

k2(u, s) = lim 2~rz)l/25,:v(z, o, u, s , 
z--+O+ 

~3(U, 8) = l im ( (27rz) l12-~vz(X,o ,u ,s ) ) .  
x--+0+ 

Use of Abel's theorem on the asymptotic properties of the transformed gives 

~2(u,s)  = lim ((2srl)ll2tT+v(rl, o,u,s)) , 
r/----+ o o  

(( :z( D k3(u , s) = lim 2sr1)II2o " rl, o, u , s  . 
77....-+00 

Therefore 

: :jI . 01 ~3(u, s) J i m ( ( Z s ~ ) ' / 2 X + ) 0  -1 

(21ul el 1 

\ el .e2 2r /  

After some analysis (see the Appendix), setting t = ~ + u2w, one obtain 

- 1 V ~ (  2[ui(v/b2+u2+'u')2 
~2 = 7 (v~  + u2 + 1,4)2 + ~ ( v ~  + u2 + lul)2S2 

fl ° e -`Lx'/bz+u2w dw ~/-~+ U 2 ( P 1 v ~  + U 2 W  - -  iP2u) 
X ( b Z _ . } _ u 2 ) w 2 u  2 /c2+u2 S_ ( V / ~  + uZw, U ) 

Vb2+u2 - w 

2ui.k (v/-~ + u 2 + luI)(x/e 2 + u 2 + [u[)S+(]u]) 
. v ~ - l -  b2 ( v ~  + .~ + lul) 2 + ~ ( v ~  + .2 + lul)~s~ 

~1 °~ ~/b 2 d- u 2 P l i u  + P2v/-~ + uZw e_sL b2v/-~-~u2w dw 
X (b z -[- ~t2)~/3 2 -- U 2 V/~ -- 1 

(5.2) 

(5.3) 

(5.4) 
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{oo ¢/~ + ,~2(plvg- + u2w - iP2~) 
+ J, ( v ~  + ,,~w + I-1) 

( W -  1)l/2. e -sL'V/~-+u2w } 

× vv('~b=+~= - w) S _ ( v ~ +  u2w) dw ' (5.5) 

1V~(-2ui(v~+u2-4-lul)(x/-~-4-uZ+lul)S+(lul) 
-k3 = 7 ( v ~  + u= + lul)2 + ~(v/-y + u2 + lul)2S~_ 

f l  °° ¢ / ~ +  u2(w - 1)I/2 ( P 1 v f ~ + u 2 w - i P 2  u) × 

\V b2+u z - 

x e - s s ~ w  dw - 2klul (v/-~ + u2 + iul)2S~-(lul) 
b2 (v /~-+ u 2 + }ul) 2 + ~ ( v ~  + u 2 + lul)2S 2 

f l  ° ~ + u 2 el iu + P 2 v ' ~  + uZw e_sLv/~-+u2w 
X (b 2 + U2)W 2 -  U 2 V/W-- 1 

- / ¢ ¢  v ~ C f ~  + u2w + lul Pliu + P2x/~ + U2W e - * r ~ w  - 1 (5.6) 

After relaxing the constraint that u is real, inversion of Laplace transform over z gives 

k3(z,s)  27r a-~+~,,~ k~(u,s) 

where uoE(-b, b). 
Changing the order of integration between the integrals over the transformed variable u 

and w, one obtains 

k3(z, s) 

where 

, i  ('2) 
< • > d u =  . 

i(W,8) = ~ d-oo+uoi i 3 
(5.8) 

It is hoped that the final Laplace inversion of k2, k3 on time can be done by inspection. By the 
use of Cagniard-de Hoop method and letting 

L V/~  + u2w -- uzi = t (5.9) 

Eqn. (5.11) can be solved for u to yield 

tz i+wL~/t  2 - (z 2 + wZL2)b 2 

UL. 4_ = Z2 + w2L 2 (5.1o) 
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Fig. 3. The normalized stress intensity factor k2 versus normalized time Cst/L. When P, = P2 = 1.0, z = 0.4L 
and To = ~/1.16. 
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Fig. 4. The normal ized stress inmnsity factor k3 versus normalized time Cst /L .  When  P1 --  P2 --= 1.0, z ----- 0 .4L 

and To = lx/~.16. 

where the posi t ive square root is taken. 
I f  l~e(UL±) = 0, one has t = bv/z 2 + w2L 2, and the vertex o f  the hyperbola  is thus defined 

by 

u m tz zbi 
i -  

Z 2 + w 2 L  2 v / z 2  + w 2 L  2 

The transit ion to the Cagniard-contour  defined by  u z ±  is very s imple in this case because no 
poles and branch points are crossed. Along the Cagniard contour  (Fig. 2) one now introduces 
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t as the new variable, which leads to 

i 2 (~ ,  ~) = 

1 [°°  R~ 

X 
191 ~b 2 J r  U2L+ W - -  iP2UL+ (W- ~]l~l/20UL+ot Jr IL2+ W) } 

b 2 v/-w - 1 (%/5 2 -I- u2+ + UL+) 2 -4- ~ ( ~ b  2 -I- u)_,+ 4- UL+)2,~ 2 

-PluL+ + P2i~/b 2 + U2L+W OUL+ } 
(b~ + uL )~-  ~+ ot 

+Ro. / ~ ) 

× s_(Jb= + u)~+,,) e-~'" at' (5.11) 

1 ~ R~ - 

~ . ~  (~/b~ + 4+ + ,~+)~ + ~(@~ + 4+ + u~+)~.~ 
~b 2 + u2i+ ( w -  1)1/2 

-w) 
(Pl~/b 2 + U2L+W -- iP2UL+ ) 

X 

s_(~/b~ + uL,~)((b~ + u L ) ~ -  u L )  

+Re{ 2kuL+ 

OUL+ I Ot 
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PliUL+ + P2~/b 2 + U2L+W OUL+ 1 ] 
X (W- 1)1/2 at (bE + u2+)w2_ u~,+ 

+Re ~/b 2 .~_ U2L+W .~_ UL + (11)-- 1)1/2 Ot e-St'dt'  (5.12) 

the inverse Laplace transform of [ may thus be expressed as 

I (w, t )  = ~ ( . ) H ( t - b . ~ / z  2 + w2L2). (5.13) 

In order that the convolution theorem for Laplace transform may be applied, one defines 
two functions H2, H3 as 

k2(z, t) - OH2(z, t) H2(z, O) = 0 ] 

Ot i 
k2(z, t) - OH3(z, t) H3(z, 0) = 0 

Ot 

(5.14) 

Then 

k2(z,,) = , & ( z , , )  ) 
~3(Z, 8) S/~3(Z , 8) / (5.15) 

which, coupled with (5.11), (5.12), (5.8), yields 

(H2(z,~) oo hr3(z,s)) =~fl i(w,s)dw, (5.16) 

thus 

= fVb2L2 "~ [(W,r) drdw.  
H3(z,t) J1 w2L 2 Tr(t--- r)  

(5.17) 

By setting T = t/bL, ~ = z/L, (5.17) can be rewritten as 

H2(~, T) - 

H3(~, T) - 

d,  [ ~__x2(~, ~) d,,,, 7r5/2L1/2 l.I1 Jv '~ ,E+w 2 

~ b  r ~ ~ d* f ~ / 3 ( w ,  "7") dw. 7r5/2L1/2 Idl J~/~,2+w2 

(5.18) 

Concluding from (5.18) and (5.14), one has 

k2(~, T) = 

7r512L312 OT ~2 
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Fig. 5. The normalized stress intensity factor k2 versus  normalized time C~,t/L. When P1 = P2 = 1.0, z = 0.6L 

and To = x/1.36. 
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Fig. 6. The normalized stress intensity factor k3 versus normalized time C,t /L .  When PI = P2 = 1.0, z = 0.6L 

and To = ~ .  

x/R/ 2~L+ (~/1 + ~t2+ + ~2L+ )2 ~1 + £t2+ 
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Plql + ¢flL+W- iPzCsL+ (w-- 1)ll2O~'O~+] 1 } 
(1 + ~L), .  ~-  ~+ / ~:/~-~ ~ s_(~/1 + ~+~) 

f 2k~ZL+ S+ (x/1 + ~'L + ~",+ )i/1 + ~'L (x/~ + ~'L + ~",+ ) 
(x/~ + ~+ + ~,,+ )~ + ~(x/1 + ~+ + ~+ ) ~  

333 

-PluL+ + P~iql + ~L+W O¢sL+ t 

f 
~/,,~ + 17~+ (w _ 1.1/2 o,~L + 

s 07- 

/ /~+~ ) 

S-_-(~-I 7~27+-" ~ ~ -  r dw , 
(5.19a) 

k3(~, T) = 

~r5/2L3/2 0T Jl 

S ~  { { 2~L+ i( qI -I- ~2+ 'p ~L+ )( qo2 -p ~I2+ -t- ~L+ × 
-(~/1 + ~L + ~+)~ + bill ~ + ~'L + ~'~+~s~- 

×S+(£IL+) ~ + 't2~+ ( w -  1) l/2 

) t,V '+~+ w 

(Ply/1 + ~+~,- iP~,~+) o~+ ] 

× s_(~/1 + ~,+~)((~ + ~L)w ~ - ~+)  o~ 

f_Zk~zL+ (q(~2 + 122+ + 17L+)2 52(1 + 122+ 
+R~ 

PliZSL+ + P2V/1 + ¢SZL+ w O~L+ 1 t 
( w -  1),/2 o~ (1 + ~+)~- ~,+ f 
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Fig .  7. The normalized stress intensity factor k2 versus normalized time C,t/L. When PI = P2 = 1.0, z = 0.8L 
and To = lx/[-,~,64. 
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Fig. 8. The normalized stress intensity factor k3 versus normalized time C~,t/L. When P1 = P2 = 1.0, z = 0.8L 
and To = ~/1.64. 

+ 

+ R o  + 

dr ) 
× Tv/--~--2-~_ T d w , 

where  

T ~ + w x / T  z - ~2 _ w2 
^ 

~L+ --  ~2 + 1132 

(5.19b) 

C 
= ~. (5.19c) 

6.  R e s u l t s  a n d  d i s c u s s i o n  

One  useful  check  on the results obta ined for  k2(z,  t) ,  k3(z, t) is that  these results should  he 
reduced  to the stress intensi ty fac tor  histories for  the cor responding  two-d imens iona l  L ind  
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Fig. 9. The normalized stress intensity factor k2 versus normalized time Cst/L.When P1 = - t . 0 ,  P2 = 0.0, 
z = L and To = V'~. - - - static SIF; - -  dynamic SIF. 
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0.0 . I "  

- 1 . 0  j j 
0.0 20 .0  40,0  60.0 

TIME T 
Fig. 10. The normalized stress intensity factor k3 versus normalized time Cst/L. When P1 = - 1 . 0 ,  P2 = 0.0, 
z = L and To = ~/2. - - - static SIF; - -  dynamic SIF. 

l o a d  p r o b l e m  s o l v e d  b y  F r e u n d  [2] w h e n  i n t e g r a t e d  o v e r  t he  r a n g e  - ~  < z < ~ .  I f  t h e  

i n t e g r a t i o n  is p e r f o r m e d  o n  (5 .7) ,  o n e  has  

/ Z)dz / hi2 ) 
= - ~ - - c  ~ - - ~  e - s L u  d u ,  f-~ &(z,,) v s ~ Jb - F : / ( u -  6)1/2 

t h e r e f o r e  

/ j_~(~) v~,~  ~-~_~-~-~ 
- P2H(t - CsL) 

(6 .1)  

(6 .2)  
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Fig. 11. The normalized stress intensity factor k2 versus normalized time C,t/L. When P~ = 0.0, P2 = -1.0,  
z = L and To = v'~. - - - static SIF; - -  dynamic SlF. 
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T I M E  T 

Fig. 12. The normalized stress intensity factor k3 versus normalized time C,t/L. When P~ = 0.0, P2 = -1.0,  
z = L and To = ~/2. - - - static SIF; - -  dynamic SIE 

which  agree with the results  presented in [2]. 
The  integral  in (5.19) has been evaluated numerical ly ,  the procedure  o f  numer ica l  calcula-  

t ion is that, firstly, k~(~, T)(r  = 2, 3) is writ ten in the fo l lowing  fo rm 

= - - ~  2. -- V~z 2 + w2fr(w, ' t ' (x))  d w d  , ( r  = 2, 3),  (6.3) 
7r OT \J1 ao 

where  

r ( x )  = v ~ +  w 2 + ( T  - x /~-+  w2)(1 - x2), (6.4) 

then, the integrate calcula t ion has been ca rded  out  by  use o f  Gauss ian  quadrature  fo rmulas  

k r = - ~  (d ,d2+d3d4) f r (wi ,  r j )+d2d3  [fr(wi, rj)] OiRj ,  (6.5) 
= j=t 
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TIME T 
Fig. 13. The  n o r m a l i z e d  s t r e s s  i n t e n s i t y  f ac to r  k2 v e r s u s  n o r m a l i z e d  t i m e  C , t / L .  W h e n  P l  = - 1.0, P2 = - 1.0, 

z = L a n d  To = V'~. - - - s t a t i c  S IF ;  - -  d y n a m i c  SIF. 

where 

_ ~,2 -Jr- 1 x/r~ _ ~2 _ 1 

wi = 2 + 2 Yi, 

T 
dl - 2 ~ '  

d2 = I T - ~ t ~ q - w  2. 

d3 = 

d4 - 

V / ~ - - Z  2 -  1 

(6.6) 

1 (1 wi dl(1 + yi)), 

and 
Yi is the ith zero of legendre polynomials LN1 (x); xj is the j th  positive zero of legendre 

polynomials L2N2(X); Oi is the Gaussian weights of order N1; Rj = 2W (2N=), W~ 2N=) is the 
Gaussian weights of order 2N2. 

In this paper, N1 = 127 N2 = 10 and the results of numerical evaluation for Poisson 
ratio u = 0.3 (b = 1.87a, ¢ = 2.02a) are shown in Figs. 3-14. The time scale has been 
nondimensionalized so that To corresponds to the arrival of the shear wave at the observation 
position z along the crack front. The dynamic stress intensity factors have been normalized 
by premultiplying (5.19) by (~r l) 3/2/x/2. Following the sudden application of the point loads, 
a point z along the crack edge is at rest until the arrival of  the shear wave front. 

At the observation position z near to the crack face, the transient field consists only of 
the plane wave parallel to the crack face and traveling away from it at speed C,, and the 
shear loading does not generate a plane dilatational wave field, similar to the two dimensional 
situation [2]. 
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Fig. 14. The normalized stress intensity factor k3 versus normalized time Cst/L. When PI = - 1 . 0 ,  P2 = -1.0, 
z = L and To = ~/2. - - - static SIF; - -  dynamic SIE 

After the arrival of the shear wave, attributed to the characteristic lengths in loading, the 
system of waves produced not only include the first arrival of the direct waves, but also the 
second reflection waves produced by the first waves interacting with crack edge. Because our 
solutions include a system of all waves' arrival at a fixed position at the same time, the results 
in Figs. 3-8 give us very complex and beautiful phenomena, similar to the mode I situations 
[9]. 

Figures 9-14 show the normalized stress intensity factors versus normalized time Cs/tL. 
From these figures we can observe that the transient stress intensity factor histories decay very 
gradually toward their equilibrium stress intensity factor distributions for this configuration. 
Here 

x/~P1 1 [ 2u 1 - z 2 / L  2 ] 
I<2(~o,z) = -(,~L)3/21 + (z/L)2 1 + 2 - , ,  17~--PT~J 

x/~P2 4u z / i  
( ~ 5 ) 3 / 2  2 - ~, (1 + z 2 / L 2 )  2 

X/'-2P2 1 [ 2u 1 -  z2/L 2] 
I('3(O0'Z) = --(7I"5)3/21 -{- ( z / i )  2 1 - 2-- u 1 7 z~/L2J 

x/2Pl 4u z /L  
(TrL)3/22-  u (1 + z21L2) 2" 

This completes the analysis of the three-dimensional stress intensity factor histories for the 
particular applied traction distribution (2.5). Results could be derived for a number of other 
traction distributions in a similar way. 

APPENDIX 

From (4.15), one has 

1 f G(z)  - Go 
a+(r / ) -  -2~ i  JB~ z -  I ~ I 

dz 

Z - r / '  
(see Fig 2) 



= (BY Jodan lemma) f + fz  
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27ri (t + lul)(t + 7) 

2~i (t + lul)(t + 7) 

{ ~r (t + lul)(t + '7) P,i~+P=t 

Substituting for G+ (r/), in (5.4), one may obtain (5.5), (5.6). 

-i(- b2v[~+t)l/2(-Plt+iP2u ) 
v~/b(~/:+~2-Os_ (t,~) 

i -L- -  -(Pliu + P2t) 
(t-v/b2-Fu2)l[ 2 

v~/b(~-t)s_(t,~) 
-i " P2t) ~ - -  (Pl~u + (t_v/b2+u2)l/2 " 

(t- b2y/~'~)l/2(Plt-iP2u) } 
v / k / b ( ~ - t ) S - ( t , u )  e-sLt 

l e-sLt _ Go I 
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