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Influence of Two Secondary Effects on Shear
Failure of Cantilever with Attached Mass
Block under Impulsive Loading*

Ya-Pu ZHAO**, Tong-Xi YU***
and Jing FANG****

The influence of two secondary effects, rotatory inertia and presence of a crack,
on the dynamic plastic shear failure of a cantilever with an attached mass block at its
tip subjected to impulsive loading is investigated. It is illustrated that the considera-
tion of the rotatory inertia of the cantilever and the presence of a crack at the upper
root of the beam both increase the initial kinetic energy of the block required to cause
shear failure at the interface between the beam tip and the tip mass, where the initial
velocity has discontinuity. Therefore, the influence of these two secondary effects on
the dynamic shear failure is not negligible.
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1. Introduction

It has been found experimentally that transverse
shear failure is one of the three basic failure modes of
fully clamped beams™™ and fully clamped plates®*®
subjected to impulsive loading. Some approximate
theoretical analyses have been performed to predict
the occurrence of the different failure modes. On the
basis of the result of the well-known experiment by
Menkes and Opat™ on impulsively loaded ductile
metal beams, Jones® carried out an approximate
theoretical study of this problem for predicting the
onset of these three failure modes. Duffy® found that
hard-point shear failure in cylindrical shells are ade-
quately predicted by the theory for shear failure in
beams™, by studying two loading cases (i.e., rectangu-

* Received 22nd December, 1993.
** LNM, Institute of Mechanics, Chinese Academy of
Sciences, Beijing 100080, China
*** Dept. of Mechanical Eng., The Hong Kong Univ. of
Sci. & Tech., Hong Kong, and Dept. of Mechanics,
Peking University, Beijing 100871, China
**** Dept. of Mechanics, Peking University, Beijing
100871, China

Series A, Vol. 38, No. 2, 1995

lar pressure pulse and exponential pressure pulse).
The dynamic response and failure of fully clamped
beams and circular plates were analyzed by Shen and
Jones®™ using the interaction yield surface which
combines bending moments, membrane force and
transverse shear force. Yu considered the possibility
of dynamic shear failure of a cantilever with an
attached mass block at its tip subjected to impulsive
loading®. He assuned that relative sliding occurred at
the interface between the beam tip and the mass block
as soon as the mass block was loaded impulsively,
otherwise the shear force at the interface would be
infinite. Yu also studied the influence of the rotatory
inertia of the tip mass. Recently, Zhao et al.*” theoret-
ically investigated the dynamic plastic shear failure of
an infinitely large plate with a centered cylindrical
boss under impulsive loading. They showed that the
influence of the rotatory inertia of the plate element
on the shear failure is not negligible, and the consider-
ation of the rotatory inertia of the plate element
increases the initial Kinetic energy required to cause
dynamic plastic shear failure at the plate-boss inter-
face.

Beam or cantilever is the most widely used
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engineering element, and the dynamic response char-
acteristics and failure modes of beams are of impor-
tant value to the response and failure analyses of
other engineering elements. The background of this
problem is a piece of built-in pipe struck transversely
by a flying object.

It is the aim of this study to assess the influence of
two secondary effects (i.e., rotatory inertia and pres-
ence of a crack) on dynamic plastic shear failure of a
rigid-perfectly plastic cantilever with an attached
mass block at its tip subjected to impulsive loading.

Notations

: width of square block attached at beam tip

: width of the cantilever

. dimensionless kinetic energy

: thickness of cantilever

- mass of block

. length of cantilever

> mass per unit length of cantilever

: bending moment

: YBH?/4, fully plastic bending moment per
unit length

. shear force

: YBH/ /3, fully plastic shear force per unit
length

¥ - radius of gyration

. time

V . velocity

Vo : initial velocity of block

. coordinate measured from the beam-block
interface

. deflection of cantilever

. uniaxial yield stress

. slenderness ratio of cantilever

> shear strain; weakness coefficient of the
cracked cross section

. angular velocity

. length

AL

. rotation

. angular acceleration
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2. Consideration of Rotatory Inertia of Beam

The initial configuration of the problem consid-
ered is shown in Fig.1(a). A rigid mass block is
attached to the tip of the cantilever, which is struck
transversely by an impulsive load and obtains an
initial velocity Vi. Parkes®® considered the rigid
perfectly plastic response of this problem. Yu has
considered the dynamic plastic shear failure at the
interface between the beam tip and the mass block®.
In this section, the rotatory inertia of the beam ele-
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ment will be taken into account. For simplicity, the
following assumptions are adopted

@ The deflection of the cantilever during the
deformation process is much smaller than the length
of the cantilever L.

® For the cantilever with a uniform rectangular
section, let H and B represent the thickness and the
width of the beam, respectively. m denote the mass of
the beam per unit length.

(® The material of the beam is rate-independent
and rigid perfectly plastic ; the rotatory inertia of the
beam element is considered.

@ The rigid tip mass is a square block whose
volume density and width are the same as those of the
cantilever, as shown in Fig. 1(b). The rotatory iner-
tia of the tip mass is also considered.

The square yield function shown in Fig. 2 is adopt-
ed in this paper. If the interface between the rigid and
plastic zones is stationary and the stress points are
located on side AB or CD, then the discontinuity
conditions at this interface are given by

[y]=[Ql=[M]=0. (1)
Otherwise, the discontinuity conditions are expressed
by

TR

-
Vo

(a) [Initial configuration of the structure

B

},a/“ H

(b) Schematic illustration of the mass block

Fig. 1
Q
Q,
A 1 B
M
M
—1 0 1 ?
C —1 D

Fig. 2 Square yield function

Series A, Vol. 38, No. 2, 1995

NI | -El ectronic Library Service



The Japan Soci ety of Mechanical Engineers

238

[¢]1=[Q]=[M]=o0. (2)
Because of the discontinuity of the initial velocity at
the interface between the tip mass and the cantilever,
shear force is singular at this section at =0, so that
relative sliding occurs at the initial instant. The
deformation mechanism is illustrated in Fig.3. The
equations of motion of the cantilever are

Q=my (3.2)

M=Q—mrd (3.b)
where @ and M are the shear force and the bending
moment, respectively, y is the deflection of the cantile-
ver, = H/2y 3 is the radius of gyration, y’=¢+7, ¢ is
the rotation of lines which were originally perpendicu-
lar to the initial midplane, due to bending, and 7 is the
transverse shear strain.

If its rotatory inertia is taken into account, the
equations of motion of the mass block may be given
by®

GV,=— Q» (4.a)

Ga*Q/6=M,+ Qva/2, (4.b)
where M, and @, denote the fully plastic limit bending
moment and fully plastic shear force per unit length,
respectively. G is the mass of the block.

The angular acceleration and the velocity at the
side adjacent to the beam tip of the mass block can be
expressed by

s 3YBH* (1, 1 a
., _YBH (10 . H
v-=v— B2 (ﬁ+3a)t. (6)

Equation (6) shows that the velocity of the block at
the side adjacent to the beam tip decreases linearly
with time.

Since the beam is divided into two different
regions, a rigid region and a plastic region, it would be
convenient to study them separately.

2.1 Analysis of rigid region of beam (0£Lx<£A)

It is clear that the acceleration distribution in this
region is linear with x ; therefore, it can be expressed
as

V=V*+ dor, (7)
where V* is the acceleration of the beam tip adjacent
to the block, and ¢, is the angular acceleration of this

. N :
g o

Fig. 3 Deformation mechanism
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rigid region.

Noting that Q= — @, at x=0 and using both Egs.
(3.a) and ( 7), one can obtain the shear force distribu-
tion as

Q=—Qu+mV*x+mdox?/2. (8)

Substituting Eq. (8) into Eq. (3.b) and integrat-
ing, one can obtain the distribution of the bending
moment given by

M=Mp—(Qp+mr’do)x+mV*x2/2+mdx?/6,

(9)
where the boundary condition M=M, at x=0 has
been used.

2.2 Analysis of plastic region of beam

In this region, since the stress points are located
on side AB or CD in the square yield surface, then

y=0, M =0.

From Egs. (3.a) and (3.b), we know that the accelera-
tion of the beam in this region # satisfies

i =i =0, (10)

The general solution of the above equation can be
written as

i = C(t)exp(x/r)+ Cu(t)exp(—x/r). (11)
Since #—0 for sufficiently large x, it is required that

Ci(8)=0.
Thus, the distribution of acceleration in this region is
given by

i = C(t)exp(—x/r) (12)

It can be shown from Egs. (3.a), (3.b) and (12)
that the shear force distribution in this region is given
by

Q=—mrCyt)exp(—z/7). (13)

2.3 Shear failure analysis

On the basis of the continuity requirements of the
cantilever for acceleration, bending moment, shear
force and slope, one can obtain the following equa-
tions :

V*+ o= Cot)exp(— A/r) (14.a)

— Qo+ mV* A+ mdoA2)2=—mrCo(t)exp(— A/r)

(14.b)
Mo—(Qo+mr>P)A+mV*N2)2+ m$oA3/6=0

(14.c)
do= —-%Qexp( —Afr), (14.d)

where V*, ¢, A and Cx(#) are unknown variables.

It may be shown from Eqs. (14.a) and (14.b) that
A satisfies the following dimensionless equation :

@Q++)3Bs+452—6)

=2(1+&)(12+ &£2+38), (15)

where {=A/r.

Equation (15) is solved numerically, and the value
of ¢ is found to be

£=2.392, (16)
ie.,
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A=0.69H. a7
Thus, the acceleration of the beam tip adjacent to the
block is

V+=9 YB 1+¢
m 1+ /2+¢&%/2
063408 (18)
m
Integrating Eq. (18) and with V*=0 at {=0, we
obtain
Vr=063428 ¢, (19)
m

Equation (19) means that the velocity of the beam tip
increases linearly with time.

It is clear that the relative sliding velocity at the
interface between the beam tip and the block is given
by

(V]I=V——V*

=V TBE [ I8 +sHasy(4) ] o

It should be pointed out that assumption @ has been
used in Eq. (20), i.e., m=GH]/q". Equation (20) shows
that the relative sliding velocity at the interface
decreases linearly from its initial value Vp with time.
Therefore, the total sliding displacement at the inter-
face may be given by

[Sl=5 U%+3~§+2 53( H) ]ﬁl, 1)

where Ko=GV#/2 is the initial kinetic energy of the
block.

Equation (21) can be written in a dimensionless form,
namely,

[S1/H = K°[ﬁ+3—li+253( )2]_1. (22)

Failure is considered to occur when
[SI/H>E, (23)

where % is the material constant to be determined
experimentally. It is obvious that complete severance
occurs at the interface when £=1; however, trans-
verse shear failure is likely to develop for a smaller
value of %4 for beams®?. The value of £ may be larger
for ductile materials and smaller for brittle materials.
For convenience, 2=1 is used in the present study ;
for other values of % shear failure analysis can be
treated in the same manner. It is obvious, therefore,
that complete shear failure occurs at the interface
when

K> [ }% +3—@+2 53( H) }MP. (24)

For convenience, a dimensionless kinetic energy
is introduced as

eozKo/Mp. (25)
The critical value of the dimensionless kinetic energy,
ecr, can then be written as

0 L H 2
Cor ﬁ+3—+253< H) (26)
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When ey= ecr, dynamic plastic shear failure is consid-
ered to have occurred.

Bearing in mind that the critical dimensionless
kinetic energy, when the rotatory inertia of the canti-
lever is neglected, has been obtained by Yu® as

o= }%+3ﬂ+1 33(-4Y, (26)°
It is clear that the consideration of the rotatory iner-
tia of the cantilever increases the initial Kkinetic
energy required to cause complete shear failure at the
interface between the beam tip and the mass block.

It can also be found from Eq. (14) that the angu-
lar acceleration of the rigid part of the beam is

YB (ﬁ) . @n

¢’ =—0. 65—(—;—
The above discussion holds if 2<| 0|, for which it is
required that

a\* a
0.65(ﬁ) ~J3 (ﬁ>—1.5 >0. 28)
It is required by inequality (28) that
a/H >1.60. (29

3. Influence of Presence of a Crack

Suppose that there is a crack (or notch) at the
upper root of the cantilever whose initial
configuration is shown in Fig. 4. The crack weakens
the cracked section to such an extent that a stationary
plastic hinge develops there when the bending moment
reaches a value yM»< Mp, where 0< y<1 is a function
of the crack size, with the limiting case y=1 corre-
sponding to no crack. The nonlinear relationship
between y and physical size depends on the cross
section of the beam and the assumed geometry of the
crack and may easily be determined by considering
the statics of a fully yielded uncracked ligament2-1%,
The so-called “double-hinge model” and the square
yield function, shown in Fig. 2, are used in the analy-
sis.

The deformation mechanism is illustrated in Fig.
5. Points B and C are two stationary plastic hinges.
The application of conservation of momentum and
conservation of angular momentum on the system
gives

SV A= OLGIL=Q, (30.2)

Crack

e[t_—"g
Vo l L
|

Initial configuration of a cracked cantilever

— etk

Fig. 4
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%—gZU[ V21— &)L o) =2M, (30.b)

—’;1 (1—8PL? Go=(1—y)Mp. (30.c)

The position of the stationary plastic hinge C is,
therefore, determined by the following dimensionless

equation :
2

~[2-157 ]| 22 (31)
where o= H/L represents the slenderness ratio of the
cantilever.

Equation (31) shows that the position of plastic
hinge C depends on @ and y. From Egs. (30.a) ~ (30.
c), we also obtain

00=‘§' (1-7) Tl—:‘MngLT (32.a)
o YB 2 N a
V= [fé' vy 11—y (1_5)2]. (32.b)

Integrating Eq (32.b) ylelds
YB 2 a

V= [ 73t 4 (l" 7) W]t (33)

Equation (33) shows that the tip velocity of the canti-

lever increases linearly with time. Equations (5) and

(6) still hold in this case. Therefore, it is easy to

obtain the relative sliding velocity at the interface.

(V1= vo— B [ S+s
o) b oo

Similarly, the total dimensionless sliding displace-
ment at the interface is expressed by

_ Ko [ﬂ H
8 afaV_ (- a 2]“
v tlE) sacheE)] ®
where again, Ko is the initial kinetic energy of the
block.

The critical dimensionless initial kinetic energy
required to cause shear failure at the interface is

M,

o

‘ . @

Fig. 5 Deformation mechanism of the cracked structure
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10 _I{
Ecr ﬁ —=+3
,61_ 1—7) ](i)z
If eo= ecr, then dynamic plastic shear failure is consid-
ered to have occurred.
Since the two sides of the interface have different

angular velocities, the following inequality must be
satisfied.

=25 a0 % () ()

73~%~—32£>o (37)

3.1 Numerical example
The basic data of the cantilever adopted in this
example are from the famous experiment done by
Parkes”?, i.e,

Table 1 Numerical results for different y

8 a 30—y
vl ¢ ve | FETd-o
1.0 2.598 1.33
1/8 0.321117 2.570 1.78
1/16 0. 162071 2.593 1.78
0.8
1/32 0. 0811558 2. 507 1.78
1/48 0. 054116 2.598 1.78
1/8 0. 317708 2.542 1.78
1/16 0.16177 2.588 .78
0.6
1/32 0.0811242 2.596 .78 -
1/48 0. 0541073 2.597 .78
1/8 0. 31608 2.529 1.78
1/16 0.161621 2.586 1.78
0.5
1/32 0. 0811084 2. 596 1.78
1/48 0. 0541029 2.597 1.78
e
/
/
70 I~ , /
/
80 /
/
50 | / /
a4
40 /
/
sor —— <y
20 | ———— 1L=0,y=1[8]
L#0, y=1
10
0 1 1 1 1 1 1
0 1.0 20 30 40 50 60 7.0 ?ﬂ{_

Fig. 6 Comparison of three cases
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14 X L=2",4",8" and 12".
Therefore, the slenderness ratios of the cantilevers
are, respectively,

a=1/8,1/16,1/32 and 1/48.

The results of numerical calculations for different
7, are listed in Table 1.

From Eq. (36) and Tablel, we know that the
critical value of the dimensionless kinetic energy for
shear failure at the interface can be simply expressed
by

ecr=—}%+ 3—5—+L78<—§7)z. (38)
Equation (38) shows that e, is insensitive to y, the
coefficient of weakness of the cracked section. From
Table 1 and inequality (35), we also know that the
ratio @/H must satisfy

alH >2.60. (39)

BXH=

4. Discussion and Conclusions

This paper concerns the influence of two secon-
dary effects, rotatory inertia and presence of a crack,
on the dynamic plastic shear failure of a cantilever
with an attached mass block at its tip subjected to
impulsive loading. Two dimensionless initial kinetic
energy crieria are presented to predict the shear fail-
ure at the interface.

It has been shown that the consideration of the
rotatory inertia of the beam element increases the
initial kinetic energy causing shear failure at the
interface between the beam tip and the tip mass,
where the initial velocity has discontinuity. The
comparison between considering rotatory inertia and
neglecting of is illustrated in Fig. 5.

It has been also proven that the presence of a
crack (or notch) at the upper root of the cantilever
increases the initial kinetic energy required to cause
shear failure at the interface ; however, it is smaller
than that when the rotatory inertia of the beam ele-
ment is taken into account. The comparison of these
three cases is shown in Fig. 6.

It is worthy to note that the dynamic plastic
failure of a notched non-straight element (notched
circular ring®¥-%%) may be quite different from the
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failure mode of a notched straight cantilever. Zhao et
al. found that “Notch Sensitive Regions (NSR)” exist
on the exterior surface of a circular ring rest on a arc-
shaped support loaded dynamically. If a notch is out
of the NSR, the notch will have not influence on the
deformation and failure of the ring; if not, the notch
will have strong influence on the dynamic failure of
the ring.
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